留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

智利北部—阿根廷西北部两类斑岩铜矿成矿方式

邱瑞照 陈玉明 陈秀法 赵宏军 任晓栋 赵立克 张潮 王靓靓

邱瑞照, 陈玉明, 陈秀法, 等, 2019. 智利北部—阿根廷西北部两类斑岩铜矿成矿方式. 地质力学学报, 25 (S1): 129-134. DOI: 10.12090/j.issn.1006-6616.2019.25.S1.022
引用本文: 邱瑞照, 陈玉明, 陈秀法, 等, 2019. 智利北部—阿根廷西北部两类斑岩铜矿成矿方式. 地质力学学报, 25 (S1): 129-134. DOI: 10.12090/j.issn.1006-6616.2019.25.S1.022
QIU Ruizhao, CHEN Yuming, CHEN Xiufa, et al., 2019. DISCUSSION ON THE TWO TYPES OF PORPHYRY COPPER MINERALIZATION IN NORTHERN CHILE AND NORTHWEST ARGENTINA. Journal of Geomechanics, 25 (S1): 129-134. DOI: 10.12090/j.issn.1006-6616.2019.25.S1.022
Citation: QIU Ruizhao, CHEN Yuming, CHEN Xiufa, et al., 2019. DISCUSSION ON THE TWO TYPES OF PORPHYRY COPPER MINERALIZATION IN NORTHERN CHILE AND NORTHWEST ARGENTINA. Journal of Geomechanics, 25 (S1): 129-134. DOI: 10.12090/j.issn.1006-6616.2019.25.S1.022

智利北部—阿根廷西北部两类斑岩铜矿成矿方式

doi: 10.12090/j.issn.1006-6616.2019.25.S1.022
基金项目: 

国家国际科技合作专项 2011DFA22460

中国地质调查局地质调查项目 DD20160118

中国地质调查局地质调查项目 DD20190370

详细信息
    作者简介:

    邱瑞照(1963-), 男, 研究员, 主要从事深部地质、区域成矿和境外地质矿产研究。E-mail:qiurrzz@163.com

  • 中图分类号: P618.41;P611

DISCUSSION ON THE TWO TYPES OF PORPHYRY COPPER MINERALIZATION IN NORTHERN CHILE AND NORTHWEST ARGENTINA

  • 摘要: 智利北部和阿根廷西北部的中新生代斑岩铜矿形成于古生代地体拼贴造山带背景。随着大西洋的张开,南美大陆向西漂移,中新生代期间,南美克拉通块体俯冲到古生代造山带之下形成加厚或双倍地壳。智利北部作为南美活动大陆边缘的组成部分,不断"吞食"向东俯冲的太平洋(纳斯卡)板块,斑岩铜矿成矿作用发生在俯冲板块断离后导致的大规模岩浆活动,并沿再活化岩石圈不连续(先存的古生代拼接带、区域断裂)反复就位,形成安第斯型斑岩铜矿。阿根廷西北部大规模铜(金、钼)成矿与加厚的造山带垮塌有关,大规模成矿受控于造山岩石圈去根、软流圈物质和热上涌引发的大规模岩浆活动。总体而言,智利北部、阿根廷西北部安第斯型和造山带垮塌型斑岩铜矿,乃至南美安第斯山铜(金)矿成矿带形成,与中新生代以来南美大陆向西漂移、大西洋张开事件关系密切。

     

  • 图  1  南美洲斑岩铜矿床位置[9]

    Figure  1.  Porphyry copper deposit locations in South America[9]

    图  2  智利北部—阿根廷西北部自西向东地体分布示意图[12]

    Figure  2.  Sketch map of the distribution of terranes from west to east in northern Chile and northwestern Argentina[12]

    图  3  智利北部和阿根廷西北部地层、岩浆作用、变质作用和构造事件[15]

    Figure  3.  Synopsis of stratigraphy, magmatism, metamorphism, and tectonic events in northwestern Argentina and northern Chile[15]

  • [1] MALONEY K T, CLARKE G L, KLEPEIS K A, et al. The Late Jurassic to present evolution of the Andean margin:Drivers and the geological record[J]. Tectonics, 2013, 32(5):1049-1065. doi: 10.1002/tect.20067
    [2] EDUARDO O Z. Servicio geotogico minero argentino insllthho de geologfa y recursos minerales, anales no 44. Mapa Metalogenetico De America Do Sul Metallgenic Map of South America, 1: 5, 000, 000, Memoria Explicativa/Explanatory Text. Es propiedad del instituto de geologla y recursos minerales-segemar[M]. Prohibida su reproduccion Armado y diseno editorial: OSVALDO D. CACCAGLIO. 2005.
    [3] RICHARDS J P. Tectono-magmatic precursors for porphyry Cu-(Mo-Au) deposit formation[J]. Economic Geology, 2003, 98(8):1515-1533. doi: 10.2113/gsecongeo.98.8.1515
    [4] SILLITOE R H. Porphyry copper systems[J]. Economic Geology, 2010, 105(1):3-41. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0232405025/
    [5] KHOMICH V G, BORISKINA N G, SANTOSH M. A geodynamic perspective of world-class gold deposits in East Asia[J]. Gondwana Research, 2014, 26(3-4):816-833. doi: 10.1016/j.gr.2014.05.007
    [6] BERTRAND G, GUILLOU-FROTTIER L, LOISELET C. Distribution of porphyry copper deposits along the Western Tethyan and Andean subduction zones:Insights from a paleotectonic approach[J]. Ore Geology Reviews, 2014, 60:174-190. doi: 10.1016/j.oregeorev.2013.12.015
    [7] RAMOS V A. The tectonic regime along the Andes:Present-day and mesozoic regimes[J]. Geological Journal, 2010, 45(1):2-25. doi: 10.1002/(ISSN)1099-1034
    [8] SCHELLART W P. Overriding plate shortening and extension above subduction zones:A parametric study to explain formation of the Andes mountains[J]. Geological Society of America Bulletin, 2008, 120(11-12):1441-1454. doi: 10.1130/B26360.1
    [9] BUTTERWORTH N, STEINBERG D, MÜLLER R D, et al. Tectonic environments of South American porphyry copper magmatism through time revealed by spatiotemporal data mining[J]. Tectonics, 2016, 35(12):2847-2862. doi: 10.1002/2016TC004289
    [10] COOKE D R, HOLLINGS P, WALSHE J L. Giant porphyry deposits:characteristics, distribution, and tectonic controls[J]. Economic Geology, 2005, 100(5):801-818. doi: 10.2113/gsecongeo.100.5.801
    [11] RICHARDS J P. Giant ore deposits formed by optimal alignments and combinations of geological processes[J]. Nature Geoscience, 2013, 6(11):911-916. doi: 10.1038/ngeo1920
    [12] REGNIER M, CHIU J M, SMALLEY R, et al. Crustal thickness variation in the Andean foreland, Argentina, from converted waves[J]. Bulletin of the Seismological Society of America, 1994, 84(4):1097-1111.
    [13] DALZIEL I W D, FORSYTHE R D. Andean evolution and the terrane concept[C]//HOWELL D G. Tectonostratigraphic Terranes of the Circum-Pacific Region: Circum-Pacific-Council for Energy and Mineral Resources Earth Science Series. 1985, 1: 565-581.
    [14] RAMOS V A. Tectonics of the late proterozoic-early paleozoic:A collisional history of Southern South America[J]. Episodes, 1988, 11(3):168-174.
    [15] BAHLBURG H, HERVÉ F. Geodynamic evolution and tectonostratigraphic terranes of northwestern Argentina and northern Chile[J]. GSA Bulletin, 1997, 109(7):869-884. doi: 10.1130/0016-7606(1997)109<0869:GEATTO>2.3.CO;2
    [16] 邱瑞照, 李廷栋, 周肃, 等.中国大陆岩石圈物质组成及演化[M].北京:地质出版社, 2006:1-308.

    QIU Ruizhao, LI Tingdong, ZHOU Shu, et al. the composition and evolution of lithosphere in China continent[M]. Beijing:Geological Publishing House, 2006:1-308(in Chinese).
    [17] GRIFFIN W L, BEGG G C, O'REILLY S Y. Continental-root control on the genesis of magmatic ore deposits[J]. Nature Geoscience, 2013, 6(11):905-910. doi: 10.1038/ngeo1954
    [18] KAY S M, MPODOZIS C. Central Andean ore deposits linked to evolving shallow subduction systems and thickening crust[J]. GSA Today, 2001, 11(3):4-9. doi: 10.1130/1052-5173(2001)011<0004:CAODLT>2.0.CO;2
    [19] 严光生, 邱瑞照, 连长云, 等.中国大陆斑岩铜矿资源潜力定量评价[J].地学前缘, 2007, 14(5):27-41. doi: 10.3321/j.issn:1005-2321.2007.05.004

    YAN Guangsheng, QIU Ruizhao, LIAN Changyun, et al. Quantitative assessment of the resource potential of porphyry copper systems in China[J]. Earth Science Frontiers, 2007, 14(5):27-41. (in Chinese with English abstract) doi: 10.3321/j.issn:1005-2321.2007.05.004
    [20] 侯增谦, 杨志明.中国大陆环境斑岩型矿床:基本地质特征、岩浆热液系统和成矿概念模型[J].地质学报, 2009, 83(12):1779-1817. doi: 10.3321/j.issn:0001-5717.2009.12.002

    HOU Zengqian, YANG Zhiming. Porphyry deposits in continental settings of China:geological characteristics, magmatic-hydrothermal system, and metallogenic model[J]. Acta Geologica Sinica, 2009, 83(12):1779-1817. (in Chinese with English abstract) doi: 10.3321/j.issn:0001-5717.2009.12.002
    [21] MAKSAEV V, ALMONACID T A, MUNIZAGA F, et al. Geochronological and thermochronological constraints on porphyry copper mineralization in the Domeyko alteration zone, northern Chile[J]. Andean Geology, 2010, 37(1):144-176. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=Doaj000002989234
    [22] SILLITOE R H, COOPER C, SALE M J, et al. Discovery and geology of the Esquel low-sulfidation epithermal gold deposit, Patagonia, Argentina[C]//GOLDFARB R J, NIELSEN R L. Integrated Methods for Discovery: Global Exploration in the 21st Century. SEG Special Publication 9. Society of Economic Geologists, 2002: 227-240.
    [23] VILA T, LINDSAY N, ZAMORA R. Geology of the Manto Verde copper deposit, Northern Chile: a specularite-rich, hydrothermal-tectonic breccia related to the Atacama Fault Zone[C]//CAMUS F, SILLTOE R H, PETERSEN R. Andean copper deposits: new discoveries, mineralization style and metallogeny. Society of Economic Geologists Special Publication, 1996, 5: 1-198.
    [24] ZENTILLI M, MAKSAEV V, BORIC R, et al. Spatial coincidence and similar geochemistry of Late Triassic and Eocene-Oligocene magmatism in the Andes of northern Chile:evidence from the MMH porphyry type Cu-Mo deposit, Chuquicamata District[J]. International Journal of Earth Sciences, 2018, 107(3):1097-1126. doi: 10.1007/s00531-018-1595-9
    [25] 邱瑞照, 李小伟, 周肃, 等.北美科迪勒拉山系中生代大陆拼合[M].北京:地质出版社, 2017:1-238.

    QIU Ruizhao, LI Xiaowei, ZHOU Shu, et al. Mesozoic assembly of the north American cordillera[M]. Beijing:Geological Publishing House, 2017:1-238. (in Chinese)
    [26] BRASSE H, SOYER W. A magnetotelluric study in the Southern Chilean Andes[J]. Geophysical Research Letters, 2001, 28(19):3757-3760. doi: 10.1029/2001GL013224
    [27] YUAN X C, ASCH G, BATAILE K, et al. Deep seismic images of the Southern Andes[C]//KAY S M, RAMOS V A. Late Cretaceous to recent magmatism and tectonism of the Southern Andean Margin at the latitude of the Neuquen Basin (36-39°S). Geological Society of America, Special Paper, 2006, 407: 61-72.
    [28] RAMOS V A, LITVAK V D, FOLGUERA A, et al. An Andean tectonic cycle:From crustal thickening to extension in a thin crust (34°-37°SL)[J]. Geoscience Frontiers, 2014, 5(3):351-367. http://cn.bing.com/academic/profile?id=af116d6abc4096d8db35a619dd1a8e2a&encoded=0&v=paper_preview&mkt=zh-cn
    [29] RICHARDS J P, BOYCE A J, PRINGLE M S. Geologic evolution of the Escondida area, northern Chile:a model for spatial and temporal localization of porphyry Cu mineralization[J]. Economic Geology, 2001, 96(2):271-305. http://cn.bing.com/academic/profile?id=5034573e3abbb83b8aaa2ac3a274307a&encoded=0&v=paper_preview&mkt=zh-cn
    [30] 邱瑞照, 谭永杰, 朱群, 等.中国及邻区重要成矿带成矿规律对比研究[M].北京:地质出版社, 2013:1-598.

    QIU Ruizhao, TAN Yongjie, ZHU Qun, et al. Metallogenic regularity of important metallogenic belts in China and adjacent areas[M]. Beijing:Geological Publishing House, 2013:1-596. (in Chinese)
    [31] HORTON B K, FUENTES F, BOLL A, et al. Andean stratigraphic record of the transition from backarc extension to orogenic shortening:A case study from the northern Neuquén Basin, Argentina[J]. Journal of South American Earth Sciences, 2016, 71:17-40. doi: 10.1016/j.jsames.2016.06.003
  • 加载中
图(3)
计量
  • 文章访问数:  370
  • HTML全文浏览量:  200
  • PDF下载量:  18
  • 被引次数: 0
出版历程
  • 刊出日期:  2019-05-01

目录

    /

    返回文章
    返回