APPLICATION OF SPOT-6 AND THE UAV AERIAL TECHNOLOGY IN QUATERNARY GEOLOGY AND TECTONIC MAPPING: TAKING THE 1:50000 MAPPING PILOT OF THE HULESITAI AREA, INNER MONGOLIA AS AN EXAMPLE
-
摘要: 选择SPOT-6数据,对内蒙古呼勒斯太苏木等四幅图的SPOT-6遥感影像进行正射校正、配准及信息的数字增强处理后,根据不同地质体影像特征、野外实地调查,初步建立了填图区第四纪地层及新构造活动的解译标志,并结合野外地质调查,对研究区沉积物的成因类型和分布范围、地貌特征及分区、活动构造运动等进行了调查验证;利用2015年飞行的无人机航测数据,对区内新构造、活动构造进行了识别及活动性质的初步判断。研究结果表明,高精度遥感技术及无人机技术在平原区第四纪地质填图中具有独特优势,有助于快速识别第四纪沉积成因类型与相对时序及准确厘定区域主要活动断裂空间位置与活动特征,从而有效提升填图工作效率,并弥补地表调查的局限。Abstract: Through choosing the SPOT-6 data, on the basis of pre-proceeding images of the Hulesitai area, Inner Mongolia, including Ortho-rectification, registration and sharpness, we initially established Quaternary strata and the neotectonic activity symbols for remote sensing interpretation of mapping area according to the image characteristics of different geological bodies and field investigation. Combined with field geological survey, we investigated and analyzed the origin and distribution of sediments, the geomorphological features and zoning, active tectonic movement etc. in the study area. And through the UAV aerial flight data in 2015, we identified the neotectonics, active tectonics and initially determine the activity characteristics. The study show that high precision of remote sensing technology and UAV technology in Quaternary geological mapping in plain area has unique advantages, which is contributed to the rapid identification of Quaternary sedimentary types and the relative timing, and determine precisely the spatial position of the main fracture and the activity characteristics in the area. It increases the efficiency of mapping work and makes up for the limitations of surface survey.
-
Key words:
- SPOT-6 /
- UAV /
- remote sensing /
- Quaternary geology /
- tectonic activity /
- Hetao Basin /
- Wuyuan
-
表 1 SPOT-6传感器波段特征
Table 1. Band features of the SPOT-6 remote sensor
波段序号 波长范围/μm 波段名称 地面分辨率/m 主要应用领域 1 0.450~0.520 蓝 6.0 对水体穿透强,该波段位于水体衰减系数最小,散射最弱的部位,对水体的穿透力最大,可获得更多水下信息 2 0.530~0.590 绿 6.0 探测健康植物绿色反射率, 可区分植被类型和评估作物长势。对水体有一定的穿透力,可反映水下特征,水体浑浊度,沙洲,沿岸沙地等 3 0.625~0.695 红 6.0 对水中悬浮泥沙敏感。该波段位于含沙浓度不同的水体辐射值附近,广泛用于对裸露地表、植被、岩性、地层、构造、地貌等,为可见光最佳波段 4 0.760~0.890 近红外 6.0 对绿色植物类别差异最敏感,为植物通用波段。处于水体强吸收区,水体轮廓清晰。区分土壤湿度及寻找地下水,识别与水有关的地质构造、地貌、土壤、岩石类型等均有利 5 0.450~0.745 全色 1.5 具有较高的空间分辨率,可用于农林调查和规划,城市规划和较大比例尺专题制图 表 2 第四纪沉积物成因类型-填图单位遥感解译标志
Table 2. Remote sensing interpretation of Quaternary sediments
时代 填图单位 影像特征 第四系 全新统 风积、湖积物(Qheol+l) 主要分布在库布齐沙漠北缘的古湖盆内,表层现今多被风积细砂覆盖;当地表覆盖有植物,沉积物中含水量较大时在遥感增强图像上呈紫色鳞片状斑块。当沉积物盐碱含量较高时在图像中呈现湖蓝色。风积、湖积物大面积平均分布在库不齐沙漠腹地 风积细砂(Qheol) 主要分布于吉尔嘎朗图乡沿黄公路以南及其北侧,平原区农田或湖泊周边少量零星分布;在遥感增强影像上呈现土黄色、黄绿色,因为受地形凹凸的影响,可见鱼鳞状、波状纹理。沙地表面覆盖有耐旱植被地区,呈黄绿色并夹有篮紫色鳞片状图斑 冲洪积物(Qhal+pl) 冲洪积扇分布在山前,呈撒开三角形、水系呈放射状;在影像上为黄至亮蓝色扇体,扇顶与冲沟相连,冲沟冲出的冲洪积物一直往下延伸堆积至扇中、扇缘,影像上经常有多个扇体并排出现 冲湖积物(Qhl+al) 在影像上呈现为红粉色的大面积区域,影纹平滑。由于土质良好,适合农作物生长,因此多为农作物覆盖 冲积物(Qhal) 主要分布于黄河流域南北两侧以及现代河流、古河道两侧;在遥感影像上,位于河道边的冲积物呈绢丝光泽的紫红、黑红色影纹 湖积物(Qhl+h) 主要分布于塔尔湖、库布齐沙漠北缘的现今湖泊、干涸的古湖盆及其周围;在影像上,呈现为夹杂有亮白色团块的紫蓝色物质,色调比周围农田等地物要浅,分布于现今湖泊及干涸的古湖道周围 上更新统 萨拉乌苏组(Qp3s) 色调呈灰白色、浅灰色,表面平整均匀,纹理粗糙,多构成二、三级阶地 表 3 不同阶地遥感影像特征
Table 3. Characteristics of remote sensing images in different types of terrace
阶地类型 遥感影像特征 侵蚀阶地 完全由基岩组成。色调一般较暗,而且多位于河流上游山区 堆积阶地 完全由河流沉积物组成。阶面平整色调浅而均一,其上常有耕地和居民点,多位于河流中下游 基座阶地 阶地下部底座为基岩,上部为河流沉积物。阶面色调一般较浅,陡坎处色调深。基座阶地与堆积阶地相似,两者不易区分 -
[1] 张绪教, 李团结, 陆平, 等.卫星遥感在西藏安多幅1:25万区域第四纪地质调查中的应用[J].现代地质, 2008, 22(1):107~115. http://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ200801017.htmZHANG Xu-jiao, LI Tuan-jie, LU Ping, et al. Application of satellite remote sensing to 1:2500000 regional Quaternary investigation in Amdo Sheet, Tibet[J]. Geoscience, 2008, 22(1): 107~115. http://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ200801017.htm [2] 薛腊梅, 赵希涛, 张耀玲, 等.遥感技术在东昆仑新生代地质填图中的应用[J].地质力学学报, 2010, 16(1):70~77. http://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?file_no=20100109&flag=1XUE La-mei, ZHAO Xi-tao, ZHANG Yao-ling, et al. Application of remote sensing technique in the mapping of Cenozoic geology of the East Kunlun Mountains[J]. Journal of Geomechanics, 2010, 16(1): 70~77. http://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?file_no=20100109&flag=1 [3] 刘刚, 于学政.浅谈遥感技术在1:5万区调中的应用[J].国土资源遥感, 1997, (1):14~19. doi: 10.6046/gtzyyg.1997.01.03LIU Gang, YU Xue-zheng. The mathod of 1:50000 geological mapping using remote sensing technology[J]. Remote Sensing for Land & Resources, 1997, (1): 14~19. doi: 10.6046/gtzyyg.1997.01.03 [4] 白朝军, 陈瑞保.遥感技术在青藏高原空白区地质填图中的应用[J].河南地质, 2001, 19(2):153~157. http://www.cnki.com.cn/Article/CJFDTOTAL-HNDD200102015.htmBAI Chao-jun, CHEN Rui-bao. Application of remote sensing technology on geological mapping in the Qinghai-Tibet Plateau[J]. Henan Geology, 2001, 19(2): 153~157. http://www.cnki.com.cn/Article/CJFDTOTAL-HNDD200102015.htm [5] 刘登忠.试论遥感技术在红层1:50000区调填图中的作用[J].成都理工学院学报, 1999, 26(2):119~123. http://www.cnki.com.cn/Article/CJFDTOTAL-CDLG902.003.htmLIU Deng-zhong. A discussion on the role of remote sensing in 1:50000 geological mapping in red beds[J]. Journal of Chengdu University of Technology, 1999, 26(2): 119~123. http://www.cnki.com.cn/Article/CJFDTOTAL-CDLG902.003.htm [6] 乔彦肖, 赵志忠.冲洪积扇与泥石流扇的遥感影像特征辨析[J].地理学与国土研究, 2008, 17(3):35~38. http://www.cnki.com.cn/Article/CJFDTOTAL-DLGT200103007.htmQIAO Yan-xiao, ZHAO Zhi-zhong. Discrimination between the features of remote sensing images of alluvial-diluvial fan and debris flow fan[J]. Geography and Territorial Research, 2008, 17(3): 35~38. http://www.cnki.com.cn/Article/CJFDTOTAL-DLGT200103007.htm [7] 吴志春, 郭福生, 刘林清, 等.遥感技术在区域地质调查中的应用研究——以江西省1:5万陀上幅区调应用为例[J].东华理工大学学报:自然科学版, 2013, 36(4):364~374. http://www.cnki.com.cn/Article/CJFDTOTAL-HDDZ201304003.htmWU Zhi-chun, GUO Fu-sheng, LIU Lin-qing, et al. Application of remote sensing technology in regional geological survey: A case study in Tuoshang, Jiangxi Province by 1:50000 [J]. Iournal of East China Institute of Technology: Natural Science Edition, 2013, 36(4): 364~374. http://www.cnki.com.cn/Article/CJFDTOTAL-HDDZ201304003.htm [8] 谭雨婷. 基于SPOT影像的内蒙古额济纳旗地区遥感地质解译研究[D]. 西安: 长安大学, 2014.TAN Yu-ting. Study of remote sensing geological interpretation in Ejina region, Inner Mongolia, based in SPOT data[D]. Xi'an: Chang'an University, 2014. [9] 张启元.无人机航测技术在青藏高原地质灾害调查中的应用[J].青海大学学报:自然科学版, 2015, 3(2):67~72. http://www.cnki.com.cn/Article/CJFDTOTAL-QHXZ201502012.htmZHANG Qi-yuan. Application of UAV aerial surveying technology in theinvestigation of geological disaster on Qinghai-Tibetan Plateau[J]. Journal of Qinghai University: Natural Science Edition, 2015, 33(2): 67~72. http://www.cnki.com.cn/Article/CJFDTOTAL-QHXZ201502012.htm [10] 孙华, 林辉, 熊育久, 等.Spot5影像统计分析及最佳组合波段选择[J].遥感信息, 2006, (4):57~60. http://www.cnki.com.cn/Article/CJFDTOTAL-YGXX200604016.htmSUN Hua, LIN Hui, XIONG Yu-jiu, et al. The analysis of statistical characteristics of SPOT-5 image and its optimum band combination[J]. Remote Sensing Information, 2006, (4): 57~60. http://www.cnki.com.cn/Article/CJFDTOTAL-YGXX200604016.htm [11] 马保起, 李德文, 郭文生.晚更新世晚期呼包盆地环境演化与地貌响应[J].第四纪研究, 2004, 24(6):630~637. http://www.cnki.com.cn/Article/CJFDTOTAL-DSJJ200406004.htmMA Bao-qi, LI De-wen, GUO Wen-Sheng. Geomophological response to environmental changes during the late stage of Late Pleistocene in Hubao Basin[J]. Quaternary Sciences, 2004, 24(6): 630~637. http://www.cnki.com.cn/Article/CJFDTOTAL-DSJJ200406004.htm [12] 李建彪, 冉勇康, 郭文生.呼包盆地第四纪地层与环境演化[J].第四纪研究, 2007, 27(4):632~644. http://www.cnki.com.cn/Article/CJFDTOTAL-DSJJ200704020.htmLI Jian-biao, RAN Yong-kang, GUO Wen-sheng. Division of Quaternary beds and environment evolution in Hubao Basin in China[J]. Quaternary Sciences, 2007, 27(4): 632~644. http://www.cnki.com.cn/Article/CJFDTOTAL-DSJJ200704020.htm [13] 何慧. 巢湖东部古河道遥感信息提取及水系变迁研究[D]. 芜湖: 安徽师范大学, 2007: 21~33. http://www.cnki.com.cn/Article/CJFDTotal-JHSL201205016.htmHE Hui. Study on the remote sensing information extraction of paleochannel and the change of water system in eastern Chaohu[D]. Wuhu: Anhui Normal University, 2007: 21~23. http://www.cnki.com.cn/Article/CJFDTotal-JHSL201205016.htm [14] 国家地震局鄂尔多斯周缘活动断裂系课题组. 鄂尔多斯周缘活动断裂系[M]. 北京: 地震出版社, 1988: 1~328. http://www.oalib.com/paper/4898655The Research Group on "Active fault system around Ordos Massif"in State Seismological Bureau. Active fault system around Ordos Massif[M]. Beijing: Seismological Press, 1988: 1~328. http://www.oalib.com/paper/4898655 [15] 江娃利, 肖振敏, 王焕贞, 等.内蒙大青山山前活动断裂带的地震破裂分段特征[J].地震地质, 2001, 23(1):24~34. http://www.cnki.com.cn/Article/CJFDTOTAL-DZDZ200101003.htmJIANG Wa-li, XIAO Zhen-min, WANG Huan-zhen, et al. Segmentation character of seimic surface ruptures of the Piedmont active fault of Mt. Daqingshan, Inner Mongolia[J]. Seismology and Geology, 2001, 23(1): 24~34. http://www.cnki.com.cn/Article/CJFDTOTAL-DZDZ200101003.htm [16] 汪良谋, 董瑞树, 张裕明, 等.河套地区新生代地质构造和地震活动的某些特点——兼谈鄂尔多斯周边新生代断陷盆地的形成机制[J].华北地震科学, 1984, 2(4):8~16. http://www.cnki.com.cn/Article/CJFDTOTAL-HDKD198404001.htmWANG Liang-mou, DONG Rui-shu, ZHANG Yu-ming, et al. Characteristics of the Hetao area Cenozoic geological structure and earthquake activity: Formation mechanism of Cenozoic faulted basins in Erdos surrounding[J]. North China Earthquake Sciences, 1984, 2(4): 8~16. http://www.cnki.com.cn/Article/CJFDTOTAL-HDKD198404001.htm [17] 陆春宇, 赵秀娟, 张绪教, 等. SPOT5卫星遥感在克什克腾旗西拉木伦河河流阶地研究中的应用[C]//中国地质学会旅游地学与地质公园研究分会年会暨金丝峡旅游发展研讨会, 2011.LU Chun-yu, ZHAO Xiu-juan, ZHANG Xu-jiao, et al. The application of SPOT5 satellite remote sensing of the terrace of Xar Moron River in Hexigten Banner[C]//Annual Meeting of the Institute of Tourism Ggeology and Geological Parks of China and Gold Gap Tourism Development Seminar, 2011. [18] 杨晓平, 冉勇康, 胡博, 等.内蒙古色尔腾山山前断裂带乌加河段古地震活动[J].地震学报, 2003, 25(1):62~71. http://www.cnki.com.cn/Article/CJFDTOTAL-DZXB200301007.htmYAN Xiao-ping, RAN Yong-kang, HU Bo, et al. Paleoseismic activity on Wujiahe segment of Serteng piedmont fault, Inner Mongolia[J]. Acta Seismologica Sinica, 2003, 25(1):62~71. http://www.cnki.com.cn/Article/CJFDTOTAL-DZXB200301007.htm [19] 邢成起, 丁国瑜, 卢演俦, 等.黄河中游河流阶地的对比及阶地系列形成中构造作用的多层次性分析[J].中国地震, 2001, 17(2):187~201. http://www.cnki.com.cn/Article/CJFDTOTAL-ZGZD200102007.htmXING Cheng-qi, DING Guo-yu, LU Yan-chou, et al. Comparison of river terraces in the middle reach valleys of the Yellow River and analysis on the multi-gradational features of tectonic action in the formation of terrace series[J]. Earthquake Research in China, 2001, 17(2): 187~201. http://www.cnki.com.cn/Article/CJFDTOTAL-ZGZD200102007.htm [20] Liyun Jia, Xujiao Zhang, Zexin He, et al. Late Quaternary climatic and tectonic mechanisms driving river terracedevelopment in an area of mountain uplift: A case study in the Langshanarea, Inner Mongolia, northern China[J]. Geomorphology, 2015, 234:109~121. doi: 10.1016/j.geomorph.2014.12.043 [21] 贾丽云. 内蒙古阴山西段新构造运动与地貌响应[D]. 北京: 中国地质大学, 2015.JIA Li-yun. Neotectonics and geomorphic response in western Yinshan Moutains area, Inner Mongolia, northern China[D]. Beijing: China University of Geosciences, 2015. [22] 张之武, 付碧宏, Yasuo Awata.新疆阿尔泰山南部富蕴右旋走滑断裂带晚第四纪错断水系的遥感分析研究[J].第四纪研究, 2008, 28(2):273~279. http://www.cnki.com.cn/Article/CJFDTOTAL-DSJJ200802011.htmZHANG Zhi-wu, FU Bi-hong, Yasuo Awata. Late Quaternary systematic stream offsets along the Fuyun right-lateral strike-slip fault, Altay Mountains, China[J]. Quaternary Sciences, 2008, 28(2): 273~279. http://www.cnki.com.cn/Article/CJFDTOTAL-DSJJ200802011.htm