IN-SITU DIRECT SHEARING TEST ON LANDSLIDE ACCUMULATION BODY INTENSITY OF WENCHUAN EARTHQUAKE REGION
-
摘要: 以汶川震区漩口-带地震诱发的松散堆积体为研究对象,开展碎石土原状样和重塑样的现场直剪对比试验,探讨不同法向应力、不同粒度组成和不同含水率等条件下碎石土的剪切强度特性。研究结果表明,地质成因和岩土体结构相似、粒度组成不同且级配不良的碎石土的剪切强度特性具有相似性;原状样剪切强度明显高于相同干密度和含水率的重塑样;级配良好的碎石土应变硬化程度略高于级配不良的碎石土,当粒径大于5 mm的粗颗粒含量大于42.9%时,随粗颗粒含量增加,碎石土的内摩擦角增加,而粘聚力则先减小后增大;抗剪强度指标与含水率呈线性负相关关系,随着含水率增高,碎石土抗剪强度降低,其中粘聚力较内摩擦角下降更明显。综合前人研究和本次试验结果,建议汶川震区类似结构组分碎石土天然状态下的剪切强度指标c值取15±3 kPa,$\varphi $值取30°±2°。Abstract: In this paper, the earthquake-induced loose sediments near Xuankou, Wenchuan County, Sichuan province are selected to conduct the in-situ direct shear tests of undisturbed gravel soil and remolded soil sample direct shear tests with different situations to explore the shear properties of gravel soils under different vertical pressure, particle size composition and moisture. The study results show that (1) Gravel soils which have similar geological genesis, similar rock mass structure, different size composition and poor gradation have similar shear properties and shear strength. (2) The shear strength of undisturbed gravel soil samples is significantly higher than remolded samples with the same dry density and moisture. (3) Strain hardening strength of well-graded gravel soils is slightly higher than bad-graded gravel soil, when the content of coarse particle whose size is greater than 5 mm is more than 42.9%, friction angle increases with increment of coarse-grained contents, while cohesion decreases firstly and then increases. (4) When moisture content is more than 15.8%, there is a negative correlation between shear strength indexes and moisture content, with gradual increase of moisture, the shear strength of gravel soil will gradually reduce, among which the decrease of cohesion is more remarkable than internal friction angle. Considering others' research and experimental results, we suggest that the gravel soils having similar structure components in Wenchuan earthquake area can select the shear strength indexes c of 15±3kPa and Phi of 30°±2°.
-
Key words:
- Wenchuan earthquake /
- landslide accumulation body /
- shear strength /
- in-situ test /
- slope stability
-
表 1 重塑土样颗粒组成
Table 1. Particles of remolded soil samples
编号 颗粒组成/% <0.075 mm 1.25~0.075 mm 2.5~1.25 mm 5.0~2.5 mm 10.0~5.0 mm 20.0~10.0 mm 26.5~20.0 mm 50~26.5 mm 50~100 mm 第2组 10.4 11.1 10.2 10.7 11.2 11.8 11.1 11.3 12.2 第3组 8.6 9.1 8.3 8.8 9.3 9.8 9.2 26.7 10.2 第4组 7.4 7.8 21.9 7.5 7.9 8.4 7.8 22.7 8.6 第5组 28.4 6.0 16.9 5.8 6.1 6.5 6.1 17.5 6.7 表 2 崩滑堆积体大型直剪试验计算结果
Table 2. Calculation results of large direct shear test of gravel soil
编号 密度 含水率/% P5/% 粘聚力c/kPa 内摩擦角$\varphi $/(°) 第1组 2.12 15.8 57.6 19.4 32.8 第2组 2.12 15.8 57.6 14.7 31.2 第3组 1.95 15.8 65.2 16.7 31.5 第4组 1.97 15.8 55.4 17.0 30.9 第5组 1.92 15.8 42.9 20.4 30.3 第6组 2.01 25.0 42.9 14.2 29.0 第7组 2.05 30.0 42.9 12.2 27.9 表 3 崩滑堆积体的粒径分布特征指标
Table 3. Particle size distribution index of gravel soil
编号 d10/mm d30/mm d60/mm Cu Cc 级配评价 第2组 0.05 2.1 16 320 5.51 不良 第3组 0.13 3.2 25 192 3.15 不良 第4组 0.2 2.0 19.5 97.5 1.03 良好 第5组 0.015 0.2 7.0 466.7 0.38 不良 注:Cu—不均匀系数;Cc—曲率系数;d10—小于某粒径的土粒质量累积百分数为10%的相应粒径,也称有效粒径。d30—小于某粒径的土粒质量累积百分数为30%的相应粒径;d60—小于某粒径的土粒质量累积百分数为60%的相应粒径,也称限定粒径。 -
[1] 殷跃平.汶川八级地震滑坡高速远程特征分析[J].工程地质学报, 2009, 17 (2): 153~166. http://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ200902002.htmYIN Yue-ping. Rapid and long run-out features of landslides triggered by the Wenchuan earthquake[J]. Journal of Engineering Geology, 2009, 17 (2): 153~166. http://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ200902002.htm [2] 黄润秋.汶川地震地质灾害后效应分析[J].工程地质学报, 2011, 19 (2): 145~151. http://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201102001.htmHUANG Run-qiu. After effect of geohazards induced by the Wenchuan earthquake[J]. Journal of Engineering Geology, 2011, 19(2): 145~151. http://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201102001.htm [3] Zhang Y S, Guo C B, Lan H X, et al. Reactivation mechanism of ancient giant landslides in the tectonically active zone: a case study in Southwest China[J]. Environmental Earth Science, 2015, 74: 1719~1729. doi: 10.1007/s12665-015~4180~6 [4] 徐文杰, 胡瑞林, 谭儒蛟, 等.虎跳峡龙蟠右岸土石混合体野外试验研究[J].岩石力学与工程学报, 2006, 25(6): 1270~1277. http://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200606031.htmXU Wen-jie, HU Rui-lin, TAN Ru-jiao, et al. Study on field test of rock-soil aggregate on right bank of Longpan in Tiger-leaping Gorge area[J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(6): 1270~1277. http://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200606031.htm [5] Li X, Liao Q L, He J M. In-situ tests and stochastic structural model of rock and soil aggregate in the Three Gorges Reservoir area[J]. International Journal of Rock Mechanics and Mining Sciences, 2004, 41(3): 1~5. http://www.sciencedirect.com/science/article/pii/S136516090300279X?via%3Dihub [6] Vallejo L E, Mawbyr, et al. Porosity influence on the shear strength of granular material-clay mixtures[J]. Engineering Geology, 2000, 58: 125~136. doi: 10.1016/S0013~7952(00)00051-X [7] 张永双, 曲永新, 王献礼, 等.中国西南山区第四纪冰川堆积物的工程地质分类探讨[J].工程地质学报, 2009, 17(5): 581~589. http://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ200905001.htmZHANG Yong-shuang, QU Yong-xin, WANG Xian-li, et al. On the engineering geological classification of quaternary glacial deposits in southwestern mountain area of China[J]. Journal of Engineering Geology, 2009, 17(5): 581~589. http://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ200905001.htm [8] 胡瑞林, 刘衡秋, 谭儒蛟, 等.内外动力地质作用与斜坡稳定性—以虎跳峡地区为例[M].北京:地质出版社, 2011.HU Rui-lin, LIU Heng-qiu, TAN Ru-jiao, et al. Coupling effect of endogenic and exogenic geological processes and slope stability-Case study from Tiger-leaping Gorge area[M]. Beijing: Geological Publishing House, 2011. [9] 周敢.土石混合填料现场直剪试验研究[J].中外公路, 2011, 31(5): 235~239. http://www.cnki.com.cn/Article/CJFDTOTAL-GWGL201105063.htmZHOU Gan. On-site direct shear test of rock and soil mixture[J]. Domestic and Foreign Road, 2011, 31(5): 235~239. http://www.cnki.com.cn/Article/CJFDTOTAL-GWGL201105063.htm [10] 郭喜峰, 晏鄂川, 刘洋.三峡库区碎石土滑坡体抗剪强度研究[J].重庆交通大学学报:自然科学版, 2015, 34(1): 38~71. http://www.cnki.com.cn/Article/CJFDTOTAL-CQJT201501015.htmGUO Xi-feng, YAN E-chuan, LIU Yang. Shear Strength of Gravel Soil Landslide in the Three Gorges Reservoir Zone[J]. Journal of Chongqing Jiaotong University: Natural Science, 2015, 34(1): 38~71. http://www.cnki.com.cn/Article/CJFDTOTAL-CQJT201501015.htm [11] Karma K, Ikuo T, Roland P O, et al. Undrained torsional shear tests on gravelly soils[J]. Landslides, 2004, 1:185~194. doi: 10.1007/s10346-004-0023~3 [12] Wen B P, Aydin A, Duzgoren-Aydin N S. Residual strength of slip zones of large landslides in the Three Gorges area, China[J]. Engineering Geology, 2007, 93: 82~98. doi: 10.1016/j.enggeo.2007.05.006 [13] 周永昆. 滑带土的力学行为特性试验研究[D]. 重庆: 重庆大学. 2010.ZHOU Yong-kun. Study of mechanics behavior and properties of landslide soil via laboratory test[D]. Chongqing: Chongqing University, 2010. [14] Taheri A, Saski Y, Tatsuoka F, et al. Strength and deformation characteristics of cement-mixed gravelly soil in multiple-step triaxial compression[J]. Soils and Foundations, 2012, 52(1): 126~145. doi: 10.1016/j.sandf.2012.01.015 [15] 彭东黎, 李志勇.堆积体边坡碎石土抗剪强度试验研究[J].公路工程, 2014, 39(2): 254~257. http://www.cnki.com.cn/Article/CJFDTOTAL-ZNGL201402058.htmPENG Dong-li, LI Zhi-yong. Experimental study on shear strength of rock-soil aggregates in accumulation slope[J]. Highway Engineering, 2014, 39(2): 254~257. http://www.cnki.com.cn/Article/CJFDTOTAL-ZNGL201402058.htm [16] 徐文杰, 胡瑞林.基于数字图像分析及大型直剪试验的土石混合体块石含量与抗剪强度关系研究[J].岩石力学与工程学报, 2008, 27(5): 996~1007. http://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200805019.htmXU Wen-jie, HU Rui-lin. Research on relationship between rock block proportion and shear strength of soil-rock mixtures based on digital image analysis and large direct shear test[J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(5): 996~1007. http://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200805019.htm [17] 许建聪, 尚岳全.降雨作用下碎石土滑坡解体变形破坏机制研究[J].岩土力学, 2008, 29(1): 106~118. http://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200801022.htmXU Jian-cong, SHANG Yue-quan. Study on mechanism of disintegration deformation and failure of debris landslide under rainfall[J]. Rock and Soil Mechanics, 2008, 29(1): 106~118. http://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200801022.htm [18] 宋丙辉, 谌文武, 吴玮江, 等.锁儿头滑坡滑带土不同含水率大剪试验研究[J].岩土力学, 2012, 33(S2): 77~84. http://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2012S2011.htmSONG Bing-hui, CHEN Wen-wu, WU Wei-jiang, et al. Experimental study of large scale direct shear test of sliding zone soil of Suoertou landslide with different moisture contents[J]. Rock and Soil Mechanics, 2012, 33(S2): 77~84. http://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2012S2011.htm [19] 安维忠, 李永祥, 刘生奎.输电线路戈壁碎石土地基现场直剪试验[J].电力建设, 2010, 31(5): 66~69. http://www.cnki.com.cn/Article/CJFDTOTAL-DLJS201005017.htmAN Wei-zhong, LI Yong-xiang, LIU Sheng-kui. Field direct shearing tests of Gobi gravel soil in Northwest for 750 kV transmission line engineering[J]. Electric Power Construction, 2010, 31(5): 66~69. http://www.cnki.com.cn/Article/CJFDTOTAL-DLJS201005017.htm [20] 李晓, 廖秋林, 赫建明, 等.土石混合体力学特性的原位试验研究[J].岩石力学与工程学报, 2007, 26(12): 2377~2384. doi: 10.3321/j.issn:1000~6915.2007.12.001LI Xiao, LIAO Qiu-lin, HE Jian-ming, et al. Study on in-situ tests of mechanical characteristics on soil-rock aggregate[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(12): 2377~2384. doi: 10.3321/j.issn:1000~6915.2007.12.001 [21] 郭庆国.粗粒土的工程特性及应用[M].郑州:黄河水利出版社, 1999.GUO Qing-guo. The engineering properties and application of coarse grained soil[M]. Zhengzhou: The yellow river conservancy press, 1999. [22] 徐文杰, 张海洋.土石混合体研究现状及发展趋势[J].水利水电科技进展, 2013, 33(1): 80~88. doi: 10.3880/j.issn.1006~7647.2013.01.019XU Wen-jie, ZHANG Hai-yang. Research status and development trend of soil-rock mixture[J]. Advances in Science and Technology of Water Resources, 2013, 33(1): 80~88. doi: 10.3880/j.issn.1006~7647.2013.01.019 [23] 董辉, 陈玺文, 傅鹤林等.堆积碎石土剪切特性的三轴试验[J].长安大学学报(自然科学版), 2015, 35(2): 59~66. http://www.cnki.com.cn/Article/CJFDTOTAL-XAGL201502011.htmDONG Hui, CHEN Xi-wen, FU He-lin, et al. Triaxlal test of shear properties of eluvial gravel[J]. Journal of Chang'an University(Natural Science Edition), 2015, 35(2): 59~66. http://www.cnki.com.cn/Article/CJFDTOTAL-XAGL201502011.htm [24] 魏厚振, 汪稔, 胡明鉴, 等.蒋家沟砾石土不同粗粒含量直剪强度特征[J].岩土力学, 2008, 29(1): 48~52. http://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200801011.htmWEI Hou-zhen, WANG Ren, HU Ming-jian, et al. Strength behavior of gravelly soil with different coarse-grained contents in Jiangjiagou Ravine[J]. Rock and Soil Mechanics, 2008, 29(1): 48~52. http://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200801011.htm