PETROGENESIS AND TECTONIC SIGNIFICANCE OF GRANITE IN THE HAOYAOERHUDONG GOLD DEPOSIT IN INNER MONGOLIA
-
摘要: 内蒙古浩尧尔忽洞金矿为低品位超大型中低温热液型金矿,矿区内海西期花岗岩发育。在矿区内可见黑云花岗岩、花岗细晶岩、花岗伟晶岩和花岗斑岩。花岗岩中SiO2含量65.36%~74.29%,Na2O/K2O比值0.43~1.01,平均值为0.75,花岗脉岩类属于高钾钙碱性,黑云花岗岩属于钾玄岩系列。哈克图解上各元素含量随SiO2变化呈线性规律明显,具Ⅰ型花岗岩特征。∑REE值在64.86×10-6~164.80×10-6范围内变化,总体上稀土含量较低。(La/Yb)N值为6.59~16.98,显示轻重稀土有明显的分馏。稀土元素蛛网图表现为右倾。黑云母花岗岩δEu平均值0.30,具低Sr低Y的特点。花岗脉岩类δEu平均值为0.65,表现出高Sr低Y的特点。花岗岩类具有中等到强的铕亏损。根据其地球化学特征,认为该岩体为同碰撞—后碰撞期形成的高钾钙碱性Ⅰ型花岗岩。Abstract: The Haoyaoerhudong gold deposit is a mesothermal-epithermal deposit with ultra-large reserves and low grade. Hercynian granite was developed in the gold deposit. Granitite, granite aplite, granite pegmatite and granite-porphyry could be found in the Haoyaoerhudong gold deposit. The content of SiO2 is from 65.36 to 73.07, and Na2O/K2O is 0.43 to 1.01, with average value of 0.75. The granite dikes belong to high potassium calcium alkaline. The biotite granitization belongs to shoshonitic series. The variation tendency of other elements with following the content of SiO2 is obviously linear, and then it expresses the characters of Ⅰ-type granite. The content of ∑REE ranges from 64.86×10-6 to 164.80×10-6, which means low content of REE. The ratio of (La/Yb)N ranges from 6.59 to 16.98, revealing apparent fractionation between LREE and HREE. The distribution curve of REE is right deviation. The δEu average value of biotite granitization is 0.30. The δEu average value of granite dikes is 0.65, indicating high and medium negative anomaly of Eu elememt. The biotite granitization showed low Sr and low Y characteristics. The granite dikes showed high Sr and low Y characteristics. According to the geochemical characteristics, the granitoids belong to collision-post collision environment Ⅰ-type granite.
-
1. 研究区概况
浩尧尔忽洞金矿位于内蒙古白云鄂博地区乌拉特中旗境内。白云鄂博地区金储量丰富,区内分布的金矿床主要有浩尧尔忽洞金矿、赛乌素金矿、干斯陶勒盖金矿以及布龙土金矿点、沙拉庙金矿点、比鲁特金矿点等。浩尧尔忽洞金矿2010年开始投产,年产黄金3.55 t。2012年,矿山进一步加大地质勘查工作,提交金储量达200 t左右,为中国典型低品位、超大型中低温热液型金矿。
国内学者对浩尧尔忽洞金矿的成矿机制进行过研究[1~2],认为浩尧尔忽洞金矿属于浅成中低温热液型金矿,矿体主要赋存于白云鄂博群比鲁特组,金矿体形态主要为透镜状、板状和似板状,走向北东—东西,在平面上呈雁行状排列,顺层产出,局部地段受构造影响有切层现象(见图 1);区内主要为华力西中、晚期侵入的岩浆岩,距比鲁特岩组内金矿化带数百米至数千米不等;此外矿区内还出露了大量各种不同成分的火成岩脉,侵入岩内尚未发现任何金矿化,但岩脉周围金富集,据此提出金成矿作用可能与海西期构造岩浆活动有关,强烈的中酸性岩浆作用为金矿床的形成提供了热力和物质来源。目前已获得浩尧尔忽洞金矿床外围花岗斑岩和黑云母花岗岩的锆石U-Pb年龄值分别为287.5~290.9 Ma和267.9~274.0 Ma,金矿石英脉内黑云母氩-氩测年结果为270.2±2.5 Ma,与矿区内花岗岩体形成年龄相近[3~6]。但对矿区内花岗岩的类型和成因研究较少,因此本文主要侧重于岩浆岩类型和成因研究,这将有利于金矿床成因的深化研究和进一步找矿工作的开展。
2. 岩相学特征
黑云母花岗岩呈岩基状产出(见图 2a),花岗斑岩、花岗细晶岩、花岗伟晶岩呈脉状产出(见图 2b)。黑云母花岗岩中石英约占35%,斜长石约占45%,钾长石、黑云母约占15%,其他矿物约占5%,石英发生重结晶,斜长石表面风化较严重,出现绢云母和高岭土化(见图 2c);花岗细晶岩具细晶结构,块状构造,共结结构明显,石英约占45%,斜长石约占35%,钾长石15%左右,可见少量黑云母,约占3%(见图 2d);花岗斑岩具斑状结构,块状构造,石英约占45%,斜长石斑晶约占35%,钾长石约占7%,其他矿物约占10%(见图 2e);花岗伟晶岩具伟晶结构,石英约占40%,斜长石约占30%,电气石约占25%,石英为它形,颗粒较大,粒径2 cm左右,电气石自形程度较好(见图 2f)。
3. 主量及微量元素特征
采集样品10件,样品新鲜,无蚀变。主量、微量和稀土元素分析在长安大学教育部重点实验室完成。主量元素分析方法:利用电子天平准确称取0.5000±0.0001 g岩石粉末样品和4.0000±0.0001 g Li2B2O7,混合均匀后在高频熔样机熔成玻璃片,然后用XRF测定。微量、稀土元素分析方法:称取约0.04 g岩石粉末样品于Teflon溶样器中,加适量HNO3和HF赶硅,反应完成后蒸干再加入适量HNO3和HF,放入配套的不锈钢溶样弹中。在185 ℃下消解48 h,取出蒸干后加入HNO3赶HF,然后用40% HNO3提取,稀释一定倍数后用ICP-MS(USA Thermo Electron Co. X7型)测试。主量元素测试结果见表 1。微量及稀土元素测试结果见表 2。
表 1 浩尧尔忽洞岩体主量元素分析结果Table 1. The analytical results of major elements of the Haoyaoerhudong granitoids
表 2 浩尧尔忽洞岩体微量及稀土元素分析结果Table 2. Analytical results of trace elements and rare earth elements in the Haoyaoerhudong granitoids
由表 1可以看出,研究区花岗岩SiO2含量65.36%~74.29%,平均值71.29%,为酸性岩。Na2O含量2.73%~4.17%,平均值3.50%。K2O含量3.60%~6.29%,平均值4.86%。Na2O/K2O比值为0.43~1.01,平均值0.75。MgO含量0.14%~0.78%,平均值0.34%。TiO2含量0.07%~0.37%,平均值为0.17%。花岗脉岩类为高钾钙碱性系列,黑云花岗岩属于钾玄岩系列(见图 3a)。Al2O3含量13.39%~18.31%,平均值为14.65%。A/CNK(Al2O3/(CaO+Na2O+K2O))值0.95~1.03,平均值为1.02,属于过铝质系列(见图 3b)。其中花岗伟晶岩A/CNK值较高,为1.48,应该与其富含电气石有关,因此不参与平均值计算。
图 3 浩尧尔忽洞岩体SiO2-K2O和A/NK-A/CNK岩浆系列判别图[7]Figure 3. SiO2-K2O and A/NK-A/CNK magma discrimination diagram of the Haoyaoerhudong rock在花岗岩哈克图解(见图 4)上,各元素含量随SiO2变化呈线性变化趋势明显,SiO2与CaO,P2O5,TiO2,TFe2O3,MgO负相关,与Pb正相关,这可能是铁镁矿物、榍石、磷灰石等矿物分离结晶的结果[8]。P2O5和Pb随SiO2的变化规律可用于区分S型和I型花岗岩[9~10]。P2O5随SiO2含量的增加而减少(见图 4a),Pb随SiO2的增加而增加(见图 4b),其变化趋势与I型花岗岩变化趋势相似。
在花岗岩类微量元素蛛网图(见图 5a)中,大离子亲石元素(Rb、Cs、Sr、Ba、K)及高场强元素(如Nb、Ta、Ti)富集;稀土元素表现出LREE富集,HREE亏损的特点,暗示岩浆可能来源于地壳物质的熔融。
花岗岩体的∑REE值变化范围为64.86×10-6~164.80×10-6,平均值105.07×10-6,总体上稀土含量较低。LREE/HREE值为6.61~14.83,平均值10.52;(La/Yb)N值为6.59~16.98,平均值11.77,显示轻重稀土分馏较明显。稀土元素蛛网图(见图 5b)表现为右倾。黑云母花岗岩的δEu值与花岗脉岩体差别较大。黑云母花岗岩δEu值为0.23~0.45,平均值0.30,具有较强的铕亏损;花岗岩脉岩类δEu值0.61~0.70,平均值为0.65,具有中等到弱的铕亏损。黑云母花岗岩Sr含量较低,为48.28×10-6~81.64×10-6,平均值61.44×10-6;Y值5.35×10-6~12.05×10-6,平均值为9.03×10-6,表现出低Sr低Y的特点。花岗斑岩、花岗细晶岩和花岗伟晶岩Sr含量较高,为71.46×10-6~340.4×10-6,平均值205.91×10-6;Y值为12.06×10-6~17.36×10-6,平均值14.17×10-6,表现出高Sr低Y的特点。
4. 讨论
在晚古生代的华力西期,西伯利亚板块不断向华北板块推移,在华北板块北缘发生大规模岩浆活动,是研究区主要岩浆期和成矿期,表现出陆缘、陆间型活动带的逐渐封闭固结与新陆壳的不断增生扩展,在晚华力西期该区发育磨拉石建造[11~13],认为研究区在华力西期中后期,已经进入同碰撞—后碰撞时期。
Ba是俯冲带流体中非常丰富的元素。高Ba/Th比值(>300)一般代表俯冲带流体对岩浆源区的贡献比较显著。研究区花岗脉岩类Ba/Th平均值为123.89,黑云母花岗岩Ba/Th平均值为24.22,认为板片俯冲流体影响较小,西伯利亚板块向华北板块俯冲可能已经结束,指示构造环境进入同碰撞—后碰撞时期。在主量、微量元素构造环境判别图(见图 6)中,花岗岩类均投影于后碰撞区域,显示出后碰撞高钾—钾玄钙碱性I型花岗岩的特征[14~18]。
花岗脉岩显示高Sr,具中等到弱的Eu异常,推测可能为后碰撞时期下地壳部分熔融。其高Sr和中—弱负Eu异常的特点暗示源区有少量斜长石残留;低Y型的特征表明石榴子石或角闪石和单斜辉石为残留相[19~20]。黑云母花岗岩为低Sr低Y型岩体且有高的Eu异常,表明源区有斜长石和石榴子石的残留[21]。因此认为以花岗斑岩、花岗细晶岩和花岗伟晶岩为代表的花岗脉岩,与黑云母花岗岩可能是华力西期不同期次岩浆活动的产物。
本文收集了浩尧尔忽洞金矿区海西运动中后期花岗岩类和含金石英脉Pb、Sr-Nd同位素数据[2~3](见表 3)。由表 3可以得出,206Pb/204Pb比值为16.637~18.012,平均值17.321,207Pb/204Pb比值为15.304~15.528,平均值15.428,208Pb/204Pb比值为36.972~38.295,平均值37.643,在208Pb/204Pb-206Pb/204Pb和207Pb/204Pb-206Pb/204Pb图解(见图 7)中,都投影于造山带与下地壳之间。
表 3 浩尧尔忽洞岩体Pb同位素分析结果Table 3. Pb isotopic compositions for the Haoyaoerhudong granitoids
图 7 208Pb/204Pb-206Pb/204Pb和207Pb/204Pb-206Pb/204Pb投影图解(底图据文献[22])Figure 7. 208Pb/204Pb-206Pb/204Pb and 207Pb/204Pb-206Pb/204Pb projective diagrams因此认为研究区海西期花岗岩岩浆主要来源于深源,可能为下地壳中基性物质部分熔融的产物。通过以上构造演化与地球化学分析,认为母岩浆起源,可能是板块碰撞过程中,地壳快速缩短,垂向增厚,其产生的热量使下部地壳中基性物质部分熔融形成。研究区高钾钙碱性—钾玄岩系列I型花岗岩的发现,可能标志该区在华力西运动中、后期俯冲作用已经结束,进入同碰撞—后碰撞时期。
5. 结论
根据主量及微量元素和Pb、Sr-Nd同位素特征分析,认为研究区海西期花岗岩岩浆起源于下地壳中基性物质的部分熔融,为高钾钙碱性I型花岗岩。
华力西运动中晚期,华北地台北缘的浩尧尔忽洞地区进入到西伯利亚板块与华北板块碰撞作用的同碰撞—后碰撞阶段。
-
图 3 浩尧尔忽洞岩体SiO2-K2O和A/NK-A/CNK岩浆系列判别图[7]
Figure 3. SiO2-K2O and A/NK-A/CNK magma discrimination diagram of the Haoyaoerhudong rock
图 7 208Pb/204Pb-206Pb/204Pb和207Pb/204Pb-206Pb/204Pb投影图解(底图据文献[22])
Figure 7. 208Pb/204Pb-206Pb/204Pb and 207Pb/204Pb-206Pb/204Pb projective diagrams
表 1 浩尧尔忽洞岩体主量元素分析结果
Table 1. The analytical results of major elements of the Haoyaoerhudong granitoids
表 2 浩尧尔忽洞岩体微量及稀土元素分析结果
Table 2. Analytical results of trace elements and rare earth elements in the Haoyaoerhudong granitoids
表 3 浩尧尔忽洞岩体Pb同位素分析结果
Table 3. Pb isotopic compositions for the Haoyaoerhudong granitoids
-
[1] 郭书胜.浩尧尔忽洞金矿床成因-控矿因素浅析[J].中国科技博览, 2008, (16):22~23.GUO Shu-sheng. Analysis on ore genesis and ore-controlling factors in Haoyaoerhudong gold deposit[J]. China Science and Technology Review, 2008, (16):22~23. [2] 赵百胜, 刘家军, 王建平, 等.内蒙古长山壕金矿矿床地球化学特征与成因研究[J].现代地质, 2012, 25(6):1077~1086. http://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ201106006.htmZHAO Bai-sheng, LIU Jia-jun, WANG Jian-ping, et al. Geological-geochemical characteristics and genesis of Changshanhao gold deposit in Inner Mongolia, China[J]. Geoscience, 2012, 25(6):1077~1086. http://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ201106006.htm [3] 王玉峰. 内蒙古浩尧尔忽洞金矿区岩体地球化学特征及其成矿意义[D]. 北京: 中国地质大学地球科学与资源学院, 2012: 30~40. http://cdmd.cnki.com.cn/Article/CDMD-11415-1012365086.htmWANG Yu-feng. The geochemical characteristics of the pluton in the Haoyaoerhudong gold deposit in Inner Mongolia and its ore-forming significance[D]. Beijing:School of Earth Science and Resources, China University of Geosciences, 2012:30~40. http://cdmd.cnki.com.cn/Article/CDMD-11415-1012365086.htm [4] 王建平, 刘家军, 江向东, 等.内蒙古浩尧尔忽洞金矿床黑云母氩-氩年龄及其地质意义[J].矿物学报, 2011, (增刊):643~644. http://www.cnki.com.cn/Article/CJFDTOTAL-KWXB2011S1335.htmWANG Jian-ping, LIU Jia-jun, JIANG Xiang-dong, et al. Argon-argon age of the black mica in the Haoyaoerhudong gold deposit in Inner Mongolia and its geological significance[J]. Acta Minalogica Sinica, 2011, (Supp.):643~644. http://www.cnki.com.cn/Article/CJFDTOTAL-KWXB2011S1335.htm [5] 肖伟, 聂凤军, 刘翼飞, 等.内蒙古长山壕金矿区花岗岩同位素年代学研究及地质意义[J].岩石学报, 2012, 28(2):535~543. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201202016.htmXIAO Wei, NIE Feng-jun, LIU Yi-fei, et al. Isotope geochronology study of the granitoid intrusions in the Changshanhao gold deposit and its geological implications[J]. Acta Petrologica Sinica, 2012, 28(2):535~543. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201202016.htm [6] ZHONG Hong, ZHU Wei-guang, HU Rui-zhong, et al. Zircon U-Pb age and Sr-Nd-Hf isotope geochemistry of the Panzhihua A-type syenitic intrusion in the Emeishan large igneous province, southwest China and implication for growth of iuvenile crust[J]. Lithos, 2009, 110(1-4):109~128. doi: 10.1016/j.lithos.2008.12.006 [7] Rick P C. Boundary lines within petrologic diagrams which use oxides of major and minor elements lithos. 1989, 22:247~263. [8] Chappell B W. Aluminium saturation in I-and S-type granites and the characterization of fractionated haplogranites[J]. Lithos, 1999, 46(3):535~551. doi: 10.1016/S0024-4937(98)00086-3 [9] WU Fu-yuan, Jahn Bor-ming, Wilde S A, et al. Highly fractionated I-type granites in NE China (Ⅰ):Geochronology and petrogenesis[J]. Lithos, 2003, 66(3-4):241~273. doi: 10.1016/S0024-4937(02)00222-0 [10] LI Xian-hua, LI Zheng-xiang, LI Wu-xian, et al. U-Pb zircon, geochemical and Sr-Nd-Hf isotopic constraints on age and origin of Jurassic I-and A-type granites from central Guangdong, SE China:A major igneous event in response to foundering of a subducted flat-slab?[J]. Lithos, 2007, 96(1-2):186~204. doi: 10.1016/j.lithos.2006.09.018 [11] 杨理华, 李钦祖.华北地区地壳应力场[M].北京:地震出版社, 1980:39~41.YANG Li-hua, LI Qin-zu. Crustal stress field in North China[M]. Beijing:Seismological Publishing House, 1980:39~41. [12] 崔盛芹.华北陆块北缘构造运动序列及区域构造格局[M].北京:地质出版社, 2000:179~183.CUI Sheng-qin. Tectonic movement sequence in the northern margin of North China Landmass and regional structure pattern[M]. Beijing:Geological Publishing House, 2000:179~183. [13] 胡桂明, 王守伦.华北陆台北缘地体构造与铁金矿产[M].北京:地质出版社, 1998:50~56.HU Gui-ming, WANG Shou-lun. Terrane tectonics and gold minerals in the northern margin of North China Landmass[M]. Beijing:Geological Publishing House, 1998:50~56. [14] Dirk Küster, Ulrich Harms. Post-collisional potassic granitoids from the southern and northwestern parts of the late Neoproterozoic East African Orogen:A review[J]. Lithos, 1998, 45(1-4):177~195. doi: 10.1016/S0024-4937(98)00031-0 [15] 翁望飞, 曹诚, 支利赓, 等.皖南燕山期高钾钙碱性埃达克岩厘定及岩石成因[J].地质与勘探, 2001, 47(6):967~981. http://www.cnki.com.cn/Article/CJFDTOTAL-DZKT201106005.htmWENG Wang-fei, CAO Cheng, ZHI Li-geng, et al. Geochemical characteristics and petrogenesis of high-K calc-alkaline adakite of the Yanshanianepoch in South Anhui[J]. Geology and Exploration, 2011, 47(6):967~981. http://www.cnki.com.cn/Article/CJFDTOTAL-DZKT201106005.htm [16] 张成立, 刘良, 张国伟, 等.北秦岭新元古代后碰撞花岗岩的确定及其构造意义[J].地学前缘, 2004, 11(3):33~42. http://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200403005.htmZHANG Cheng-li, LIU Liang, ZHANG Guo-wei, et al. Determination of Neoproterozoic post-collisional granites in the north Qinling Mountains and its tectonic significance[J]. Earth Science Frontier, 2004, 11(3):33~42. http://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200403005.htm [17] 韩宝福.后碰撞花岗岩类的多样性及其构造环境判别的复杂性[J].地学前缘, 2007, 14(3):64~72. http://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200703007.htmHAN Bao-fu. Diverse post-collisional granitoids and their tectonic setting discrimination[J]. Earth Science Frontiers, 2007, 14(3):64~72. http://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200703007.htm [18] 刘昊, 杨欣德, 郝彬, 等.内蒙古赤峰北部晚侏罗世花岗岩地球化学特征及构造背景[J].地质力学学报, 2011, 17(3):286~294. http://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?flag=1&file_no=20110308&journal_id=dzlxxbLIU Hao, YANG Xin-de, HAO Bin, et al. Geochemical characteristics and tectonic setting of Upper Jurassic granite from northern Chifeng, Inner Mongolia[J]. Journal of Geomechanics, 2011, 17(3):286~294. http://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?flag=1&file_no=20110308&journal_id=dzlxxb [19] Defant M J, Drummond M S. Derivation of some modern arc magmas by melting of young subducted lithosphere[J]. Nature, 1990, 374:662~665. [20] Castillo P R. An overview of adakite petrogenesis[J]. Chinese Science Bulletin, 2006, 51(3):257~268. doi: 10.1007/s11434-006-0257-7 [21] 李承东, 张旗, 苗来成, 等.冀北中生代高Sr低Y和低Sr低Y型花岗岩:地球化学、成因及其与成矿作用的关系[J].岩石学报, 2004, 20(2):269~284. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200402008.htmLI Cheng-dong, ZHANG Qi, MIAO Lai-cheng, et al. Mesozoic high-Sr, low-Y and low-Sr, low-Y types granitoids in the northern Hebei province:Geochemistry and petrogenesis and its relation to mineralization of gold deposites[J]. Acte Petrologica Sinica, 2004, 20(2):269~284. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200402008.htm [22] Zartman R E, Doe B R.Plumbotectonics:the model[J].Tectonophysics, 1981, 75(1/2):135~162. -

下载:
下载:






