留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

天然气水合物注热开采近井储层变形破坏的数值模拟研究

翟诚 孙可明 辛利伟 王婷婷

翟诚, 孙可明, 辛利伟, 等, 2017. 天然气水合物注热开采近井储层变形破坏的数值模拟研究. 地质力学学报, 23 (6): 821-828.
引用本文: 翟诚, 孙可明, 辛利伟, 等, 2017. 天然气水合物注热开采近井储层变形破坏的数值模拟研究. 地质力学学报, 23 (6): 821-828.
ZHAI Cheng, SUN Keming, XIN Liwei, et al., 2017. NUMERICAL SIMULATION RESEARCH OF DEFORMATION AND FRACTURE OF THE FORMATION NEAR THE WELLBORE DURING THE HEAT INJECTION EXPLOITATION OF NATURAL GAS HYDRATES. Journal of Geomechanics, 23 (6): 821-828.
Citation: ZHAI Cheng, SUN Keming, XIN Liwei, et al., 2017. NUMERICAL SIMULATION RESEARCH OF DEFORMATION AND FRACTURE OF THE FORMATION NEAR THE WELLBORE DURING THE HEAT INJECTION EXPLOITATION OF NATURAL GAS HYDRATES. Journal of Geomechanics, 23 (6): 821-828.

天然气水合物注热开采近井储层变形破坏的数值模拟研究

基金项目: 

国家自然科学基金项目 51574137

辽宁工业大学教师科研启动基金 X201403

详细信息
    作者简介:

    翟诚(1981-), 男, 博士研究生, 讲师, 主要从事天然气水合物注热开采及数值模拟研究。E-mail:zhaichengzhaili@163.com

    通讯作者:

    孙可明(1968-), 男, 博士, 教授, 主要从事多孔介质多场耦合理论及其工程应用等研究。E-mail:sskkmm11@163.com

  • 中图分类号: TE319

NUMERICAL SIMULATION RESEARCH OF DEFORMATION AND FRACTURE OF THE FORMATION NEAR THE WELLBORE DURING THE HEAT INJECTION EXPLOITATION OF NATURAL GAS HYDRATES

  • 摘要: 为了研究海洋地层中天然气水合物注热开采条件下,水合物沉积层近井储层的力学性质变化规律和变形破坏规律,基于多场耦合理论,考虑水合物分解产生的水、气形成的超静孔隙压力对地层有效应力的影响,建立了能够反映水合物注热分解条件下水合物沉积层温度场、渗流场和变形场耦合作用关系的热流固耦合弹塑性模型,并以ABAQUS软件为开发平台,在Fortran语言环境下编制子程序进行数值模拟。结果表明:注热温度越高,近井储层力学性质劣化的区域与有效应力减小的幅度越大,发生塑性变形破坏的范围和产生的等效塑性应变值也越大;井口最小水平地应力方向的有效应力值最小,等效塑性应变值和体积应变值最大,是首先发生变形破坏的关键位置;井口同一位置的有效应力随注热温度的升高而减小,而体积应变则随注热温度的升高而增大。

     

  • 图  1  有限元网格

    Figure  1.  Finite element meshes

    图  2  不同注热温度条件下AB边水合物饱和度、弹性模量、粘聚力以及渗透率分布图

    Figure  2.  Distribution figures of the saturation of hydrates, elastic modulus, cohesion and permeability of AB edge under different heat injection temperature conditions

    图  3  两种不同注热温度下的等效塑性应变分布图

    Figure  3.  Distribution figures of the equivalent plastic strain under two different heat injection temperature conditions

    图  4  井口沿EA弧线方向的有效应力和体积应变分布图

    Figure  4.  Distribution figure of the effective stress and the volumetric strain of the hole mouth where along the arc direction of EA

    表  1  数值模拟参数

    Table  1.   Numerical simulation parameters

    参数名称 数值
    水合物弹性模量Eh 9303 MPa
    固体骨架弹性模量Es 46 MPa
    黏聚力C0 200 kPa
    摩擦角φ 30°
    固体骨架热膨胀系数βs 5.6×10-6/ K
    孔隙水热膨胀系数βw 2.1×10-4/ K
    固体骨架密度ρs 2600 kg/m3
    固体骨架比热cs 800 J/kg·K
    固体骨架热传导系数λs 1.9 W/m·K
    孔隙水密度ρw 1000 kg/m3
    孔隙水比热cw 4200 J/kg·K
    孔隙水热传导系数λw 0.58 W/m·K
    孔隙水的粘度系数μw 0.001 Pa·s
    甲烷比热cg 2100 J/kg·K
    甲烷热传导系数λg 0.00335 W/m·K
    甲烷气体粘度系数μg 0.0000105 Pa·s
    水合物密度ρh 910 kg/m3
    水合物比热ch 2700 J/kg·K
    水合物热传导系数λh 2.1 W/m·K
    下载: 导出CSV
  • [1] 张洪涛, 张海启, 祝有海.中国天然气水合物调查研究现状及其进展[J].中国地质, 2007, 34(6):953~961. http://d.wanfangdata.com.cn/Periodical/zgdizhi200706001

    ZHANG Hongtao, ZHANG Haiqi, ZHU Youhai. Gas hydrate investigation and research in China:Present status and progress[J]. Geology in China, 2007, 34(6):953~961. (in Chinese with English abstract) http://d.wanfangdata.com.cn/Periodical/zgdizhi200706001
    [2] 傅连珍, 胡道功, 张绪教, 等.基于GIS空间分析模型的祁连山多年冻土研究[J].地质力学学报, 2015, 21(3):371~377. http://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?file_no=20150307&flag=1

    FU Lianzhen, HU Daogong, ZHANG Xujiao, et al. Study on permafrost of Qilian mountains based on GIS spatial analysis model[J]. Journal of Geomechanics, 2015, 21(3):371~377. (in Chinese with English abstract) http://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?file_no=20150307&flag=1
    [3] 徐久晟, 文志刚, 胡道功, 等.祁连山木里地区侏罗系窑街组烃源岩生烃潜力评价[J].地质力学学报, 2015, 21(3):446~452. http://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?file_no=20150315&flag=1

    XU Jiusheng, WEN Zhigang, HU Daogong, et al. Evaluation of the hydrocarbon generation potential of source rocks of the Jurassic Yaojie formation in Muli depression of Qilian mountains[J]. Journal of Geomechanics, 2015, 21(3):446~452. (in Chinese with English abstract) http://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?file_no=20150315&flag=1
    [4] Bugge T, Befring S, Belderson R H, et al. A giant three-stage submarine slide off Norway[J]. Geo-Marine Letters, 1987, 7(4):191~198. doi: 10.1007/BF02242771
    [5] Mark M, Naja M, Claudia V, et al Sea level and gas hydrate controlled catastrophic sediment failures of Amazon fan[J]. Geology, 1998, 26(12):1107~1110. doi: 10.1130/0091-7613(1998)026<1107:SLAGHC>2.3.CO;2
    [6] Priest J A, Best A I, Clayton C R I. Attenuation of seismic waves in methane gas hydrate-bearing sand[J]. Geophysical Journal International, 2006, 164(1):149~159. doi: 10.1111/gji.2006.164.issue-1
    [7] 张旭辉. 水合物沉积层因水合物热分解引起的软化和破坏研究[D]. 北京: 中科院力学研究所, 2010.

    ZHANG Xuihui. Research on the softening and damage of hydrate deposit due to the thermal decomposition of hydrates[D]. Beijing:Institute of Mechanics, Chinese Academy of Science, 2010. (in Chinese with English abstract)
    [8] 于晓果, 李家彪.天然气水合物分解及其生态环境效应研究进展[J].地球科学进展, 2004, 19(6):947~954. http://www.adearth.ac.cn/CN/abstract/abstract3195.shtml

    YU Xiaoguo, LI Jiabiao. Advances in gas hydrate dissociation and effects on the ecology and environment[J]. Advances in Earth Science, 2004, 19(6):947~954. (in Chinese with English abstract) http://www.adearth.ac.cn/CN/abstract/abstract3195.shtml
    [9] 张旭辉, 刘艳华, 李清平, 等.沉积物中导热体周围水合物分解范围研究[J].力学与实践, 2010, 32(2):39~41. http://www.cqvip.com/QK/93530X/201002/33882404.html

    ZHANG Xuhui, LIU Yanhua, LI Qingping, et al. The dissociation scope of gas hydrate in deposit around heat conductor[J]. Mechanics in Engineering, 2010, 32(2):39~41. (in Chinese with English abstract) http://www.cqvip.com/QK/93530X/201002/33882404.html
    [10] 张旭辉, 鲁晓兵, 李清平, 等.水合物地层中考虑相变的轴对称热传导问题[J].地学前缘, 2012, 19(4):1~7. http://www.cqvip.com/QK/98600X/201204/42487751.html

    ZHANG Xuhui, LU Xiaobing, LI Qingping, et al. Axial symmetrical thermal conduction of gas hydrate-bearing sediments related to phase transformations[J]. Earth Science Frontiers, 2012, 19(4):1~7. (in Chinese with English abstract) http://www.cqvip.com/QK/98600X/201204/42487751.html
    [11] 张旭辉, 鲁晓兵, 王淑云, 等.天然气水合物快速加热分解导致地层破坏的实验[J].海洋地质与第四纪地质, 2011, 31(1):157~164. http://www.docin.com/p-917492621.html

    ZHANG Xuhui, LU Xiaobing, WANG Shuyun, et al. Experimental study of the possible stratum failure caused by fast thermal induced hydrate dissociation[J]. Marine Geology & Quaternary Geology, 2011, 31(1):157~164. (in Chinese with English abstract) http://www.docin.com/p-917492621.html
    [12] 刘乐乐, 鲁晓兵, 张旭辉.天然气水合物分解区演化数值分析[J].石油学报, 2014, 35(5):941~951. doi: 10.7623/syxb201405015

    LIU Lele, LU Xiaobing, ZHANG Xuhui. Numerical analysis on evolution of natural gas hydrate decomposition region in hydrate-bearing sediment[J].Acta Petrolei Sinica, 2014, 35(5):941~951. (in Chinese with English abstract) doi: 10.7623/syxb201405015
    [13] KIMOTO S, OKA F, FUSHITA T, et al. A chemo-thermo-mechanically coupled numerical simulation of the subsurface ground deformation due to methane hydrate dissociation[J]. Computers and Geotechnics, 2007, 34(4):216~228. doi: 10.1016/j.compgeo.2007.02.006
    [14] KIMOTO S, OKA F, FUSHITA T. A chemo-thermo-mechanically coupled analysis of ground deformation induced by gas hydrate dissociation[J]. International Journal of Mechanical Sciences, 2010, 52(2):365~376. doi: 10.1016/j.ijmecsci.2009.10.008
    [15] 李令东, 程远方, 梅伟, 等.温度影响天然气水合物地层井壁稳定的有限元模拟[J].天然气工业, 2012, 32(8):74~78. doi: 10.3787/j.issn.1000-0976.2012.08.016

    LI Lingdong, CHENG Yuanfang, MEI Wei, et al. Finite element simulation of temperature impact on wellbore stability of gas-hydrate-bearing sediments[J]. Natural Gas Industry, 2012, 32(8):74~78. (in Chinese with English abstract) doi: 10.3787/j.issn.1000-0976.2012.08.016
    [16] Kim H C, Bishnoi P R, Heidemann R A. Kinetics of methane hydrate decomposition[J]. Chemical Engineer Science, 1987, 42(7):1645~1653. doi: 10.1016/0009-2509(87)80169-0
    [17] Makogon Y F. Hydrates of Hydrocarbons[M]. Tulsa, Oklahoma:Penn Well, 1997.
    [18] Clarke M, Bishnoi P R. Determination of the activation energy and intrinsic rate constant of methane gas hydrate decomposition[J]. Canadian Journal of Chemical Engineering, 2001, 79(1):143~147. doi: 10.1002/cjce.v79:1
    [19] 吴二林, 魏厚振, 颜荣涛, 等.考虑损伤的含天然气水合物沉积物本构模型[J].岩石力学与工程学报, 2012, 31(S1):3045~3050. http://www.cqvip.com/QK/96026X/2012A01/42840793.html

    WU Erlin, WEI Houzhen, YAN Rongtao, et al. Constitutive model for gas hydrate-bearing sediments considering damage[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(S1):3045~3050. (in Chinese with English abstract) http://www.cqvip.com/QK/96026X/2012A01/42840793.html
    [20] 陈芳, 周洋, 苏新, 等.南海神狐海域含水合物层粒度变化及与水合物饱和度的关系[J].海洋地质与第四纪地质, 2011, 31(5):95~100. https://wuxizazhi.cnki.net/qikan-DQKX201305001.html

    CHEN Fang, ZHOU Yang, SU Xin, et al. Gas hydrate saturation and its relation with grain size of the hydrate-bearing sediments in the Shenhu area of northern south China sea[J]. Marine Geology & Quaternary Geology, 2011, 31(5):95~100. (in Chinese with English abstract) https://wuxizazhi.cnki.net/qikan-DQKX201305001.html
    [21] 苏新, 宋成兵, 方念乔.东太平洋水合物海岭BSR以上沉积物粒度变化与气体水合物分布[J].地学前缘, 2005, 12(1):234~242. http://www.cqvip.com/qk/98600X/200501/15441048.html

    SU Xin, SONG Chengbing, FANG Nianqiao. Variation in grain size of sediments above BSR and correlation with the occurrence of gas hydrates on Hydrates Ridge, East Pacific[J]. Earth Science Frontiers, 2005, 12(1):234~242. (in Chinese with English abstract) http://www.cqvip.com/qk/98600X/200501/15441048.html
    [22] 程远方, 沈海超, 李令东, 等.天然气水合物藏物性参数综合动态模型的建立及应用[J].石油学报, 2011, 32(2):320~323. doi: 10.7623/syxb201102021

    CHENG Yuanfang, SHEN Haichao, LI Lingdong, et al. Comprehensive and dynamical modeling for physical parameters of natural gas hydrate reservoirs and its application[J]. Acta Petrolei Sinica, 2011, 32(2):320~323. (in Chinese with English abstract) doi: 10.7623/syxb201102021
    [23] 赵益忠. 疏松砂岩油藏脱砂压裂产能流固耦合数值模拟[D]. 东营: 中国石油大学, 2008.

    ZHAO Yizhong. Fluid-solid coupling numerical simulation of deliverability of screen out fracturing in unconsolidated sandstone reservoir[D]. Dongying:China University of Petroleum, 2008. (in Chinese with English abstract)
    [24] Freij-Ayoub R, Tan C P, Clennel M B, et al. A wellbore stability model for hydrate bearing sediments[J]. Journal of Petroleum Science and Engineering, 2007, 57(1/2):209~220. https://www.sciencedirect.com/science/article/pii/S0920410506002245
    [25] 刘乐乐, 张旭辉, 鲁晓兵.天然气水合物地层渗透率研究进展[J].地球科学进展, 2012, 27(7):734~746. http://www.adearth.ac.cn/CN/abstract/abstract10930.shtml

    LIU Lele, ZHANG Xuhui, LU Xiaobing. Review on the permeability of hydrate-bearing sediments[J]. Advances in Earth Science, 2012, 27(7):733~746. (in Chinese with English abstract) http://www.adearth.ac.cn/CN/abstract/abstract10930.shtml
    [26] 翟诚, 孙可明, 辛利伟, 等.有效应力升降过程中不同饱和度水合物沉积物渗透率实验研究[J].实验力学, 2016, 31(3):399~408. doi: 10.7520/1001-4888-15-137

    ZHAI Cheng, SUN Keming, XIN Liwei, et al. Experimental study of permeability variation of hydrate bearing sediments with different saturations during effective stress loading-unloading process[J]. Journal of Experimental Mechanics, 2016, 31(3):399~408. (in Chinese with English abstract) doi: 10.7520/1001-4888-15-137
    [27] 翟诚, 孙可明, 辛利伟, 等.含甲烷水合物砂土沉积层渗透性试验研究[J].武汉理工大学学报, 2015, 37(8):78~82. http://www.cqvip.com/QK/95401A/201508/668450907.html

    ZHAI Cheng, SUN Keming, XIN Liwei, et al. Experimental study of permeability of sand soil bearing sediments containing methane hydrates[J]. Journal of Wuhan University of Technology, 2015, 37(8):78~82. (in Chinese with English abstract) http://www.cqvip.com/QK/95401A/201508/668450907.html
  • 加载中
图(4) / 表(1)
计量
  • 文章访问数:  129
  • HTML全文浏览量:  106
  • PDF下载量:  18
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-11-17
  • 刊出日期:  2017-12-28

目录

    /

    返回文章
    返回