留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

西藏错那—沃卡裂谷带中段邛多江地堑晚新生代正断层作用

吴中海 张永双 胡道功 赵希涛 叶培盛

吴中海, 张永双, 胡道功, 等, 2007. 西藏错那—沃卡裂谷带中段邛多江地堑晚新生代正断层作用. 地质力学学报, 13 (4): 297-306.
引用本文: 吴中海, 张永双, 胡道功, 等, 2007. 西藏错那—沃卡裂谷带中段邛多江地堑晚新生代正断层作用. 地质力学学报, 13 (4): 297-306.
WU Zhong-hai, ZHANG Yong-shuang, HU Dao-gong, et al., 2007. LATE CENOZOIC NORMAL FAULTING OF THE QUNGDO'GYANG GRABEN IN THE CENTRAL SEGMENT OF THE CONA-OIGA RIFT, SOUTHEASTERN TIBET. Journal of Geomechanics, 13 (4): 297-306.
Citation: WU Zhong-hai, ZHANG Yong-shuang, HU Dao-gong, et al., 2007. LATE CENOZOIC NORMAL FAULTING OF THE QUNGDO'GYANG GRABEN IN THE CENTRAL SEGMENT OF THE CONA-OIGA RIFT, SOUTHEASTERN TIBET. Journal of Geomechanics, 13 (4): 297-306.

西藏错那—沃卡裂谷带中段邛多江地堑晚新生代正断层作用

基金项目: 

中国地质调查局项目《滇藏铁路沿线地壳稳定性调查评价》 1212010541404

国家自然科学基金项目 40501006

科技部国际合作项目 2006DFA21320

详细信息
    作者简介:

    吴中海(1974-), 男, 博士, 副研究员, 主要从事第四纪地质与活动构造研究。E-mail:wzhly@sina.com

  • 中图分类号: P542+.32;P542+.31

LATE CENOZOIC NORMAL FAULTING OF THE QUNGDO'GYANG GRABEN IN THE CENTRAL SEGMENT OF THE CONA-OIGA RIFT, SOUTHEASTERN TIBET

  • 摘要: 遥感解译和地表调查结果显示, 位于西藏曲松县境内的邛多江盆地构成了藏南近南北向裂谷带最东端的错那-沃卡裂谷的中段。它是在该区近东西向逆冲构造带停止活动之后, 上地壳沿N108~115°E方向发生引张作用所形成的第四纪半地堑式断陷盆地。控制晚第四纪盆地发育的主边界正断裂带位于盆地西缘, 总体呈NNE走向, 向东倾, 长40 km左右。断裂活动位移测量和年代学测试结果表明, 该边界正断层带在5Ma左右就已开始活动, 总累计垂直位移量至少为2.6~2.8 km, 最小长期平均垂直活动速率约0.5mm/a。末次冰期盛冰期以来, 该断裂平均活动速率的最合理的估计值为1.2 ±0.6 mm/a。

     

  • 图  1  邛多江地堑及其邻区的ETM遥感影像、研究区位置和盆地拉伸方向判别图

    Figure  1.  ETM remote sensing image interpretation of the Qungdo'gyang graben and its adjacent areas, location of the study area and extensional orientation of the graben

    图  2  邛多江盆地地质—地形横剖面

    Figure  2.  Geological-topographical cross-section of the Qingduojiang graben

    图  3  邛多江盆地20道班西北侧山前的断层三角面地貌(镜向:西南)

    Figure  3.  Fault triangle facets along the front of a mountain NW of maintenance station 20 in the Qungdo'gyang graben (looking toward SW)

    图  4  山前正断层上的断层摩擦面及其上的断层擦痕(镜向:西; 图 1中的位置Ⅰ)

    Figure  4.  Friction surface of a piedmont normal fault and striations on it (looking toward W; localityⅠ in Fig. 1)

    图  5  山前正断层垂直错动末次盛冰期冰川侧碛垄(镜向:西南; 图 1中的位置Ⅲ)

    Figure  5.  Vertical offset of the glacial lateral moraine ridge fo rmed in the last maximum glaciation by the piedmont normal fault (looking toward SW; locality Ⅲ in Fig. 1)

    图  6  邛多江西侧山前错动全新世地貌体的断层崖剖面

    Figure  6.  Topographic sections of Holocene fault scarps offset along the western side of the Qungdo'gyang graben

    图  7  邛多江西侧山前错动晚更新世地貌体的断层崖剖面

    Figure  7.  Topographic section of late Pleistocene fault scarps offset along the western side of the Qungdo'gyang graben

    图  8  邛多江—沃卡盆地主边界断裂带晚第四纪垂直活动速率分布图

    Figure  8.  Distribution of late Quaternary throw rates of the main boundary fault in the Qungdo'gyang-Oiga basin

    表  1  邛多江盆地晚第四纪沉积物、断层岩的年代学测试结果和断裂带垂直活动速率估算值

    Table  1.   TL dating of late Quaternary deposits and fault rock in the Qungdo'gyang basin and estimated vertical throw rates of the fault zone

  • [1] Molnar P, Tapponnier P.Active tectonics of Tibet[J].Journal of Geophysical Research, 1978, 83:5361~ 5375. doi: 10.1029/JB083iB11p05361
    [2] Armijo R, Tapponier P, Mercier JL.Quaternary extension in southern Tibet:Field observations and tectonic implications[J]. Journal of Geophysical Research, 1986, 91:13803~ 13872. doi: 10.1029/JB091iB14p13803
    [3] Rothery DA and Drury SA.The neotectonics of the Tibetan plateau[J].Tectonics, 1984, 3 (1), 19~ 26. doi: 10.1029/TC003i001p00019
    [4] Ni J, York JE.Late Cenozoic tectonics of the Tibetan plateau[J].Journal of Geophysical Research, 1978, 83 (B11), 5377 ~ 5384. doi: 10.1029/JB083iB11p05377
    [5] Molnar P, England P, Martinod J.Mantle dynamics, uplift of the Tibet plateau, and the Indian monsoon[J].Review of Geophysics.1993, 31, 357~ 396. doi: 10.1029/93RG02030
    [6] Yin A.Mode of Cenozoic east-west extension in Tibet suggesting a common origin of rifts in Asia during the Indo-Asia collision[J].Journal of Geophysical Research, 2000, 105 (B9):21745~ 21759. doi: 10.1029/2000JB900168
    [7] Harrison TM, Copeland P, Kidd WS F et al.Raising Tibet[J].Science, 1992, 225:1663~ 1670. http://d.old.wanfangdata.com.cn/Periodical/cdxb201401035
    [8] 钟大赉, 丁林.青藏高原的隆起过程及其机制探讨[J].中国科学(D辑), 1996, 26 (4):289~ 295. doi: 10.3321/j.issn:1006-9267.1996.04.001
    [9] 李吉均, 文世宣, 张青松, 等.青藏高原隆升的时代、幅度和形式探讨[J].中国科学(B辑), 1979, 9 (6): 608~ 616.
    [10] Dewey JF, Shackleton RM, Chang Chengfa et al.The tectonic evolution of the Tibetan Plateau[J].Philosophical Transaction of Royal Society of London, 1988, Series A, 327:379~ 413. http://d.old.wanfangdata.com.cn/Periodical/dxqy200906024
    [11] Mercier JL, Armijo R, Tapponier P et al.Change from late Tertiary compression to Quaternary extension in southern Tibet during India-Asia collision[J].Tectonics, 1987:6 (3), 275~ 304. doi: 10.1029/TC006i003p00275
    [12] England P, Houseman G.Extension during continental convergence, with application to the Tibetan Plateau[J].Journal of Geophysical Research, 1989, 94:17561~ 17569. doi: 10.1029/JB094iB12p17561
    [13] Royden LH, Burchfiel C, King RW et al.Surface deformation and lower crustal flow in eastern Tibet[J].Science, 1997, 276, 788~ 790. doi: 10.1126/science.276.5313.788
    [14] 韩同林.西藏活动构造[M].北京:地质出版社, 1987.
    [15] 中国科学院青藏高原综合科学考察队(李炳元, 王富葆, 张青松. 等). 西藏第四纪地质[M]. 北京: 科学出版社, 1983.
    [16] 尹安.喜马拉雅-青藏高原造山带地质演化[J].地球学报, 2001, 22 (3):193~ 230. doi: 10.3321/j.issn:1006-3021.2001.03.001
    [17] Masek, JG., Isacks BL, Fielding EJ, Browaeys J.Rift-flank uplift in Tibet:Evidence for a viscous lower crust[J]. Tectonics, 1994, 13, 659~ 667. doi: 10.1029/94TC00452
    [18] Lee J, Whitehouse M J.Onset of mid-crustal extensional flow in southern Tibet:Evidence from U Pb zircon ages[J].Geology, 2007, 35 (1), 45~ 48. doi: 10.1130/G22842A.1
    [19] Thiede RC, Arrowsmith JR, Bookhagen B.Dome formation and extension in the Tethyan Himalaya, Leo Pargil, northwest India[J].GSA Bulletin, 2006;118 (5 6) 635~ 650. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=JJ027449639
    [20] Mahéo G, Leloup PH, Valli F et al.Post 4 M a initiation of normal faulting in southern Tibet[J].Earth and Planetary Science Letters, 2007, 256, 233~ 243. doi: 10.1016/j.epsl.2007.01.029
    [21] 吴中海, 吴珍汉, 胡道功.等.青藏铁路唐古拉山-拉萨段全新世控震断裂研究[J].地质通报, 2006, 25 (12):1387~ 1401. doi: 10.3969/j.issn.1671-2552.2006.12.006
    [22] 吴中海, 吴珍汉, 胡道功, 等, 西藏当雄-羊八井盆地的第四纪地质与断裂活动研究[J].地质力学学报, 2006, 12(3):305~ 316. doi: 10.3969/j.issn.1006-6616.2006.03.004
    [23] Molnar P, Deng Q.Faulting associated with large earthquakes and the average rate of deformation in Asia[J].J Geophys Res, 1984, 89:6203~ 6228. doi: 10.1029/JB089iB07p06203
    [24] Wang Qi, Zheng Pei-zhen, Freymueller J et al.Present-day crustal deformation in China constrained by global positioning system measurements[J].Science, 2001, 294, 574~ 577. doi: 10.1126/science.1063647
    [25] Chen, Q, Freymueller JT, Yang Z, et al.Spatially variable extension in southern Tibet based on GPS measurements[J].J. Geophys Res, 2004, 109, B09401. http://cn.bing.com/academic/profile?id=7214fa19d26e7d1d12a1dc093169633a&encoded=0&v=paper_preview&mkt=zh-cn
    [26] 西藏自治区科学技术委员会.西藏地震史料汇编[M].拉萨:西藏人民出版社, 1982.
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  374
  • HTML全文浏览量:  150
  • PDF下载量:  13
  • 被引次数: 0
出版历程
  • 收稿日期:  2007-04-15
  • 刊出日期:  2007-12-01

目录

    /

    返回文章
    返回