NUMERICAL SIMULATION OF STRUCTURAL FRACTURES CONTROLLED BY REVERSE FAULT
-
摘要: 在探讨逆断层对构造裂缝控制作用的基础上, 应用Comsol有限元软件, 模拟不同水平作用力、不同岩性、不同断层倾角和距断层面远近等因素影响下断层及其周边区域的应力、应变情况, 并分析了不同控制因素下构造裂缝发育的规律。模拟结果表明, 构造裂缝的发育程度随施加的水平应力作用增大而线性增大; 岩石破裂前产生的应变量可用来描述岩石的脆性, 抗压强度对岩石破裂起主导作用, 而岩石的抗剪强度与岩石破裂发育有一定的相关性; 逆断层倾角存在一个临界角度, 使构造裂缝发育最为强烈; 逆断层控制裂缝发育, 距离断裂面越远裂缝发育程度越低, 并存在一个发育程度骤减的范围, 称为"断裂控制带", 该断裂控制带的形成和分布应该与断裂的性质、规模、断距及岩石力学参数等有关。Abstract: Based on the research on development of structural fractures that controlled by reverse fault, this study has simulated the distribution of the stress, strain and the development rules of fractures under the different conditions of horizontal forces, lithological characters, fault dip and the different distances to fault location in the fault zone by using COMSOL finite element software. It is shown by the simulation results that the development degree of structure fractures increases linearly with the increase of horizontal forces. The strain generated before rock failure can be used to describe the brittle properties of rock. Compressive strength is the main factor that makes rocks rupture and the shear strength of rock has relationship with the development of rock fracture. There is a critical angle in reverse fault dip and it can make the fracture strongest developed. The fracture density decreases as the distance from the reverse fault increases and there is a damage region controlled by reverse fault where the fracture density decreases sharply. This region is closely related to the mechanics, scale, displacement of the reverse fault and rock mechanics parameters.
-
Key words:
- reverse fault /
- numerical simulation /
- structure stress field /
- structural fracture
-
图 12 一间房南逆断层剖面和裂缝面密度-距断层距离关系[23]
Figure 12. Profile of structural fracture measurement in southern YJF reverse fault and the distribution of fracture density
表 1 不同水平应力作用下最大应力、应变值
Table 1. The maximum stress and strain values under different horizontal stresses
水平应力/MPa 最大应力/MPa 最大应变/cm 10 10.82 0.1726 12 13.25 0.2070 15 17.05 0.2590 20 21.64 0.3453 30 33.80 0.5187 40 43.29 0.6906 表 2 不同岩石岩石力学参数
Table 2. The mechanics parameters of different rocks
岩性 密度/(g·cm-3) 杨氏模量/GPa 泊松比 抗压强度/MPa 抗剪强度/MPa 白云岩 2450 51.26 0.335 49.00 5.2 灰质白云岩 2250 72.68 0.205 70.74 0.7 灰岩 1950 64.30 0.274 104.92 10.0 表 3 不同岩性下最大应力、应变值
Table 3. The maximum stress and strain values under different lithology
岩性 最大应力/MPa 最大应变/cm 白云岩 13.07 0.2577 灰质白云岩 13.14 0.1826 灰岩 13.25 0.2070 表 4 不同断层倾角下最大应力、应变值
Table 4. The maximum stress and strain values under different fault dips
断层倾角/(°) 最大应力/MPa 最大应变/cm 10 13.25 0.2070 15 13.96 0.1956 20 35.76 0.2489 25 23.61 0.1701 30 27.59 0.1908 -
[1] 胡明, 秦启荣, 陈继明, 等.断层应力效应分析及其在裂缝性储层研究中的作用[J].新疆石油地质, 1992, 13(3):280~284. http://www.cnki.com.cn/Article/CJFDTOTAL-XJSD199203012.htmHU Ming, QIN Qi-rong, CHEN Ji-ming, et al. Faulting stress analysis and its effect on the study of fractured reservoirs[J]. Xinjiang Petroleum Geology, 1992, 13(3): 280~284. http://www.cnki.com.cn/Article/CJFDTOTAL-XJSD199203012.htm [2] 万天丰, 任之鹤.中国中、新生代板内变形速度研究[J].现代地质, 1999, 13(1):83~92. http://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ901.013.htmWAN Tian-feng, REN Zhi-he. Research on the intraplate deformation velocity of china in Meso-Cenozonic[J]. Geoscience, 1999, 13(1): 83~92. http://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ901.013.htm [3] 童亨茂.储层裂缝描述与预测研究进展[J].新疆石油学院学报, 2004, 16(2):9~13. http://www.cnki.com.cn/Article/CJFDTOTAL-XJSY200402003.htmTONG Heng-mao. Description and prediction of reservoir fractures networks[J]. Journal of Xinjiang Petroleum Institute, 2004, 16(2): 9~13. http://www.cnki.com.cn/Article/CJFDTOTAL-XJSY200402003.htm [4] 操成杰. 川西北地区构造应力场分析与应用[D]. 西安: 西北大学, 2001.CAO Cheng-jie. Analysis and application of tectonic stress field in the northwest Sichuan Basin[D]. Xi'an: Northwestern University, 2001. [5] 张乐, 姜在兴, 郭振廷.构造应力与油气成藏关系[J].天然气地球科学, 2007, 18(1):31~35. http://www.cnki.com.cn/Article/CJFDTOTAL-TDKX200701006.htmZHANG Le, JIANG Zai-xing, GUO Zhen-ting. Relationship between structural stress and hydrocarbon bearing pool formation[J]. Natural Gas Geoscience, 2007, 18(1): 31~35. http://www.cnki.com.cn/Article/CJFDTOTAL-TDKX200701006.htm [6] 刘佑荣, 唐辉明.岩体力学[M].武汉:中国地质大学出版社, 2008.LIU You-rong, TANG Hui-ming. Rockmass mechanics[M]. Wuhan: China University of Geosciences Press, 2008. [7] Bertoluzza L, Perotti C R. A finite-element model of the stress field in strike-slip basins: Implication for the Permian tectonics of the southern Alps (Italy)[J]. Tectonophysics, 1997, 280(1/2): 185~197. http://cat.inist.fr/?aModele=afficheN&cpsidt=10860290 [8] 王红罡, 吕炳全, 徐国强, 等. 胜利油田埕北30潜山裂缝系统的地应力有限元法分析[J]. 上海地质, 2003, (2): 26~30. http://d.wanfangdata.com.cn/Periodical/shdz200302007WANG Hong-gang, LIU Bing-quan, XU Guo-qiang, et al. Finite element analysis on paleotectonic stress of hill seaming system in Chenbei 30 of Shengli Oilfield[J]. 2003, (2):26~30. http://d.wanfangdata.com.cn/Periodical/shdz200302007 [9] 佟彦明.胶莱盆地莱阳期古构造应力场分析及模拟[J].大庆石油地质与开发, 2007, 26(1):6~9. http://www.cnki.com.cn/Article/CJFDTOTAL-DQSK200701001.htmTONG Yan-ming. The paletectonic stress field at Laiyang stage in Jiaolai Basin and the simulation[J]. Petroluem Geology & Oilfield Development in Daging, 2007, 26(1): 6~9. http://www.cnki.com.cn/Article/CJFDTOTAL-DQSK200701001.htm [10] 孙宏斌, 陈汉林, 程晓敢, 等.辽河盆地葵花岛构造裂隙发育的有限元模拟[J].地质科学, 2004, 39(2):199~205. http://www.cnki.com.cn/Article/CJFDTOTAL-DZKX200402005.htmSON Hong-bin, CHEN Han-lin, CHENG Xiao-gan, et al. Finite element simulation of fracture development in the kuihuadao structure, Liaohe Basin[J]. Chinese Journal of Geology, 2004, 39(2): 199~205. http://www.cnki.com.cn/Article/CJFDTOTAL-DZKX200402005.htm [11] 侯贵廷.裂缝的分形分析方法[J].应用基础与工程科学学报, 1994, 2(4):299~305. http://www.cnki.com.cn/Article/CJFDTOTAL-YJGX199404004.htmHOU Gui-ting. Fractal description of reservoir heterogeneity[J]. Geological Science and Technology Information, 1994, 2(4): 299~305. http://www.cnki.com.cn/Article/CJFDTOTAL-YJGX199404004.htm [12] 姚姚, 唐文榜.深层碳酸盐岩岩溶风化壳洞缝型油气藏可检测性的理论研究[J].石油地球物理勘探, 2003, 38(6):623~629. http://www.cnki.com.cn/Article/CJFDTOTAL-SYDQ200306009.htmYAO Yao, TAGN Wen-bang. Theoretical research on the detectability of Karst fracture and cavern pools[J]. Oil Geophysical Prospecting, 2003, 38(6): 623~629. http://www.cnki.com.cn/Article/CJFDTOTAL-SYDQ200306009.htm [13] 景建恩, 魏文博, 梅忠武, 等.裂缝型碳酸盐岩储层测井评价方法——以塔河油田为例[J].地球物理学进展, 2005, 20(1):78~82. http://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ20050100E.htmJING Jian-en, WEI Wen-bo, MEI Zhong-wu, et al. Method of Well-logging interpretation for fracture reservoirs of carbonate rock-A case study in Tahe oil-field[J]. Progress in Geohpysics, 2005, 20(1): 78~82. http://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ20050100E.htm [14] 彭建兵, 陈立伟, 黄强兵, 等.地裂缝破裂扩展的大型物理模拟试验研究[J].地球物理学报, 2008, 51(6):1826~1834. http://www.cnki.com.cn/Article/CJFDTOTAL-DQWX200806025.htmPENG Jian-bing, CHEN Li-wei, HUANG Qiang-bing, et al. Large-scale physical simulative experiment on ground fissure expansion mechanism[J]. Chinese Journal of Geophysics, 2008, 51(6):1826~1834. http://www.cnki.com.cn/Article/CJFDTOTAL-DQWX200806025.htm [15] 王平, 崔建忠.金属塑性成形力学[M].北京:冶金工业出版社, 2006.WANG Ping, CUI Jian-zhong. The metal plastic forming mechanics[M]. Beijing: Metallurgical Industry Press, 2006. [16] 文世鹏, 李德同.储层构造裂缝数值模拟技术[J].石油大学学报:自然科学版, 1996, 20(5):17~24. http://www.cnki.com.cn/Article/CJFDTOTAL-SYXB804.009.htmWEN Shi-peng, LI De-tong. Numerical simulation technology for structural fracture of reservoir[J]. Journal of the University of Petroleum, China, 1996, 20(5):17~24. http://www.cnki.com.cn/Article/CJFDTOTAL-SYXB804.009.htm [17] Reynolds S D, Coblentz D D, Hillis R R. Tectonic forces controlling the regional intraplate stress field in continental Australia: Results from new finite element modeling[J]. Journal of Geophysical Research: Solid Earth, 2002, 107(B7): 2131. http://cat.inist.fr/?aModele=afficheN&cpsidt=13998633 [18] William B J Zimmerman. Multiphysics Modeling With Finite Element Method[M]. Singapore: World Scientific Publishing Company, 2006. [19] 胡大林, 魏炜, 闫志刚.白云岩砌体抗剪强度试验[J].长安大学学报:自然科学版, 2003, 23(2):43~49. http://www.cnki.com.cn/Article/CJFDTOTAL-XAGL200302012.htmHU Da-lin, WEI Wei, YAN Zhi-gang. Shear strength of stone masonry[J]. Journal of Chang'an University: Natural Science Edition, 2003, 23(2): 43~49. http://www.cnki.com.cn/Article/CJFDTOTAL-XAGL200302012.htm [20] 水利水电科学研究院, 水利水电规划设计总院, 水利水电情报研究所, 等.岩石力学参数[M].北京:水利水电出版社, 1991.China Institute of Water Resources and Hydropower Research, The institute of Hydropower Planning & Design, The Institute of Water Resources and Hydropower Intelligence. Rock mechanics parameters[M]. Beijing: Structural Use of Concrete Press, 1991. [21] 蔡国刚, 童亨茂.太古宇潜山不同岩石类型裂缝发育潜力分析——以辽河西部凹陷为例[J].地质力学学报, 2010, 16(3):260~270. http://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?flag=1&file_no=20100304&journal_id=dzlxxbCAI Guo-gang, TOGN Heng-mao. Analysis on fracture potential for different types of rocks in archean buried hill: A case study of Liaohe Western sag[J]. Journal of Geomechanics, 2010, 16(3): 260~270. http://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?flag=1&file_no=20100304&journal_id=dzlxxb [22] 曾联波, 李跃纲, 张贵斌, 等.川西南部上三叠统须二段低渗透砂岩储层裂缝分布的控制因素[J].中国地质, 2007, 34(4):622~627. http://www.cnki.com.cn/Article/CJFDTOTAL-DIZI200704011.htmZENG Lian-bo, LI Yue-gang, ZHAGN Gui-bin, et al. Controlling factors for fracture distribution in the low-permeability sandstone reservoir of the second member of the Upper Triassic Xujiahe Formation in the south of western Sichuan[J]. Geology in China, 2007, 34(4): 622~627. http://www.cnki.com.cn/Article/CJFDTOTAL-DIZI200704011.htm [23] 李乐, 侯贵廷, 潘文庆, 等.逆断层对致密岩石构造裂缝发育的约束控制[J].地球物理学报, 2011, 54(2):466~473. http://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201102027.htmLI Le, HOU Gui-ting, PAN Wen-qing, et al. The constraints of reverse fault of the development of structural fractures in compacted rocks[J]. Chinese Journal of Geophysics, 2011, 54(2): 466~473. http://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201102027.htm