-
摘要: 中国的稀土元素(REE)资源丰富,矿床类型多样,其中轻稀土元素(LREE)绝大多数来自于碱性岩−碳酸岩有关的REE矿床,而重稀土(HREE)主要来自离子吸附型(或称风化壳型)REE矿床,其他稀土矿床类型还包括REE砂矿和伴生的REE矿床等。目前,中国的REE资源开发主要是针对碳酸岩−碱性岩型LREE矿床和离子吸附型HREE矿床,REE砂矿和其他矿床中伴生的REE资源尚未得到有效利用。文章在综合已有研究成果的基础上,对中国伴生的REE矿床的类型、资源潜力进行评述。结果表明,中国伴生的REE资源类型包括海相沉积磷矿床、煤矿床、铝土矿床、岩浆型磷−铁磷矿床等,其潜在的REE资源巨大,特别是海相沉积磷矿床和铝土矿床中伴生的REE资源。铝土矿床中伴生的REE以LREE为主,且其中的Sc具有重要的资源意义。沉积磷矿床中伴生的HREE(含Y)占比高,特别是产于四川德阳地区的什邡式磷矿上部层位的富硫磷铝锶型矿石,其中的REE含量明显高于磷块岩型矿石,且中、重REE占50%以上,还伴生有多种关键金属,具有重要的资源意义和经济价值。另外,岩浆型(铁)磷矿床、煤矿床、油页岩矿床、金矿床中伴生的REE资源也值得重视。但由于缺少详细的勘查数据,目前对中国伴生的REE资源家底不清,资源综合利用水平及REE回收和提取技术也有待提高。而加强中国伴生REE资源的评价和综合利用水平,充分利用生产矿山中伴生的REE资源,特别是磷矿床和铝土矿床,不仅可以有效缓解中国HREE资源供应压力,还是贯彻中国节约资源和保护环境基本国策的重要举措。Abstract:
Objective China is the largest producer of rare earth element (REE) and hosts the largest amount of REE resources. Various types of REE deposits have been reported in China, with alkaline-carbonatite related light REE deposits and ion-adsorption heavy REE deposits being the most important ones. Other REE deposit types include REE placers and deposits with REE by-products. Currently, the development of rare earth resources in China is primarily focused carbonatite-alkaline related light REE deposits and ion-adsorption type heavy REE deposits. REE in placer deposits and other REE by-products have not been effectively utilized. Methods Based on existing exploration studies and whole-rock REE geochemistry data analysis, this study provides a brief review of the types and resource potential of deposits with REE by-products in China. Results China's by-products REE resource types include marine sedimentary phosphate, coal, bauxite, and magmatic iron-phosphate deposits. These deposits, particularly marine sedimentary phosphate deposits and bauxite, contain enormous potential REE resources. REEs in bauxite are primarily light REE, with some containing high amount of scandium (Sc). In sedimentary phosphate deposits, the proportion of heavy REEs (including yttrium) is high, particularly in the S−P−Al−Sr rich ores that occur as the layers overlying the phosphorite in the Shifang-type phosphate deposits of Sichuan Province. These S−P−Al−Sr rich ores have significantly higher REE content than phosphorite, with medium and heavy REE accounting for over 50%, along with various critical metals, making these ores highly valuable in terms of both resource and economic significance. Furthermore, REE resources in magmatic (iron) phosphate deposits, coal, oil shale, and gold deposits deserve attention. Conclusions Owing to the lack of detailed exploration data, the full extent of China's by-products REE resources remains unclear. The comprehensive utilization of resources, as well as the technology for REE recovery and extraction, requires improvement. Significance Strengthening the evaluation and comprehensive utilization of China's associated REE resources, particularly by fully utilizing the REE resources associated with phosphate and bauxite deposits, can effectively alleviate the pressure on China's HREE supply. This represents an important measure for implementing China's fundamental national policies on resource conservation and environmental protection. -
0. 引言
活动地块是指被形成于晚新生代、第四纪晚期至现今仍强烈活动的构造带所分割和围限、具有相对统一运动方式的地质单元(张培震等,2003; 郑文俊等,2020; 2022),而活动地块假说明确指出了控制陆内地震发生的主要位置是活动地块边界带。活动地块边界带是指分隔不同活动地块的构造或构造带,一般宽约数百米、数千米到百余千米不等,由活动断层、活动褶皱、活动盆地、活动造山带等一种或多种构造形态组成(张培震等,2003; 郑文俊等,2020; 2022)。强震记录显示,发生在中国大陆及周边地区的近乎100%的8级以上强震、约80%的7级以上强震都位于活动地块边界带上(张培震等, 2003, 2013; 郑文俊等,2020; 2022),近年来发生在中国大陆及周边地块的几乎全部7级以上强震也都位于活动地块边界带(郑文俊等,2022)。
鄂尔多斯地块是位于中国大陆中心位置的一个典型的活动地块,由于受西南部青藏地块和东部太平洋板块共同作用的影响,鄂尔多斯活动地块在整体运动和变形状态下,其边界带构造活动显著,并具有明显的特殊性和差异性。有历史记载以来,围绕该地块周缘发生过50次以上的M≥6.5强震,其中M8以上大地震有5次之多(国家地震局《鄂尔多斯周缘活动断裂系》课题组, 1988)。鄂尔多斯活动地块位于“丝绸之路”经济带的东端,也是国家中西部发展战略的核心区域,而且围绕该活动地块边界带分布了7个省份的多个大中型城市,百万人口以上的城市近20个,且中西部重要经济区和工业区也围绕该地块分布,重大民生工程和交通干道纵横穿越,同时,鄂尔多斯活动地块内部及周缘也是中国主要的能源基地。
作为强震发生主要场所的活动地块边界带,虽然由一条或多条断裂组成,但活动地块假说强调地块的整体运动和变形是活动地块边界带强震孕育和发生的主要动力学机制。文章总结了多年来围绕鄂尔多斯活动地块边界带的活动断裂主要研究结果,在强调活动地块整体运动和变形的基础上,考虑鄂尔多斯活动地块周缘各边界带构造活动特征的特殊性和差异性,对鄂尔多斯活动地块边界带各分区断裂构造活动特征和强震孕育机制进行总结分析,希望为更好地认识和理解鄂尔多斯活动地块边界带的强震孕育特征及未来强震风险提供参考。
1. 区域构造背景
鄂尔多斯活动地块位于华北克拉通的西部,与青藏高原东北部相邻(郑文俊等, 2019, 2020)。自中生代晚期开始,华北地块区东、西两部分的构造运动发生明显的区域分异,东部经历了岩石圈地幔的剧烈破坏以及地壳的强烈改造和减薄作用,形成华北盆地(朱日祥等,2011),西部大范围堆积侏罗纪至早白垩世地层,形成典型的断陷盆地,之后又经历长期的隆升运动形成了现今的鄂尔多斯活动地块(邓起东和尤惠川, 1985)。地质学家认为,鄂尔多斯活动地块的构造演化由太平洋板块西向俯冲造成的华北盆地的伸展和印度-欧亚板块碰撞产生的青藏高原东北缘的剪切挤压共同控制(Molnar and Tapponnier, 1975; Tapponnier et al., 1982), 并且鄂尔多斯活动地块在中国大陆的构造演化和深部孕震环境研究中占有重要地位(国家地震局《鄂尔多斯周缘活动断裂系》课题组, 1988; 张培震等,2013; 郑文俊等,2020)。
鄂尔多斯活动地块海拔高度约1000~1700 m,东西宽约400 km,南北长约600 km,地块内部构造相对简单,地层近水平,具有掀斜运动特征,西北缘高于地块东南缘,并向东南缘倾斜,在地貌上形成著名的黄土高原(国家地震局《鄂尔多斯周缘活动断裂系》课题组, 1988)。作为中朝准地台西半部的鄂尔多斯活动地块在经历强烈的印支、燕山运动后,与周缘地块分异不断扩大,在此构造格局基础上演化至中生代时期的内陆坳陷盆地(国家地震局《鄂尔多斯周缘活动断裂系》课题组, 1988)。进入新生代时期后,受青藏高原不断向北东—北东东方向的挤压与扩展及鄂尔多斯地块整体抬升作用影响下,块体周缘分异作用进一步扩大(雷启云等,2016; Shi et al., 2020)。始新世以后,鄂尔多斯活动地块周缘地区以垂直差异运动为主,开始发育不同构造背景、展布方向和运动特征的新生代断裂带和断陷带,包括南缘东西向渭河断陷带、东缘北北东向山西断陷带、北缘东西向河套断陷带、西缘南北向银川-吉兰泰断陷带以及西南缘弧形断裂束,到第四纪初期初步形成了现在的构造格局(邓起东和尤惠川, 1985; 国家地震局《鄂尔多斯周缘活动断裂系》课题组, 1988; 邓起东等, 1999; 雷启云等, 2016; 郑文俊等, 2016)。
鄂尔多斯活动地块南部、北部、西南部和西北部分别与秦岭造山带、阴山-燕山造山带、祁连褶皱系和阿拉善地块相邻,在东部通过山西断陷带与华北地块东部相邻(图 1)。长期以来, 地质学研究普遍认为鄂尔多斯活动地块是中国大陆内部一个相对稳定的刚性块体(邓起东等, 1999)。现代地震和历史地震目录显示,鄂尔多斯活动地块内部地震活动强度低,从未发生过M>6的地震(顾功叙, 1983; 徐伟进等,2008),但由于受太平洋板块和青藏高原的共同作用,其周缘边界带内强震活动频繁,这些断裂带和断陷带是中国大陆内部地震活动最强的地区之一,发生过多次8级以上地震(国家地震局《鄂尔多斯周缘活动断裂系》课题组, 1988; Rao et al., 2014, 2016; Middleton et al., 2016; Feng et al., 2020)。
F1—狼山山前断裂; F2—色尔滕山山前断裂; F3—乌拉山山前断裂; F4—大青山山前断裂; F5—和林格尔断裂; F6—鄂尔多斯北缘断裂; F7—桌子山西麓断裂; F8—正谊关断裂; F9—巴彦乌拉山山前断裂; F10—贺兰山西麓断裂; F11—贺兰山东麓断裂; F12—黄河断裂; F13—三关口-牛首山断裂; F14—罗山东麓断裂; F15—烟筒山断裂; F16—香山-天景山断裂; F17—海原断裂; F18—六盘山东麓断裂; F19—固关-虢镇断裂; F20—歧山-马召断裂; F21—西秦岭北缘断裂; F22—秦岭北缘断裂; F23—渭河断裂; F24—扶风-三原断裂; F25—口镇-关山断裂; F26—渭南塬前断裂; F27—华山山前断裂; F28—中条山北麓断裂; F29—韩城断裂; F30—罗云山山前断裂; F31—双泉-临猗断裂; F32—峨眉台地北缘断裂; F33—霍山山前断裂; F34—太谷断裂; F35—交城断裂; F36—系舟山北麓断裂; F37—云中山山前断裂; F38—五台山北麓断裂; F39—太白-维山断裂; F40—恒山南麓断裂; F41—恒山北麓断裂; F42—蔚广盆地南缘断裂; F43—口泉断裂; F44—六棱山北麓断裂; F45—阳高-天镇断裂; F46—怀安盆地北缘断裂; F47—张家口断裂; F48—岱海-黄旗海盆地边缘断裂带; F49—集宁盆地北缘断裂; F50—供济堂-商都断裂。图中虚线框标出其他图的范围(图 2a、图 4a及图 5a)Figure 1. Seismotectonic map of the Ordos active block and its surrounding areas (Faults and earthquakes modified from Zheng et al., 2020, 2022)Names of main faults: F1-Langshan frontal fault; F2-Seertengshan frontal fault; F3-Wulashan frontal fault; F4-Daqingshan frontal fault; F5-Helinge fault; F6-Northern margin fault of Ordos; F7-Western piedmont fault of Zhuozishan; F8-Zhengyiguan fault; F9-Bayanwula frontal fault; F10-Western piedmont fault of Helanshan; F11-Eastern piedmont fault of Helanshan; F12-Huanghe fault; F13-Sanguankou-Niushoushan fault; F14-Eastern piedmont fault of Luoshan; F15-Yantoushan fault; F16-Xiangshan-Tianjingshan fault; F17-Haiyuan fault; F18-Eastern piedmont fault of Liupanshan; F19-Guguan-Guozhen fault; F20-Qishan-Mazhao fault; F21- Northern margin fault of Western Qinling Mountains; F22-Northern margin fault of Qinling Mountains; F23-Weihe fault; F24-Fufeng- Sanyuan fault; F25-Kouzhen-Guanshan fault; F26-Weinan fault; F27-Huashan frontal fault; F28-Northern piedmont fault of Zhongtiaoshan; F29-Hancheng fault; F30-Luoyunshan frontal fault; F31-Shuangquan-Linyi fault; F32-Northern margin fault of Emei Platform; F33-Huoshan frontal fault; F34-Taigu fault; F35-Jiaocheng fault; F36-Northern piedmont fault of Xizhoushan; F37-Yunzhongshan frontal fault; F38-Northern piedmont fault of Wutaishan; F39-Taibai-Weishan fault; F40-Southern piedmont fault of Hengshan; F41-Northern piedmont fault of Hengshan; F42-Southern margin fault of Weiguang Basin; F43-Kouquan fault; F44-Northern piedmont fault of Liulengshan; F45-Yanggao-Tianzhen fault; F46-Northern margin fault of Huai′an Basin; F47-Zhangjiakou fault; F48-Margin fault belt of Daihai-Huangqihai Basin; F49-Northern margin fault of Jining Basin; F50-Gongjitang-Shangdu fault. Dashed boxes in the figure outline the scope of other figures (Figures 2a, 4a, and 5a)2. 鄂尔多斯活动地块边界带主要活动特征
在鄂尔多斯活动地块周缘形成了河套盆地、银川-吉兰泰盆地、渭河盆地、山西断陷盆地带等一系列以发育湖相沉积为主的第四纪沉积盆地(国家地震局《鄂尔多斯周缘活动断裂系》课题组, 1988; 李建彪等, 2005; 吴利杰等, 2019; 秦帮策等, 2021; 宋友桂等, 2021)。并形成了4个活动特征不同的边界带,分别是断陷的北边界带、构造复杂的西边界带、断陷的南边界带、拉张裂谷型的东边界带。除西缘与青藏高原东北缘的相互作用,形成了以左旋走滑为特征的弧形断裂带及压陷盆地外,鄂尔多斯活动地块周缘的这些盆地大多受边界正断层所控制(国家地震局《鄂尔多斯周缘活动断裂系》课题组, 1988; 雷启云等, 2016; 郑文俊等, 2016; 2020),但各区构造活动特征差异显著。
2.1 以断陷为主要特征的鄂尔多斯地块北—西北边界带
在空间位置上,河套盆地是鄂尔多斯活动地块的北边界带,河套盆地及其邻近的西北缘银川-吉兰泰盆地表现出了相似的活动特征,在盆地西侧和北侧,断裂活动性较强,存在明显的全新世活动证据,并有历史记载的大地震发生(国家地震局《鄂尔多斯周缘活动断裂系》课题组, 1988)。相比之下,盆地东侧或南侧断裂活动性较弱,表现为晚更新世活动断裂(或隐伏断裂),断裂滑动速率较低。虽然GNSS数据反映河套盆地存在左旋运动而银川-吉兰泰盆地存在右旋走滑(Zhao et al., 2017; Hao et al., 2021),但河套盆地边界断裂在地质上似乎很难发现走滑运动的确切证据。
地块北部河套盆地主要活动断裂在盆地北(西)侧边缘处发育,从东往西主要为大青山山前断裂(F4)、乌拉山山前断裂(F3)、色尔腾山山前断裂(F2)、狼山山前断裂(F1),4条断裂均表现出强烈的全新世活动特征(图 2),其中,大青山山前断裂上发生了公元849年M7 3/4 ~8地震(冉勇康等, 2003; 聂宗笙等, 2010),狼山断裂上发生了公元前7年M7 3/4 ~8地震(李彦宝等, 2015; Rao et al., 2016)。4条断裂均以正断层活动为特征,大青山山前断裂(F4)垂直滑动速率为1.8~2.8 mm/a,最大甚至达到近4 mm/a(Xu et al., 2022),乌拉山山前断裂(F3)平均垂直位移速率在0.7~2.3 mm/a之间(陈立春, 2002; Xu et al., 2022),色尔腾山山前断裂(F2)平均垂直滑动速率0.6~2.3 mm/a(陈立春, 2002; Zhang et al., 2017),狼山山前断裂(F1)平均垂直滑动速率0.6~1.6 mm/a(Dong et al., 2018; Rao et al., 2018)。河套盆地南部发育鄂尔多斯北缘断裂(F6),是一条晚更新世活动断裂,控制了鄂尔多斯活动地块北边界,东部发育北东向的和林格尔断裂(F5),为河套盆地的东边界控制断裂,中更新世到晚更新世有活动(李建彪等, 2005; 刘华国等, 2022)。
图 2 鄂尔多斯活动地块北缘断裂展布与断裂活动特征红色箭头指示断裂经过的位置;T2—T5指示不同期的洪积台地
F51—磴口-本井断裂; F52—五原-杭锦后旗断裂; F53—乌拉山北缘断裂; F1—F8名称与图 1相同
a—鄂尔多斯活动地块北缘地貌特征及断裂分布(据邓起东等,1999修改);b—狼山山前断裂基岩断层面; c—沿色尔腾山山前断裂的多级洪积地貌断错; d—乌拉山山前断裂基岩断面及断错地貌特征; e—大青山山前洪积台面地断错Figure 2. Distribution of faults and fault activity characteristics on the northern margin of the Ordos active block(a) Geomorphological characteristics and distribution of faults on the northern margin of the Ordos active block (modified from Deng et al., 1999); The fault names in the figure are F1-F8, which are the same as in Fig. 1. Other fault names are as follows: F51-Dengkou-Benjing fault; F52-Wuyuan-Hangjinhouqi fault; F53-Northern margin fault of Wulashan; (b) Bedrock fault plane of the Langshan frontal fault; (c) Multi-stage alluvial geomorphic faulting along the Sertengshan frontal fault; (d) Bedrock fault plane and fault topography of the Wulashan frontal fault; (e)Offset of the alluvial platform of the Daqingshan.
The red arrows indicate the location of the faults; T2-T5 indicate the alluvial terrace in different periods位于地块西边界北段的银川盆地,其西边以贺兰山东麓断裂(F11)为边界断裂,该断裂全新世活动,其北段上发生了1739年平罗M8地震,错断了明代长城,垂直滑动速率为0.88~2.1 mm/a (国家地震局《鄂尔多斯周缘活动断裂系》课题组, 1988; Deng and Liao, 1996; Middleton et al., 2016)。黄河断裂(F12)是银川盆地的东边界断裂,其北段隐伏,垂直滑动速率为0.17 mm/a (雷启云等, 2014; 包国栋等, 2019);南段出露地表,向西或北西倾斜,是一条高角度正断层,全新世平均垂直滑动速率为0.24 mm/a(廖玉华等, 2000; 柴炽章等, 2001)。巴彦乌拉山山前断裂(F9)位于吉兰泰盆地西缘,属向南南东倾斜的正断层,晚更新世活动,估算第四纪晚期平均垂直滑动速率为约0.25~0.40 mm/a (宋方敏和曹忠权, 1994; Lei et al., 2022)。桌子山西麓断裂(F7)位于吉兰泰盆地东缘,不完全连续,全长约90 km,晚更新世活动,平均垂直滑动速率为0.1~0.2 mm/a (Liu et al., 2022b)。正谊关断裂(F8)分割了吉兰泰盆地和银川盆地,走向近东西,断面向南倾斜,逆冲兼左旋走滑性质(图 3),全新世水平滑动速率1.1~1.5 mm/a(邢成起和王彦宾, 1991)。
图 3 鄂尔多斯活动地块西北缘正谊关断裂运动特征a—断裂沿线不同级冲沟左旋断错(蓝色线标出了水系及流向,红色单侧箭头指示的运动方向,白色数字表示冲沟的左旋位错值); b—冲沟及阶地左旋位错(蓝色线标出了水系及流向,白线虚线标出了阶地边界,红色单侧箭头指示的运动方向,数字表示冲沟或阶地边缘左旋位错值); c—冲沟位错和地貌陡坎(红色箭头标出断裂及陡坎延伸位置,蓝色线标出了水系及流向,数字表示冲沟或阶地边缘左旋位错值); d—断层剖面,显示明显有逆冲特征(箭头标示断层陡坎位置,T2为冲阶沟阶地面)Figure 3. Movement characteristics of the Zhengyiguan fault on the northwestern margin of the Ordos active block(a) Sinistral dislocations of gullies of different level along the fault, with blue lines indicating the water system and flow direction, red single-sided arrows indicating the direction of movement, and white numbers indicating the the value of sinistral dislocations; (b) Sinistral dislocations of gullies and terraces, with blue lines indicating the water system and flow direction, white dashed lines indicating the boundaries of the terraces, red single-sided arrows indicating the direction of movement, and numbers indicating the sinistral dislocation values of the gullies or terrace edges; (c) Gully dislocations and fault scarp, with red arrows indicating the extension positions of the fault and scarp, blue lines indicating the water system and flow direction, and numbers indicating the sinistral dislocation values of the gullies or terrace edges; (d) Fault profile showing obvious thrust characteristics, with arrows indicating the location of fault scarp, and T2 represents the gully terrace2.2 构造样式与活动特征复杂的鄂尔多斯活动地块西边界带
以分割鄂尔多斯地块与青藏高原东北缘的右旋走滑为主要特征的断裂带——贺兰山西麓断裂(F10)、三关口-牛首山断裂(F13)和罗山东麓断裂(F14)为界,将鄂尔多斯活动地块西缘分为南北两个构造单元(图 1)。区域内,青藏高原东北缘的弧形断裂带(F15—F17)、西秦岭北缘断裂(F21)以左旋走滑为主,而弧形构造的末端则转换为挤压逆冲运动,如六盘山东麓断裂(F18),六盘山往南,受渭河盆地影响,又出现以左旋走滑为主要特征的岐山-马召断裂(F20)以及正断为主的固关-虢镇断裂(F19)等(Zheng et al., 2013; 郑文俊等, 2016;Li et al., 2018)。
贺兰山西麓断裂(F10) 发育在贺兰山西麓洪积扇上,走向近南北,具右旋走滑兼逆冲性质,全新世水平滑动速率为0.28 mm/a,垂直滑动速率为0.11 mm/a(Lei et al., 2022)。三关口-牛首山断裂的北段斜切贺兰山山体,南段是银川盆地的西南边界,具右旋走滑运动性质,全新世平均水平和垂直滑动速率分别为0.35 mm/a和0.09 mm/a(雷启云等, 2016; 公王斌等, 2017)。罗山东麓断裂走向近南北,是一条全新世活动的右旋走滑断裂,一系列冲沟跨断层发生同步扭动,晚更新世—全新世水平滑动速率为1.43±0.11 mm/a(闵伟等, 1992; 雷启云等, 2016),是1561年中宁M7½地震的发震构造(闵伟等, 1992)。
青藏高原东北缘弧形构造带主要是由海原断裂(F17)、香山-天景山断裂(F16)组成的整体呈弧形的构造带(雷启云等, 2016; 郑文俊等, 2016)。构造带的东部断裂走向呈北西西—东西向,向东转变为北北西—近南北向,断裂运动性质也由左旋走滑为主转化为逆冲为主;从南向北,断裂活动相对减弱,反映了高原向北依次扩展的过程。其中,海原断裂(F17)是区内规模最大、活动最强的断裂,走向北西—北北西,东端和六盘山东麓断裂(F18)相连接,左旋走滑性质,1920年海原M8½地震发生在该断裂带上(国家地震局地质研究所和宁夏回族自治区地震局, 1990),全新世以来水平滑动速率为4.5 mm/a (Li et al., 2009; Liu et al., 2022a)。香山-天景山断裂整体呈弧形,向西为罐罐岭断裂、长岭山北麓断裂、古浪断裂,均具明显的左旋走滑性质,该断裂带在东段转变为逆冲为主,全新世活动强烈,1709年中卫M7½地震就发生在该断裂带上,全新世以来平均滑动速率为0.41~1.62 mm/a(尹功明等, 2013;张维歧等, 2015)。断裂带向南主要为六盘山东麓断裂(F18)和岐山-马召断裂(F20),六盘山东麓断裂北段走向北北西,向南转为近南北向,具逆走滑性质,全新世活动,第四纪晚期以来平均走滑速率在2 mm/a,垂直速率0.8 mm/a(向宏发等, 1998),南端岐山-马召断裂(F20)向北和六盘山东麓断裂(F18)相连接,向南进入渭河盆地,以左旋走滑运动性质为主,并伴有一定的正断分量,第四纪晚期以来的左旋走滑运动速率约为0.5~1.2 mm/a,垂直滑动速率为0.01~0.03 mm/a(Li et al., 2018)。
区域内规模较大的另外一条左旋走滑断裂为西秦岭北缘断裂(F21),向东进入渭河盆地,总长度大于500 km,全新世活动,历史上发生过公元前47年陇西M6 3/4 (袁道阳等, 2017)、143年甘谷西M7地震(袁道阳等, 2007)、734年天水M7地震等(雷中生等, 2007),水平速率约为2~3 mm/a,垂直速率约为0.3 mm/a,总体上呈现自西向东逐渐递减的趋势(李传友, 2005; 王维桐, 2020; 张逸鹏等,2021)。
2.3 断陷为主要特征的鄂尔多斯活动地块南边界带
该区域的活动断裂多发育在渭河盆地内,以正断为主要特征(图 1)。渭河盆地除了边界发育活动断裂外,盆地内发育2组活动断裂,第1组北西西或东西向,第2组为北东或北东东向,2组断裂多交接,呈现网格状(杜建军等, 2017; 胡亚轩等, 2018)。第1组断裂的规模大、活动性强,多为裸露断裂,全新世活动;第2组断裂的规模小、活动性弱,多为隐伏断裂,晚更新世活动为主。北西西或东西走向的断裂包括:秦岭北缘断裂(F22)、华山山前断裂(F27)、渭南塬前断裂(F26)和口镇-关山断裂(F25),均属于全新世活断裂,除了口镇-关山断裂(F25)向南倾斜外,其余断裂均向北倾。
秦岭北缘断裂(F22)为渭河盆地和秦岭的分界,其晚更新世以来的垂直运动速率约为0.3~0.6 mm/a(陕西省地震局, 1996)。华山山前断裂(F27)为渭河盆地东南部的一条大型边界断裂,全长约180 km,晚更新世以来活动显著,华县至华阴段全新世以来仍持续强烈活动,发生过公元1556年华县M8大地震,造成了超过83万人的死亡(马冀,2019),全新世以来平均垂直活动速率为1.5~3 mm/a(杨源源等, 2012; Rao et al., 2014; 徐伟等, 2017)。渭南塬前断裂(F26)位于渭河盆地渭南塬北侧,也是1556年M8地震发震断裂之一,全新世以来的垂直滑动速率约为1.7~2.1 mm/a(Rao et al., 2015; 马冀, 2019)。口镇-关山断裂(F25)在地貌与地震探测剖面上均有显示,其走向近东西,倾向南,长度大于100 km,自新生代晚期以来主要表现为南降北升的高角度正断层,断裂晚更新世末期以来平均滑动速率为0.75 mm/a (米丰收等, 1993; 胡亚轩等, 2008; 杨晨艺等, 2021),历史上多次发生地震,如1655年三原M5地震、1704年径阳M5地震、1850年乾县M5地震、1880年永寿县M5¼地震等多次中强地震。
2.4 拉张裂谷型的鄂尔多斯活动地块东边界带
鄂尔多斯活动地块东边界带主要为山西地堑系,从南往北主要为运城-临汾盆地区、太原-忻定盆地区和大同-张家口盆地区(图 4)。
图 4 鄂尔多斯活动地块东缘山西地堑系断层与盆地展布红色箭头指示断层位置;单侧红箭头指示断层运动方向
F54—岱海盆地北缘断裂; F55—阳原盆地北缘断裂; F56—怀安盆地南缘断裂; F57—怀仁断裂; F58—离石断裂; F59—中条山南麓断裂; F60—铁炉子断裂;F27—F50名称同图 1
a—山西地堑系断裂与盆地展布; b—口泉断裂南段黄土台塬断层貌; c—恒山北麓断裂北东段断层剖面(Q3表示晚更新世沉积,Q4表示全新世沉积);d—峨眉台地北缘断裂断错地貌特征(T1~T3为冲沟阶地); e—中条山北麓断裂盐池一带断错地貌特征Figure 4. Distribution of faults and basins in the Shanxi graben system on the eastern margin of the Ordos active block(a) Distribution of faults and basins in the Shanxi graben system (The fault names of F27-F50 are the same as in Fig. 1; F54-Northern margin fault of Daihai Basin; F55-Northern margin fault of Yangyuan Basin; F56-Southern margin fault of Huai' an Basin; F57-Huairen fault; F58-Lishi fault; F59-Southern piedmont fault of Zhongtiaoshan; F60-Tieluzi fault); (b) The fault landforms on the southern segment of the Kouquan fault; (c) Fault profile of the northeastern of the Hengshan northern piedmont fault (Q3 represents Late Pleistocene deposits, Q4 represents Holocene deposits); (d)The geomorphological characteristics of the northern margin fault of the Emei platform (T1-T3 indicate the gully terraces); (e) The tectonic geomorphology of the Yanchi area along the northern piedmont fault of Zhongtiaoshan
Red arrows indicate the fault locations; single-sided red arrows indicate the direction of fault movement运城-临汾盆地区范围内包括了运城盆地和临汾盆地(图 1,图 4),两盆地被峨眉台地隔开,总体走向为北东向,主要活动断裂发育在盆地的边界上,主要包括中条山北麓断裂(F28)、韩城断裂(F29)、罗云山山前断裂(F30)和霍山山前断裂(F33)。中条山北麓断裂(F28)是运城盆地东侧和南侧边界断裂,为全新世活动的高角度正断层,晚更新世以来平均垂直滑动速率为0.75 mm/a(司苏沛等, 2014)。韩城断裂(F29)是运城盆地的西北边界,其北端与罗云山山前断裂(F30)相连,是一条全新世活动的正断层,北段参与了1695年临汾M7 3/4地震(闫小兵等, 2018),平均垂直滑动速率为0.45~0.6 mm/a (扈桂让等, 2017;李自红等, 2017)。罗云山山前断裂(F30)是临汾盆地的西部边界,全新世以来平均垂直滑动速率为0.36 mm/a(谢新生等, 2008; 孙昌斌等, 2013)。霍山山前断裂(F33)为临汾盆地东北部的边界断裂,近南北向延伸,总长度116 km,倾向北西,垂直滑动速率为0.88~1.49 mm/a,是1303年洪洞M8地震的发震构造(徐岳仁, 2014; Xu et al., 2018)。
太原-忻定盆地区范围内包括了太原盆地和忻定盆地(图 1,图 4),两盆地呈北东向展布,左阶斜列,均为正断控制的断陷盆地,主要活动断裂发育在盆地边界,分别为太谷断裂(F34)、交城断裂(F35)、系舟山北麓断裂(F36)、云中山山前断裂(F37)和五台山北麓断裂(F38),另外还有一系列规模相对较小的断裂发育。太原盆地发育2条边界断裂,太谷断裂(F34)展布在太原盆地东侧,分为南北两段,为全新世活动正断层,垂直滑动速率约0.12 mm/a(谢新生等, 2008; 谢富仁等, 2017);交城断裂(F35)是太原盆地西边界的主控断裂,长约125 km,晚更新世以来的平均垂直滑动速率约1.9 mm/a(江娃利等, 2017)。忻定盆地发育3条边界断裂:系舟山北麓断裂(F36)为控制忻定盆地定襄凹陷东南的边界的全新世活动断裂,右旋正倾滑断层,断裂上发生了1038年山西定襄M7¼级地震(张世民, 2007),平均垂直运动速率为1.48 mm/a(孟宪梁等, 1993; 窦素芹等, 1995);云中山山前断裂(F37)为忻定盆地原平凹陷的主控边界断裂,全长约60 km,右旋正倾滑断层,平均垂直滑动速率为0.33 mm/a,右旋走滑速率大约是0.67 mm/a,是1683年原平M7级地震的发震构造(江娃利等, 2000);五台山北麓断裂(F38)位于五台山北麓,全长约80 km,为正断倾滑型,垂直滑动速率为0.47~0.64 mm/a,公元512年代县M7½地震与该断裂活动有关(张世民, 2007; 赵仕亮等, 2016)。
大同—张家口盆地区主要包括晋西北的大同盆地、阳原盆地、蔚广盆地、怀安盆地和岱海盆地等(图 1,图 4),是晋冀蒙盆岭构造区的主要组成部分,均为正断层控制的地堑和半地堑断陷盆地,其中大同盆地规模最大,蔚广盆地和怀安盆地在东北端和大同盆地相连接,而岱海盆地在大同盆地北西与其近平行展布,区内的主要活动断裂发育在盆地边界,控制盆地形态(国家地震局《鄂尔多斯周缘活动断裂系》课题组, 1988; Luo et al., 2021)。大同盆地内的主要活动断裂有恒山北麓断裂(F41)、六棱山北麓断裂(F44)、口泉断裂(F43)和阳高-天镇断裂(F45)(Luo et al., 2021)。恒山北麓断裂(F41)是大同盆地的南边界断裂,全长约160 km,为全新世活动正断层,垂直滑动速率为0.78~1.0 mm/a (Luo et al., 2021);六棱山北麓断裂(F44)是大同盆地和阳原盆地的南边界,全长140 km,为正断倾滑型断裂,垂直滑动速率为0.18~0.63 mm/a (孙稳, 2018);口泉断裂(F43)为大同盆地的西边界,全长130 km,全新世活动的正断层伴右旋走滑性质,垂直滑动速率在0.17~0.53 mm/a之间(徐伟等, 2011)。蔚广盆地主要发育有蔚广盆地南缘断裂(F42),是盆地的南边界,全长约120 km,垂直滑动速率为0.42~0.66 mm/a (田勤俭等, 2017; Peng et al., 2023)。阳原盆地南边界为六棱山北麓断裂(F44),该断裂全新世活动,根据InSAR数据估算断裂垂直滑动速率为0.7~1.4 mm/a (高晨等, 2021)。在阳原盆地北侧,左旋走滑兼正断的阳高-天镇断裂(F45)具有较小的水平走滑速率(约为0.17 mm/a)和垂直速率(0.1~0.3 mm/a),发生过1673年天镇M7级地震,形成全段破裂(Luo et al., 2021)。
岱海-黄旗海盆地边缘断裂带(F48)表现出晚更新世—全新世活动的特征。北西向展布的张家口断裂(F47)存在较为明显的左旋走滑特征,晚更新世晚期以来的垂直滑动速率约为0.1 mm/a,水平滑动速率为0.6 mm/a(Luo et al., 2021)。另外据最新的调查发现,在集宁以北发育有北西走向的新活动断裂(罗全星和李传友, 2022),集宁盆地北缘也发育有一条规模相当的正断性质的断裂(F49;图 5)。
图 5 集宁盆地北缘断裂的展布及地貌特征a—集宁盆地北缘卫星影像及断裂解译;b—胜利房子断层剖面(红色箭头指示断层面的位置;Q3指示晚更新世沉积;Q4指示全新世沉积);c—集宁机场北断层陡坎及高度(T3—T5指示不同期洪积台地面; 红色箭头指示断陡坎位置,数字表示所在位陡坎高度)Figure 5. Fault distribution and geomorphic characteristics of the northern margin of the Jining basin(a) Satellite image features and interpretation of fault distribution on the northern edge of the Jining basin; (b) Fault profile at the Shenglifangzi village (Red arrows indicate the location of the fault plane, Q3 indicates Late Pleistocene sedimentation, and Q4 indicates Holocene sedimentation; (c) Fault scarp with height at the north of the Jining airport (T3-T5 indicate the surfaces of the alluvial platform in different periods, red arrows indicate the locations of fault scarps, and numbers indicate the heights of fault scarps)3. 鄂尔多斯活动地块主要边界带强震孕育机制与强震风险
在中国大陆及周边地区活动地块划分方案中,鄂尔多斯属于典型的二级活动地块,其西、西北、北及南边界为典型的一级活动地块区边界(图 1),分属于华北地块区与青藏高原地块区、西域地块区、东北亚地块区及南华地块区的边界(张培震等, 2003;郑文俊等,2020;2022),均包括了一定宽度和范围内的活动构造带,东边界为华北地块区内最西边的鄂尔多斯活动地块与华北活动地块二者之间的边界,边界组成以山西断陷盆地群及边界断裂组成,地块四周均为典型的构造活动带,是中国大陆最重要的强震活跃区之一。因此,鄂尔多斯活动地块四周分别受到不同的地块相互作用,从历史和现代强震机制、断裂构造第四纪晚期运动特征、现今GNSS观测结果(Hao et al., 2021)等均表现出不同的类型和特征,块体边界带不同位置强震的孕育和发生机制均有所不同(图 6)。
图 6 鄂尔多斯活动地块及周缘构造变形及强震孕震机制模式Figure 6. Tectonic deformation and strong earthquake generation mechanism model of the Ordos active-tectonic block and its surrounding areasThe distribution of faults and basins are modified from RGOSSB, 1988; Zheng et al, 2020; 2022. The movement and deformation direction of the active-tectonic block are modified from Hao et al., 2021 and Luo et al., 20213.1 河套断陷盆地区
河套断陷盆地位于阴山隆起与鄂尔多斯隆起之间,东西长约440 km,南北宽40~80 km,其内部发育临河凹陷、白彦花凹陷和呼和凹陷,自西向东被西山咀隆起和包头隆起隔开,凹陷与隆起交替排列(图 2a;国家地震局《鄂尔多斯周缘活动断裂系》课题组, 1988; 陈立春, 2002)。河套断陷带在鄂尔多斯块体周缘4个断陷带中规模最大,构造活动比较强烈,表现为北缘断裂活动性强,而南缘及东缘断裂活动性弱的特征(邓起东和尤惠川, 1985;国家地震局《鄂尔多斯周缘活动断裂系》课题组, 1988;Rao et al., 2016;Dong et al., 2018;He et al., 2018),不对称断陷盆地北缘断裂的活动控制着该区域强震的孕育(图 6)。
河套断陷盆地西缘和北缘的断裂在全新世以来持续活动,控制着河套地堑的主要构造活动和地貌形成(国家地震局《鄂尔多斯周缘活动断裂系》课题组, 1988; 邓起东等, 2003)。控制盆地形态的主要是与阴山分界的狼山山前断裂(F1)、色尔腾山山前断裂(F2)、乌拉山山前断裂(F3)及大青山山前断裂(F4),也是鄂尔多斯北缘的主要强震孕育的断裂(图 1,图 2)。据历史记载,河套断陷带发生过公元前7年和公元849年两次大地震(聂宗笙等, 2010; 李彦宝等, 2015)。20世纪以来,断陷带相继发生如1976年巴音木仁M6.2地震、1979年五原M6地震、1996年包头M6地震和一些4~5级中小地震,也揭示了该区强烈的构造活动。对北缘4条主要断裂的强震活动关系的分析,结合古地震序列建立的15000 a以来北缘4条断层之间的强震活动存在一定关联性,表现为丛集和循环(Peng et al., 2022; 郑文俊等,2024),而其盆地南侧的鄂尔多斯北缘断裂带活动相对较弱,现代中小地震也较少有发生,断层多发育于古近纪—新近纪地层中,对整体河套盆地强震孕育和发生作用相对较小(刘华国等, 2022)。因此,未来需要重点关注盆地北缘断裂的相互影响及地震群集的特征,特别是中段的色尔腾山山前断裂和乌拉山山前断裂(Peng et al., 2022; 郑文俊等, 2024)。
3.2 银川拉张断陷盆地区
晚新生代以来,鄂尔多斯活动地块西北部边界断裂带附近经历了两阶段的构造变形过程,早期以地层褶曲变形为主, 表现为次级地块的缩短和区域性的抬升,后期则转化为断裂的右旋走滑,表现为次级地块的侧向挤出,其主要动力源是受青藏高原东北向推挤和鄂尔多斯地块不均匀框动、拉张共同作用的控制(图 6;雷启云等, 2016; Hao et al., 2021)。地球物理勘探及地震研究结果揭示,银川盆地在地壳内发生双层伸展,在下地壳,两条相向的韧性剪切带将上地幔的水平伸展力转化为所挟持下地壳的向下垂直运动,这种垂直运动使得上下地壳解耦,并在C面上发生剪切滑脱(刘保金等, 2008; Chen et al., 2022),通过C面滑脱和贺兰山断裂面的共同调节,下地壳的大部分垂向运动在上地壳底部转化为共轭的水平拉张力,引起银川断裂和贺兰山东麓断裂之间块体的垂向运动,导致了上地壳数条脆性正断层的活动(刘保金等, 2008; 雷启云等, 2016),均有发生强震的构造条件。贺兰山在晚新生代以来经历3个阶段的隆升,最晚一期已经到了第四纪早期,其东侧的掀斜隆升可能受控于下地壳内的韧性断裂活动形成的抬升力,而西侧则受到阿拉善地块的上地壳斜向楔入的抬升力,在两种构造力的作用下贺兰山整体发生断块式的差异性抬升(雷启云等, 2016; Li et al., 2022)。1739年平罗M8地震的所形成的一系列运动特征及现代中小地震的活动,结合探槽揭露、断错地貌特征研究、定量地貌揭示等(雷启云等, 2017),可以清楚地显示该区域右旋走滑断裂和正断裂的组合来协调鄂尔多斯地块相对阿拉善地块的差异运动,因而未来黄河断裂南段的强震风险需要更多的关注。
3.3 青藏高原东北缘弧形扩张挤压区
新生代中晚期青藏高原持续隆升和向外扩展,逐渐影响到了高原的外围区域,形成了一系列新生的构造变形带(郑文俊等, 2016),位于三大地块交汇部位的陇西盆地、宁夏南部盆地群及六盘山、香山、天景山以及牛首山、罗山等区域,形成了弧形向北东方向逐渐扩展的断裂带和盆地褶皱变形区(图 1),包括了海原断裂(F17)、香山-天景山断裂(F16)和三关口-牛首山断裂(F13)3条主要的断裂,以及南部的六盘山东麓断裂(F18)。在断裂运动性质转换和对强震的控制模式上,该区域表现为两个类型(图 6):一是3个弧形构造带自10 Ma以来逐渐分阶段的向外扩展,形成了完善的弧形构造和变形特征,其最新的活动和挤压作用影响已经到达了三关口-牛首山断裂(F13)上(雷启云等, 2016; 郑文俊等, 2016),3个弧形构造带之间存在相互的影响和地震的触发;二是以海原断裂(F17)为主的走滑运动向端部的运动性质转换,如海原断裂向东的延伸到达六盘山后,其尾端的左旋走滑速率逐渐转换成了端部新生代盆地变形、断裂的逆冲和山脉的隆升(Zheng et al., 2013; 郑文俊等, 2016; Liu et al., 2022a)。另外,在总体构造框架上,海原断裂(F17)与岐山-马召断裂(F20)之间形成了一个左旋右阶的挤压阶区,海原断裂的4~5 mm/a左旋走滑速率,经过六盘山隆起、断裂的逆冲和两侧的新生代盆地变形的吸收和转换,到了岐山-马召断裂(F20)上左旋走滑速率为2~3 mm/a(郑文俊等, 2016; Li et al., 2018,2019)。向北东的挤压扩展,向东南方向沿主要断裂的运动特征转换,共同控制着高原东北缘的强震孕育和发生。
3.4 渭河断陷盆地区
渭河断陷盆地区位于鄂尔多斯地块南缘、秦岭断块山地以北,由西安-宝鸡盆地、渭南盆地、运城盆地、灵宝盆地等多个断陷盆地及其之间的隆起单元组成,总体走向近东西,东西近400 km,南北宽60 km。断陷盆地南北两侧均受断裂控制,剖面上显示为不对称的复式地堑和掀斜断块的结构特点(国家地震局《鄂尔多斯周缘活动断裂系》课题组, 1988)。渭河断陷盆地区在始新世开始形成,是鄂尔多斯活动地块周缘最古老的断陷带,经历了渐新世的进一步发展,到了上新世基本奠定了现今断陷盆地的构造格架,虽然经历了漫长的活动历史,但最新活动仍十分强烈,第四纪时期继承了上新世的构造格局(图 6)。整体上,渭河断陷盆地内断裂活动引起的断块差异运动是其演化的基本形式,而其大幅度的断陷沉降作用及相应的巨厚的新生代堆积更是断陷盆地演化的主要表现(国家地震局《鄂尔多斯周缘活动断裂系》课题组, 1988)。控制渭河盆地形态的秦岭北缘断裂,过去4000 a以来发生过4次地震事件,均产生了地表破裂,平均复发周期为1000 a(Rao et al., 2015)。
渭河断陷盆地也是中国一个主要的强震带,历史记载以来有多次强震发生(马冀, 2019),其中:1556年华县M8地震是发生在东西走向的盆地南侧深大断裂和盆地内部东西走向的大断裂上;1501年朝邑M7地震发生在盆地内部凹陷带和横向隆起构造带交汇的部位;1487年临潼M6¼和1568年西安M6 3/4地震又发生在横穿盆地北西走向的小尺度断裂上;最新研究指出1568年西安地震的震级可能达到7级,分析认为此次地震的发震构造为渭南-泾阳断裂,该断裂与渭南塬前断裂(F26)、华山山前断裂(F27)共同构成渭河盆地东南缘的重要边界活动断裂带。从历史地震判断,渭河盆地内主要控震构造具有不同的性质,其力学上的不稳定和应力积累的相互影响是中强地震发生的主要原因。
3.5 山西拉张地堑系
山西拉张地堑系与鄂尔多斯周缘其他3个边界不同,其结构相对复杂,自北向南由5个盆地组成(图 4),该区也是周缘盆地中形成最晚的一个盆地带,开始形成于上新世,盆地中新生界堆积厚度小于其他边界盆地带。地堑中走向北东东向的5条坳陷和5条隆起带,呈右列雁行相间排列,控制地堑的基底断裂为一系列的同沉积张扭性正断层,分别向盆地中心倾斜,构成不对称的地堑构造,控制了裂谷的轮廓,决定了裂谷的新构造运动和周期性的现代活动(图 6)。裂谷为一条不连续右旋剪切拉张带, 其中段的北北东向断裂和盆地,如口泉断裂(F43)、六棱山北麓断裂(F44)、五台山北麓断裂(F38)、系舟山北麓断裂(F36)、霍山山前断裂(F33)及其控制的大同、原平和临汾盆地等均为右旋正走滑断裂及地堑型盆地, 断裂右旋错断地质体、水系和山脊等,全新世滑动速率有明显增大的特征(徐锡伟等, 1986, 1992),而晋北张性构造区晚更新世或全新世以来正断裂的平均垂直滑动速率变化范围为0.35~1.75 mm/a(徐锡伟等, 1986; 国家地震局《鄂尔多斯周缘活动断裂系》课题组, 1988)。
山西拉张地堑系历史强震活动频繁,自公元1000年以来经历了多个强震活动期,历史地震研究结果显示其6~7级地震存在原地和同构造部位重复的特点,也具有一定南北迁移规律(徐锡伟等, 1992; 郑文俊等, 2024)。历史中强地震活动显示,山西拉张地堑系南北不同位置存在地震孕育机制和活动强度有明显差异。南段由一系列不连续的北北东向右旋正走滑断裂及其控制的盆地组成,表现为右旋剪切性质,也是山西拉张裂谷系7级以上强震的主要发生区。北段表现为拉张断陷区,由一系列北东东向张性倾滑断层及其控制的半地堑盆地构成(Luo et al., 2021),包括大同盆地及东北部的蔚广盆地、张家口盆地等,控制盆地的断裂均具备发生7级左右地震的构造条件,再向北的岱海及乌兰察布一带,新生断裂存在6~7级地强震风险,同时该位置也受张渤构造带作用(图 6),断裂相互交互的位置也是近年来发生中等强度地震的主要区域,需要关注这些位置可能的强震风险。
4. 结论
位于中国大陆中心位置的鄂尔多斯活动地块,不仅在大地构造单元中有着至关重要的作用和意义,也是中国东西部交流贯通的重要枢纽位置,是“丝绸之路”经济带的东端,在未来国家和区域经济发展中发挥着举足轻重的作用。由于受西南部青藏块体和东部的太平洋板块远程作用的影响,鄂尔多斯活动地块各边界带构造活动特征和变形具有明显的特殊性和差异性,也控制着周边不同类型的强震的孕育和发生。
(1) 受青藏高原向北东挤压扩展的影响,构造变形样式复杂的西南缘断裂以走滑、逆走滑和逆冲为主要特征,是历史大地震的频发区域,也是鄂尔多斯活动地块周缘强震复发最频繁的区域。以右旋为特征的三关口-牛首山断裂为高原扩展的最新边界,其北部的银川盆地表现为典型的断陷盆地,有右旋走滑特征,地震多以正走滑型为主,但贺兰山西侧的断裂已表现出有逆冲活动的特征。
(2) 鄂尔多斯活动地块南北两侧边界带均为正断控制的断陷盆地。北缘的河套盆地北侧的控盆正断裂控制着北边界强震的孕育和发生,盆地内部和南部地震相对较少。而由两组正断层组成的断裂构造网络的渭河盆地,历史大地震多发生在盆地南部,正断型地震居多,盆地中北部有中强地震发生,但规模要小于南部。
(3) 有多个裂谷型盆地斜列组成的山西地堑系分为南北两个部分,历史大地震表现为南强北弱,北部盆地受张渤构造带的影响,盆地走向和断层运动性质均发生了明显变化,多具备7级左右地震构造条件。
综合认为,鄂尔多斯活动地块周缘第四纪构造活动差异明显,由于复杂的板块远程作用交汇和活动地块间的相互作用,边界断裂在继承早期构造特征的基础上,有新生断裂发育或断裂运动性质的变化,地块边界带未来强震多发生在大地震离逝时间长的地震空区,或是构造带的转换和交汇区,也要注意一些新生断裂和没有发生过破裂的断层段发生6~7级强震的可能。
致谢: 感谢国家重点研发计划(2017YFC1500100)项目组全体成员的共同努力。对学者们在此开展的大量研究工作,由于篇幅有限,不能一一列出,在此表示歉意,也表达崇高的敬意和致谢。围绕鄂尔多斯活动地块编制了《鄂尔多斯活动地块及边界带地震构造图(1 ∶ 50万)》,已正式出版,欢迎大家批评指正。 -
图 1 中国主要沉积磷矿床中磷块岩的REE含量统计图和配分曲线 (数据来源见表1,PAAS数据引自McLennan,1989)
a—ΣREY含量频数分布图;b—PAAS标准化稀土配分曲线
Figure 1. Rare earth elements content and partition pattern of phosphorite for major sedimentary phosphate deposits in China (data from references listed in Table 1; REE data for PAAS from McLennan, 1989)
(a) Frequency histogram of ΣREY content; (b) PAAS normalized REE partition pattern
图 2 中国主要铝土矿床中铝土矿石的中REE含量统计图(数据来源见表3)
a—镧系金属元素总量分布直方图;b—Sc含量分布直方图
Figure 2. Statisrical chart of rare earth elements content and their partition pattern of bauxite ore from major bauxite deposits in China (data from references listed in table 3)
(a) Frequency histogram of total lanthanide elements content; (b) Frequency histogram of Sc content
图 4 中国主要岩浆型磷−铁磷矿床矿石中REE含量统计图和配分曲线(数据来源于表4)
a—ΣREE含量频数分布图;b—球粒陨石标准化配分曲线(球粒陨石标准化值引自 McDonough and Sun,1995)
Figure 4. Rare earth elements content and partition pattern for phosphate ores from major magmatic phosphate-iron phosphate deposits in China (data from references listed in Table 4)
(a) Frequency histogram of ΣREEcontent; (b) Chondrite normalized REE partition pattern (REE content for chondrite from McDonough and Sun, 1995)
图 5 岩浆型磷−铁磷矿石全岩P2O5−∑REY和(TFe2O3+MnO+MgO) −∑REY 的相关图解(数据来源见表4)
a—P2O5−∑REY相关图解;b—(TFe2O3+MnO+MgO) −∑REY 相关图解
Figure 5. Correlation diagram of P2O5−∑REY and (TFe2O3+MnO+MgO) −∑REY for magmatic phosphate-iron phosphate ores (data from references listed in table 4)
(a) P2O5 − ∑REY diagram;(b) (TFe2O3+MnO+MgO) − ∑REY diagram
图 8 中国主要油页岩矿床中油页岩的REE含量和配分特征(数据来源见表6)
a—ΣREY含量频数分布直方图; b—PAAS标准化稀土配分曲线
Figure 8. Rare earth elements content and patition pattern of oil shale for major oil shale deposits in China (data from references listed in Table 6)
(a) Frequency histogram of ΣREY content; (b) PAAS normalized REE partition pattern
表 1 海相沉积磷矿床磷矿石的全岩REE含量(×10−6 )统计结果
Table 1. Statistical results of rare earth content in the whole rock of phosphate ores in marine sedimentary phosphate deposits
矿床名称 地理位置 ΣREY范围 ΣREY平均值 HREE总量
(Gd-Y)范围HREE总量
(Gd-Y)平均值HREE含
量占比数据来源 铜仁磷矿床 贵州省铜仁市 237.8~2496.3 1116.7 125.7~1359.8 646.9 57.93% 汪宇航,2023;
杨旭, 2019;
卢正浩, 2022;
张兰, 2021开阳磷矿床 贵州省贵阳市 28.3~507.6 204.6 14.6~244.3 95.7 46.77% Yang et al.,2019a 瓮福磷矿区 贵州省瓮安县 10.2~400.3 116.0 5.0~225.6 54.6 47.07% Zhang et al.,2022;
Yang et al.,2019a;
Wang and Qiao,2024;
任海利, 2017;
梁坤萍, 2022;
杨海英等,2020织金磷矿床 贵州省毕节市 508.3~2041.0 1198.7 181.7~862.7 494.4 41.24% Zhang et al.,2022;
Gong et al.,2021;
Li et al.,2019b;
He et al.,2022;
Xing et al.,2021;
Wang and Qiao,2024;
汪宇航, 2023;
曹金鑫, 2022;
蒋权等, 2023大坪剖面 湖南省张家界 781.7~1004.1 905.1 339.9~438.8 400.5 44.25% 王文全, 2016 大浒剖面 湖南省张家界 470.6~2203.6 1344.9 275.7~1029.7 651.4 48.43% 王文全,2016 黄家坪磷矿床 四川省乐山市 85.6~113.2 99.5 36.8~60.8 50.6 50.85% 李佐强等, 2023 什邡磷矿区 四川省什邡市 184.7~5615.6 1921.7 91.6~853.3 518.3 26.97% 张跃跃,2015 白龙潭磷矿床 云南省昆明市 95.0~379.8 199.5 55.1~181.5 99.6 49.92% 曹金鑫等,2022 会泽磷矿床 云南省曲靖市 217.8~313.1 265.4 121.4~177.9 149.7 56.41% 徐凯等, 2023 昆阳磷矿床 云南省昆明市 161.5~440.8 304.9 90.2~242.4 154.6 50.71% 杨帆,2011;Zhang et al.,2022 羊场磷矿床 云南省昭通市 382.1~1181.5 619.5 136.4~474.0 241.8 39.03% 秦欢等,2022 遵义磷矿床 贵州省遵义市 142.7~1401.0 605.2 49.4~682.1 294.1 48.60% 王文全,2016 表 2 中国部分铝土矿床中伴生的REE品位和资源量
Table 2. Associated rare earth grade and resources in some bauxite deposits in China
编号 矿床名称 位置/行政区划代码 REE平均品位(REO,wt%) REE资源总量(t)
(除特别注明外均指C级以上或333以上)1 相王铝土矿床 山西省孝义市相王 / 37339.70 2 西红河矿床区铝土矿床 山西省忻州市宁武县薛家洼乡 / 6716.72 3 湍水头铝土矿床 山西省吕梁市临县湍水头镇 / 19248.00 4 后塔上铝土矿床 山西省吕梁市离石区 / 7192.60 5 铁金村铝土矿床 山西省交口县铁金村 / 36281.49 6 蒲依铝土矿床 山西省吕梁市交口县蒲依村 / 35500.00 7 石且河铝土矿床 山西省保德县 0.079 89091.00 8 曹窑煤矿床深部铝土矿床 河南渑池县 / 32500.00(未注明储量级别) 9 交口−汾西铝土矿床 山西交口−汾西地区 / 178103.00(未注明储量级别) 10 前文猛铝土矿床 山西静乐县 / 23500.20(未注明储量级别) 11 墕则村铝土矿床 山西保德县 / 16931.00(334) 12 下反里铝土矿床 山西汾西县 0.100 9370.00(334) 13 沙墕铝土矿床 山西交口县 / 19710.00(未注明储量级别) 14 桃花铝土矿床 山西交口县 / 4973.00(未注明储量级别) 15 石槽铝土矿床 山西娄烦县 / 4533.76(未注明储量级别) 16 西窑铝土矿床 山西平陆县 / 7921.20(334) 17 旋风窝铝土矿床 山西沁源县 / 16110.00(334) 18 苗家岭铝土矿床 山西襄垣县 / 8523.00(334) 19 奥家湾铝土矿床 山西兴县 0.110 21411.80(未注明储量级别) 20 范家疃铝土矿床 山西兴县 / 21191.40(334) 21 井沟铝土矿床 山西曲阳县 / 12295.00(未注明储量级别) 数据来源:全国地质资料馆“http://www.ngac.org.cn/”;“/”表示无数据或网上未提供 表 3 中国部分铝土矿床的矿石全岩REE含量(×10−6 )统计结果
Table 3. Statistical results of rare earth element content in the whole rock of some bauxite deposits in China
矿床名称 地理位置 REE总量范围 REE总量
平均值HREE总量
范围HREE总量
平均值HREE含量
占比数据来源 务正道矿区 贵州省遵义市 61.0~1815.2 419.2 16.9~143.8 44.1 10.51% Wang et al.,2013 三合铝土矿床 广西省白色市 226.0~1460.0 626.3 41.7~172.2 74.3 11.86% 李普涛和张起钻,2008 比例坝铝土矿床 贵州省贵阳市 401.0~1495.8 851.5 34.8~152.5 85.3 10.02% 张明等,2018 新民铝土矿床 贵州省遵义市 17.8~2329.8 320.3 6.1~166.2 34.3 10.70% 龙克树等,2019 高家山铝土矿床 山西省长治市 350.1~1262.6 828.5 29.6~91.9 56.5 6.82% 叶枫等,2015b 王润-西崖底铝土矿床 山西省吕梁市 286.5~1205.5 765.8 29.1~81.9 53.0 6.92% 叶枫等,2015a 小山坝铝土矿床 贵州省贵阳市 16.1~411.2* 213.7* 8.1~63.0* 35.5* 16.63%* Ling et al.,2018 林歹铝土矿床 贵州省清镇市 228.7~286.1* 257.4* 56.6~88.7* 72.7* 28.23%* Ling et al.,2017 松桂铝土矿床 云南省大理白族自治州 671.0~2300.7* 1148.6* 56.1~161.4* 97.8* 8.52%* 王行军等,2017 金龙铝土矿床 广西省崇左市 163.5~427.5* 302.7* 31.5~165.1* 91.6* 30.26%* 王岩等,2015 兴县铝土矿床 山西省吕梁市 2963.0~10711.5* 4645.8* 300.1~1154.3* 609.4* 13.12%* 董挨管等,2017;
张尚清等,2018平果矿区 广西省百色市 303.9~1001.0* 697.6* 111.4~348.0* 209.2* 29.98%* 戴塔根等,2003 靖西矿区 广西省百色市 161.3~420.8* 291.0* 94.4~139.2* 116.8* 40.13%* 戴塔根等,2003 山西某铝土矿区 山西省 441.4~1006.8* 724.1* 120.3~131.8* 126.0* 17.41%* 真允庆和王振玉,1991 黔中-川南矿区 黔中-川南地区 299.9~429.0* 374.8* 95.4~106.2* 101.7* 27.13%* 刘平,1999 贯沟铝土矿床 河南省三门峡市 107.4~1524.2** 679.6** 43.1~165.5** 74.3** 10.93%** Liu et al.,2013;
袁爱国,2010边庄铝土矿床 河南省平顶山市 197.2~2789.0** 797.6** 42.8~158.0** 89.5** 11.22%** 康微,2013;
袁爱国,2010夹沟铝土矿床 河南省偃师市 94.7~2011.0** 536.8** 27.9~135.7** 67.6** 12.59%** 袁爱国,2010 坡池村铝土矿床 河南省汝州市 222.7~807.7** 449.3** 56.0~101.5** 70.1** 15.60%** 袁爱国,2010 石寺铝土矿床 河南省洛阳市 211.9~963.9** 531.8** 46.9~91.0** 65.9** 12.38%** 冯跃文,2013 关岭铝土矿床 河南平顶山市 272.5~1432.2*** 652.3*** 137.0~233.4*** 165.2*** 25.32%*** Yang et al.,2019b 边庄铝土矿床 河南省平顶山市 191.7~2873.8*** 625.5*** 105.6~242.8*** 129.4*** 20.69%*** Yang et al.,2019b 小山坝铝土矿床 贵州省贵阳市 32.5~778.8*** 296.2*** 9.9~234.1*** 72.5**** 24.47%*** Ling et al.,2018 林歹铝土矿床 贵州省清镇市 308.6~424.6*** 353.9*** 117.1~188.9*** 144.1*** 40.71%*** Ling et al.,2013 扶绥铝土矿床 广西省崇左市 105.3~1612.1*** 608.4*** 40.4~229.4*** 119.4*** 19.63%*** Yu et al.,2014 新圩铝土矿床 广西省百色市 27.4~76.7*** 52.2*** 9.5~22.4*** 16.9*** 32.38%*** 刘枝刚,2005 高洞铝土矿床 贵州省福泉市 133.1~267.2*** 209.4*** 51.4~101.6*** 69.3*** 33.12%*** 金中国等,2018 教美铝土矿床 广西省百色市 352.7~1090.1*** 680.2*** 111.4~287.6*** 191.6*** 28.16%*** 章颖等,2015 渑池铝土矿床 河南省三门峡市 121.5~1732.5*** 676.3*** 52.7~291.5*** 153.0*** 22.62%*** 王燕茹等,2012 务正道矿区 贵州省遵义市 107.7~201.6*** 163.0*** 85.8~152.4*** 114.3*** 70.14%*** 张莹华等,2013 庞家庄铝土矿床 山西省吕梁市 373.0~1407.2*** 874.6*** 106.3~211.1*** 150.4*** 17.19%*** 孟健寅等,2011 宽草坪铝土矿床 山西省忻州市 146.3~1298.0*** 797.8*** 73.1~581.1*** 203.6*** 25.52%*** 孙思磊,2011 上务头村铝土矿床 山西省长治市沁源县 96.7~1714.4*** 423.7*** 49.8~267.8*** 109.1*** 25.75%*** 杨中华,2011 石墙区铝土矿床 山西省原平市 576.9~1314.5*** 987.1*** 102.5~330.5*** 196.7*** 19.93%*** 孙思磊等,2012 东门-柳桥矿区 广西省崇左市 121.4~1093.0*** 322.9*** 15.2~158.9*** 55.5*** 17.19%*** 乔龙,2016 古美矿区 广西省崇左市 333.8~1156.0*** 821.5*** 138.0~420.1*** 244.1*** 29.71%*** 乔龙,2016 太平矿区 广西省崇左市 24.7~279.5*** 142.9*** 14.2~125.8*** 62.6*** 43.78%*** 乔龙,2016 天生桥铝土矿床 云南省文山县 170.3~529.5*** 332.5*** 103.2~334.9*** 170.6*** 51.31%*** 田茂军,2013 南川-武隆铝土矿床洪官渡矿区 重庆市南川区 42.6~251.2*** 150.8*** 28.6~172.4*** 104.7*** 69.43%*** 李再会等,2012 南川-武隆铝土矿床大佛岩矿区 重庆市南川区 60.9~110.3*** 85.6*** 35.3~63.3*** 49.3*** 57.60%*** 李再会等,2012 南川-武隆铝土矿床申基坪矿区 重庆市武隆区 90.7~179.2*** 134.9*** 64.6~68.6*** 66.6*** 49.37%*** 李再会等,2012 蔡家坝铝土矿床 贵州省清镇市 425.4~907.7*** 611.0*** 88.6~152.5*** 125.9*** 20.60%*** 陈晓甫等,2022 注:***表示REE总量数据为ΣREE+Y+Sc,HREE 总量数据为Gd-Lu+Y+Sc;**表示REE总量数据为ΣREE+Sc,HREE总量数据为Gd-Lu+Sc;*表示REE总量数据为ΣREY,HREE总量数据为Gd-Lu+Y;其余无*标表示REE总量数据为ΣREE,HREE总量数据为Gd-Lu 表 4 岩浆型磷-铁磷矿床矿石的全岩REE含量(×10−6 )统计结果
Table 4. Statistical results of rare earth content in the whole rock ores of magmatic phosphate-iron phosphate deposits
矿床名称 地理位置 REE总量范围 REE总量平均值 HREE总量范围 HREE总量平均值 HREE含量占比 数据来源 枣庄沙沟杂岩体 山东省枣庄市 1790.0~2900.0 2345.0 / / / 夏学惠和刘昌涛, 1986 天山成矿带 新疆 808.7~1365.4 1087.0 / / / 夏学惠等, 2012 矾山磷铁矿床 河北省张家口市 3202.8~4182.6* 3638.4* 186.2~322.0* 273.1* 7.51%* 程春, 2001;
Hou, et al., 2015上庄磷铁矿床 青海省西宁市 329.0~1160.1* 725.8* 41.9~176.4* 87.4* 12.04%* Wang et al., 2017b 大庙杂岩体 河北省承德市 92.5~888.2* 358.0* 26.3~226.0* 83.9* 23.44%* He, et al., 2016;
Wang et al., 2017a;
路智等,2022;
Li, et al., 2015大西沟磷铁矿床 新疆和静县 183.1~226.5* 203.4* 26.7~33.2* 31.1* 15.28%* 夏学惠等, 2009;
夏学惠等, 2010卡乌留克塔格铁磷矿床 新疆尉犁县 254.1~381.7* 317.9* 31.4~62.7* 47.1* 14.81%* 夏学惠等,2011a 瓦吉尔塔格磷铁矿床 新疆巴楚县 1167.3~1993.3* 1600.8* 113.3~191.6* 157.9* 9.86%* 夏学惠等,2009 奥尔塘铁磷矿床 新疆尉犁县 470.1~325.7* 397.9* 51.8~70.3* 61.1* 15.34%* 袁家忠等, 2010 招兵沟铁磷矿床 河北省丰宁县 156.1~372.2* 261.6* 51.2~114.2* 84.8* 32.42%* 王亿等,2024 注:*表示REE总量数据为ΣREY,HREE总量数据为Gd-Lu+Y;无*标表示REE总量数据为ΣREE,HREE总量数据为Gd-Lu 表 5 中国主要煤矿的全岩REE含量(×10−6 )统计结果
Table 5. Statistical results of rare earth element content in the whole rock of major coal deposits in China
矿床名称 地理位置 ΣREY(La-Lu+Y)
范围ΣREY(La-Lu+Y)
平均值HREE(Gd-Lu+Y)
含量范围HREE(Gd-Lu+Y)
含量平均值HREE含量
占比数据来源 渭北煤田 陕西省渭南市 32.2~412.6 141.1 8.3~70.8 29.3 20.73% 车青松,2021;
刘贝等,2015吕家坨煤矿床 河北省唐山市 48.6~876.8 374.1 3.3~34.5 15.3 4.09% 张华等,2024 大同煤田 山西省 73.8~596.9 165.8 18.6~216.9 65.8 39.70% 刘东娜等,2015 鄂尔多斯盆地西缘煤田 鄂尔多斯盆地 5.6~314.5 115.2 1.3~74.3 23.1 20.01% 秦国红等,2016 万福煤矿床 广西省南宁市 88.7~1028.3 362.1 23.2~382.6 146.5 40.46% 朱士飞等,2020 峰峰矿区 河北省邯郸市 22.7~454.1 99.9 11.0~110.3 25.7 25.77% 魏迎春等,2020 北皂煤矿床 山东省烟台市 14.8~42.5 32.8 3.7~13.2 7.4 22.60% 马小敏,2019 梁家煤矿床 山东省烟台市 37.9~222.8 114.4 5.5~33.8 18.9 16.50% 马小敏,2019 洼里煤矿床 山东省烟台市 48.7~62.4 55.6 12.7~12.1 12.4 22.32% 马小敏,2019 鱼洞煤矿床 云南省凯里市 388.3~1378.8 961.0 149.4~373.5 273.6 28.47% 吴艳艳等,2010 聚乎更矿区 青海省天峻县 5.2~55.8 21.9 1.9~14.3 5.2 23.48% 霍婷等,2020 陈家山煤矿床 陕西省铜川市 12.8~517.0 112.4 3.3~93.2 25.1 22.35% 杨磊等,2008 芦塘煤矿床 重庆市彭水县 120.7~320.5 194.2 35.3~151.3 66.1 34.02% 邹建华等,2022 黑岱沟煤矿床 内蒙古鄂尔多斯市 63.7~604.3 267.8 12.3~78.3 41.6 15.52% 刘大锐等,2018 表 6 中国主要油页岩中REE含量(×10−6 )统计结果
Table 6. Statistical results of rare earth element content in the whole rock of major oil shale deposits in China
矿床名称 地理位置 ΣREY范围 ΣREY平均值 HREE(Gd-Lu+Y)
总量范围HREE(Gd-Lu+Y)
总量平均值HREE含量
占比数据来源 银额盆地油页岩矿区 内蒙古乌拉特后旗 94.8~178.1 126.2 27.3~54.5 34.6 27.44% Liu et al.,2015a 黄县盆地油页岩矿区 山东省烟台市 17.1~163.3 100.1 4.2~34.2 19.8 19.82% Zheng et al.,2020 胜利河−长蛇山油页岩带 西藏羌塘盆地 10.3~498.6 63.9 3.6~34.1 14.5 22.71% Fu et al.,2010;
Fu et al.,2011a;
Fu et al.,2011b;
Fu et al.,2015a;
Fu et al.,2015b大黄山油页岩矿区 新疆准噶尔盆地 39.7~132.3 93.7 13.2~40.1 26.3 28.06% Tao et al.,2013 吉木萨尔凹陷和石树沟凹陷油页岩带 新疆准噶尔盆地 95.9~361.9 166.1 28.4~106.5 52.6 31.67% Zhao et al.,2023 抚顺盆地油页岩矿区 辽宁省抚顺市 118.3~412.4 233.0 23.5~57.0 37.9 16.26% Liu et al.,2015b 伦坡拉盆地油页岩矿区 西藏班戈县 125.1~176.4 154.0 26.4~37.8 32.7 21.24% Fu et al.,2012 石长沟油页岩矿区 新疆准噶尔盆地 107.7~163.4 129.7 30.4~51.6 41.4 31.92% Tao et al.,2016 鄂尔多斯盆地油页岩矿区 山西省彬州市-铜川市 126.8~205.6 169.8 34.3~56.0 40.7 23.98% 马中豪等,2016 桦甸盆地 吉林省吉林市桦甸市 91.5~356.0 162.6 9.7~40.5 15.5 9.53% 孟庆涛,2010 -
[1] BÁRDOSSY G, ALEVA G J J, 1990. Lateritic bauxites: developments in economic geology[M]. Amsterdam: Elsevier: 1-624. [2] BARNETT M J, PALUMBO-ROE B, DEADY E A, et al., 2020. Comparison of three approaches for bioleaching of rare earth elements from bauxite[J]. Minerals, 10(8): 649. doi: 10.3390/min10080649 [3] BATAPOLA N M, DUSHYANTHA N P, PREMASIR H M R, et al., 2020. A comparison of global rare earth element (REE) resources and their mineralogy with REE prospects in Sri Lanka[J]. Journal of Asian Earth Sciences, 200: 104475. doi: 10.1016/j.jseaes.2020.104475 [4] BLENGINI G A, EL LATUNUSSA C, EYNARD U, et al. , 2020. Study on the EU's list of critical raw materials[R]. Luxembourg: Publications Office of the European Union. [5] CAO B, ZHU S F, QIN Y H, et al., 2022. Research status and prospect of rare earth elements in coal[J]. Coal Science and Technology, 50(4): 181-194. (in Chinese with English abstract [6] CAO J X, 2022. Occurrence state of Y element in Zhijin Rare earth phosphate deposit, Guizhou province[D]. Guiyang: Guizhou University. (in Chinese with English abstract [7] CAO J X, CHEN J Y, ZHAO W, et al., 2022. Elemental geochemical characteristics of phosphorite and its indicative significance in Bailongtan of Yunnan[J]. Journal of Guilin University of Technology, 42(2): 320-332. (in Chinese with English abstract [8] CHE Q S, 2021. Geochemical characteristics of rare earth elements in coal in Weibei coalfield and Qinshui basin[D]. Beijing: China University of Geosciences (Beijing). (in Chinese with English abstract [9] CHE Y D, WU M A, ZHANG S, et al. , 2017. Geochemical features of the Huangtun diorite porphyrite in the Lu-Zong basin, Anhui and the geological implications[J]. Geology of Anhui, 27(4): 241-246, 262. (in Chinese with English abstract [10] CHEN J H, WANG Q F, ZHANG Q Z, et al., 2018. Mineralogical and geochemical investigations on the iron-rich gibbsitic bauxite in Yongjiang basin, SW China[J]. Journal of Geochemical Exploration, 188: 413-426. doi: 10.1016/j.gexplo.2018.02.007 [11] CHEN W, ZHAO T P, WEI Q G, er al., 2008. Genesis of nelsonite from the Damiao Fe-Ti-P deposit, Hebei province, China: evidence from apatite[J]. Acta Petrologica Sinica, 24(10): 2301-2312. (in Chinese with English abstract [12] CHEN W T, ZHOU M F, 2012. Paragenesis, stable isotopes, and molybdenite re-os isotope age of the lala iron-copper deposit, Southwest China[J]. Economic Geology, 107(3): 459-480. doi: 10.2113/econgeo.107.3.459 [13] CHEN X F, WU P, LIU J, et al., 2022. Geochemical characteristics and significance of trace elements in Caijiaba bauxite deposit, Guizhou province[J]. Chinese Journal of Geology, 57(3): 879-896. (in Chinese with English abstract [14] CHENG C, 2001. Geochemical characteristics of rare earth elements of Fanshan barringerite deposit[J]. Geology of Chemical Minerals, 23(2): 104-108. (in Chinese with English abstract [15] CUI W P, SUN Z D, ZHOU J H, et al., 2014. Study on extraction of rare earths from phosphorite of Zhijin[J]. Chinese Rare Earths, 35(4): 42-46. (in Chinese with English abstract [16] D’ARGENIO B, MINDSZENTY A, 1995. Bauxites and related paleokarst: tectonic and climatic event markers at regional unconformities[J]. Eclogae Geologicae Helvetiae, 88(3): 453-499. [17] DAI S F, LI D, CHOU C L, et al., 2008. Mineralogy and geochemistry of boehmite-rich coals: new insights from the Haerwusu Surface Mine, Jungar Coalfield, Inner Mongolia, China[J]. International Journal of Coal Geology, 74(3-4): 185-202. doi: 10.1016/j.coal.2008.01.001 [18] DAI S F, REN D Y, CHOU C L, et al., 2012. Geochemistry of trace elements in Chinese coals: a review of abundances, genetic types, impacts on human health, and industrial utilization[J]. International Journal of Coal Geology, 94: 3-21. doi: 10.1016/j.coal.2011.02.003 [19] DAI S F, LUO Y B, SEREDIN V V, et al., 2014. Revisiting the late Permian coal from the Huayingshan, Sichuan, southwestern China: enrichment and occurrence modes of minerals and trace elements[J]. International Journal of Coal Geology, 122: 110-128. doi: 10.1016/j.coal.2013.12.016 [20] DAI S F, XIE P P, JIA S H, et al., 2017. Enrichment of U-Re-V-Cr-Se and rare earth elements in the Late Permian coals of the Moxinpo Coalfield, Chongqing, China: genetic implications from geochemical and mineralogical data[J]. Ore Geology Reviews, 80: 1-17. doi: 10.1016/j.oregeorev.2016.06.015 [21] DAI S F, FINKELMAN R B, 2018. Coal as a promising source of critical elements: progress and future prospects[J]. International Journal of Coal Geology, 186: 155-164. doi: 10.1016/j.coal.2017.06.005 [22] DAI S F, ZHAO L, WEI Q, et al., 2020. Resources of critical metals in coal-bearing sequences in China: enrichment types and distribution[J]. Chinese Science Bulletin, 65(33): 3715-3729. (in Chinese with English abstract doi: 10.1360/TB-2020-0112 [23] DAI T G, LONG Y Z, ZHANG, Q Z, et al., 2003. REE geochemistry of some bauxite deposits in the western Guangxi district[J]. Geology and Exploration, 39(4): 1-5. (in Chinese with English abstract [24] DAI Z W, XIE Y L, XU H H, et al., 2024. Enrichment regularity and resource potential of medium and heavy rareearth elements in Shifang-type phosphorite deposits, Sichuan: a casestudy of Qingping phosphorite deposit in Mianzhu[J]. Acta Petrologica et Mineralogica, 43(5): 1175-1187. (in Chinese with English abstract [25] DEADY É, MOUCHOS E, GOODENOUGH K, et al. , 2014. Rare earth elements in karst-bauxites: a novel untapped european resource?[C]// Proceedings of the ERES 2014: 1st European rare earth resources conference. Milos, Greece: 364-375. [26] DONG A G, ZHANG S Q, ZHONG Z H, et al., 2017. The Palaoclimate and metallogenic environment research during sedimentary bauxite layer in Xing County district in northwest of Shanxi province[J]. Journal of Hebei GEO University, 40(5): 1-6. (in Chinese with English abstract [27] DU L, TANG Y Y, ZHANG S F, et al., 2023. Critical metal enrichments in the aluminiferous rock series in the bauxite deposits of Guizhou province, and their resource potential[J]. Acta Sedimentologica Sinica, 41(5): 1512-1529. (in Chinese with English abstract [28] DU M Y, 2012. Geochemical characteristics and genesis of Daxigou magnetite-apatite deposit in Southeast Chifeng[D]. Changchun: Jilin University. (in Chinese with English abstract [29] ELIOPOULOS D, ECONOMOU G, TZIFAS I, et al. , 2014. The potential of rare earth elements in Greece[C]// Proceedings of the ERES 2014: 1st European rare earth resources conference. Milos, Greece: 308-316. [30] EMSBO P, MCLAUGHLIN P I, BREIT G N, et al., 2015. Rare earth elements in sedimentary phosphate deposits: solution to the global REE crisis?[J]. Gondwana Research, 27(2): 776-785. doi: 10.1016/j.gr.2014.10.008 [31] FENG L Y, JIANG X X, WANG S D, et al. , 2016. Study on kinetics model of leaching of REEs with phosphoric acid[J]. Nonferrous Metals (Extractive Metallurgy)(1): 18-21. (in Chinese with English abstract [32] FENG Y W, 2013. Geological and geochemical studies of bauxite metallogenic belt of Sanmenxia, Henan[D]. Beijing: China University of Geosciences (Beijing). (in Chinese with English abstract [33] FU X G, WANG J, ZENG Y H, et al., 2010. REE geochemistry of marine oil shale from the Changshe Mountain area, northern Tibet, China[J]. International Journal of Coal Geology, 81(3): 191-199. doi: 10.1016/j.coal.2009.12.006 [34] FU X G, WANG J, ZENG Y H, et al., 2011a. Geochemistry and origin of rare earth elements (REEs) in the Shengli River oil shale, northern Tibet, China[J]. Geochemistry, 71(1): 21-30. doi: 10.1016/j.chemer.2010.07.003 [35] FU X G, WANG J, ZENG Y H, et al., 2011b. Origin and mode of occurrence of trace elements in marine oil shale from the Shengli River Area, Northern Tibet, China[J]. Oil Shale, 28(4): 487-506. doi: 10.3176/oil.2011.4.03 [36] FU X G, WANG J, TAN F W, et al., 2012. Geochemistry of terrestrial oil shale from the Lunpola area, northern Tibet, China[J]. International Journal of Coal Geology, 102: 1-11. doi: 10.1016/j.coal.2012.08.005 [37] FU X G, JIAN W, FENG X L, et al., 2015a. Mineralogy and geochemical anomalies of Lower Cretaceous marine oil shale from Changshe Mountain West, northern Tibet, China[J]. Journal of Geochemical Exploration, 155: 62-75. doi: 10.1016/j.gexplo.2015.04.006 [38] FU X G, WANG J, TAN F W, et al., 2015b. Occurrence and enrichment of trace elements in marine oil shale (China) and their behaviour during combustion[J]. Oil Shale, 32(1): 42-65. doi: 10.3176/oil.2015.1.04 [39] GARCÍA M, KRZEMIEŃ A, CAMPO M, et al.,2017. Rare earth elements mining investment: It is not all about China[J]. Resources Policy,53:66-76 [40] GONG X X, WU S W, XIA Y, et al., 2021. Enrichment characteristics and sources of the critical metal yttrium in Zhijin rare earth-containing phosphorites, Guizhou province, China[J]. Acta Geochimica, 40(3): 441-465. doi: 10.1007/s11631-021-00460-8 [41] HANS WEDEPOHL K, 1995. The composition of the continental crust[J]. Geochimica et Cosmochimica Acta, 59(7): 1217-1232. doi: 10.1016/0016-7037(95)00038-2 [42] HE H L, YU S Y, SONG X Y, et al., 2016. Origin of nelsonite and Fe−Ti oxides ore of the Damiao anorthosite complex, NE China: evidence from trace element geochemistry of apatite, plagioclase, magnetite and ilmenite[J]. Ore Geology Reviews, 79: 367-381. doi: 10.1016/j.oregeorev.2016.05.028 [43] HE H P, YANG W B, 2022. REE mineral resources in China: review and perspective[J]. Geotectonica et Metallogenia, 46(5): 829-841. (in Chinese with English abstract [44] HE S, XIA Y, XIAO J F, et al., 2022. Geochemistry of REY-Enriched phosphorites in Zhijin Region, Guizhou province, SW China: insight into the origin of REY[J]. Minerals, 12(4): 408. doi: 10.3390/min12040408 [45] HOU T, ZHANG Z C, KEIDING J K, et al., 2015. Petrogenesis of the ultrapotassic Fanshan intrusion in the North China Craton: implications for lithospheric mantle metasomatism and the origin of apatite ores[J]. Journal of Petrology, 56(5): 893-918. doi: 10.1093/petrology/egv021 [46] HOU Z Q, 1990. Silicate liquid immiscibility of the Yangyuan-Fanshan complex in Hebei province and the origin of the Fanshan type phosphorus deposits[J]. Mineral Deposits, 9(2): 119-128. (in Chinese with English abstract [47] HOWER J C, RATHBONE R F, ROBERTSON J D, et al., 1999. Petrology, mineralogy, and chemistry of magnetically-separated sized fly ash[J]. Fuel, 78(2): 197-203. doi: 10.1016/S0016-2361(98)00132-X [48] HU R Z, WEN H J, YE L, et al., 2020. Metallogeny of critical metals in the Southwestern Yangtze Block[J]. Chinese Science Bulletin, 65(33): 3700-3714. (in Chinese with English abstract doi: 10.1360/TB-2020-0274 [49] HUANG W H, JIU B, LI Y, 2019. Distribution characteristics of rare earth elements in coal and its prospects on development and exploitation[J]. Journal of China Coal Society, 44(1): 287-294. (in Chinese with English abstract [50] HUANG Y X, 2010. Resource reserves verification report of Shawei Phosphoyttrium mine verification area, Huiyang City, Guangdong province[R]. Shenzhen: Shenzhen Geological Bureau. (in Chinese) [51] HUO T, LIU S M, QI W Q, et al., 2020. Geochemistry characteristics and indicative significance of rare earth elements in coal from Juhugeng coal district, the Muli coalfield in Qinghai province[J]. Geological Bulletin of China, 39(7): 995-1005. (in Chinese with English abstract [52] JIANG Q, YANG Y, TANG Y, et al., 2023. A study on process mineralogy of interbedded REE-rich phosphorite rocks in the Zhijin deposit, Guizhou province, China[J]. Acta Mineralogica Sinica, 43(3): 358-370. (in Chinese with English abstract [53] JIN Z G, ZHENG M H, LIU L, et al., 2018. Geological and geochemical characteristics of mineralization in the Gaodong Bauxite deposit, Fuquan, Guizhou province[J]. Geology and Exploration, 54(3): 522-534. (in Chinese with English abstract [54] KANG W, 2013. Geologoical characteristics and metallogenic environment of Baofeng bauxite field, Henan province, China[D]. Beijing: China University of Geosciences (Beijing). (in Chinese with English abstract [55] KATO Y, FUJINAGA K, NAKAMURA K, et al., 2011. Deep-sea mud in the Pacific Ocean as a potential resource for rare-earth elements[J]. Nature Geoscience, 4(8): 535-539. doi: 10.1038/ngeo1185 [56] KE C H, WANG X X, LI J B, et al., 2013. Zircon U-Pb age, geochemistry and Sr-Nd-Hf isotopic geochemistry of the intermediate-acid rocks from the Heishan-Mulonggou area in the southern margin of North China Block[J]. Acta Petrologica Sinica, 29(3): 781-800. (in Chinese with English abstract [57] KETRIS M P, YUDOVICH Y E, 2009. Estimations of Clarkes for Carbonaceous biolithes: world averages for trace element contents in black shales and coals[J]. International Journal of Coal Geology, 78(2): 135-148. doi: 10.1016/j.coal.2009.01.002 [58] KINGSNORTH D J, 2016. Rare earths: the China conundrum[C]// Proceedings of the 12th international rare earths conference. Hong Kong, China: 8-10. [59] KRONBERG B I, BROWN J R, FYFE W S, et al., 1981. Distributions of trace elements in Western Canadian coal ashes[J]. Fuel, 60(1): 59-63. doi: 10.1016/0016-2361(81)90032-6 [60] KUANG J Z, XIAO K M, ZENG J L, 2012. Progress in research on rare earth recovery fron bauxite, phosphorite and Nb-Ta minerals[J]. Chinese Rare Earths, 33(1): 81-85. (in Chinese with English abstract [61] LI H M, WANG D H, LI L X, et al., 2012. Metallogeny of iron deposits and resource potential of major iron minerogenetic units in China[J]. Geology in China, 39(3): 559-580. (in Chinese with English abstract [62] LI J H, ZHANG Z H, QIN M, et al., 2011. Geochemical characteristics of rare earth elements in Qierikeqi siderite deposit of Xinjiang[J]. Mineral Resources and Geology, 25(1): 69-73. (in Chinese with English abstract [63] LI L Q, CUI J R, CHEN H, 2019. General situation of molybdenum, rhenium and rare earth resources and occurrence characteristics of rhenium and rare earth in Mulonggou-Huanglongpu area of Luonan County[J]. Geology of Shaanxi, 37(1): 1-7. (in Chinese with English abstract [64] LI L X, LI H M, LI Y Z, et al., 2015. Origin of rhythmic anorthositic−pyroxenitic layering in the Damiao anorthosite complex, China: implications for late-stage fractional crystallization and genesis of Fe-Ti oxide ores[J]. Journal of Asian Earth Sciences, 113: 1035-1055. doi: 10.1016/j.jseaes.2015.01.023 [65] LI M Y H, ZHOU M F, WILLIAMS-JONES A E, 2019a. The genesis of regolith-hosted heavy rare earth element deposits: insights from the world-class Zudong deposit in Jiangxi province, South China[J]. Economic Geology, 114(3): 541-568. doi: 10.5382/econgeo.4642 [66] LI P T, ZHANG Q Z, 2008. Research on geochemistry of REE in the Sanhe bauxite deposit in Jingxi County, Guangxi[J]. Mineral Resources and Geology, 22(6): 536-540. (in Chinese with English abstract [67] LI S, ZHANG J, WANG H F, et al., 2019b. Geochemical characteristics of dolomitic phosphorite containing rare earth elements and its weathered ore[J]. Minerals, 9(7): 416. doi: 10.3390/min9070416 [68] LI Z H, YAN W, LIAO C G, et al., 2012. Mineralogical and geochemical characteristics of the Nanchuan-Wulong bauxite deposit in Chongqing[J]. Sedimentary Geology and Tethyan Geology, 32(3): 87-100. (in Chinese with English abstract [69] LI Z Q, CHEN M, LU J Y, et al. , 2023. Geochemical characteristics and formation Mechanism of phosphorite of lower Cambrian Maidiping formation in Huangjiaping area of Mabian County, Southern Sichuan[J]. Multipurpose Utilization of Mineral Resources(1): 75-87. (in Chinese with English abstract [70] LI Z R, SU S, YANG X S, et al. , 2020. Research progress of wet phosphoric acid process by nitric acid method[C]//Proceedings of the annual science and technology conference of the Chinese Society of Environmental Sciences (volume 1). Nanjing: Chinese Society of Environmental Sciences: 557-561. (in Chinese) [71] LIANG K P, 2022. Geological characteristics and geochemistry of phosphate deposits in Baiyan mining area of Wengfu Phosphate Mine in Guizhou provinve[D]. Guiyang: Guizhou University. (in Chinese with English abstract [72] LIN Q L, 1987. Preliminary geological survey report of Kengwei kaolin mining area in Yangshan, Guangdong province[R]. Qingyuan: Guangdong Provincial Bureau of Geology and Mineral Resources 706 team. (in Chinese) [73] LING K Y, ZHU X Q, WANG Z G, et al., 2013. Metallogenic model of bauxite in central Guizhou province: an example of Lindai deposit[J]. Acta Geologica Sinica, 87(6): 1630-1642. doi: 10.1111/1755-6724.12164 [74] LING K Y, ZHU X Q, TANG H S, et al., 2017. Importance of hydrogeological conditions during formation of the karstic bauxite deposits, Central Guizhou province, Southwest China: a case study at Lindai deposit[J]. Ore Geology Reviews, 82: 198-216. doi: 10.1016/j.oregeorev.2016.11.033 [75] LING K Y, ZHU X Q, TANG H S, et al., 2018. Geology and geochemistry of the Xiaoshanba bauxite deposit, Central Guizhou province, SW China: implications for the behavior of trace and rare earth elements[J]. Journal of Geochemical Exploration, 190: 170-186. doi: 10.1016/j.gexplo.2018.03.007 [76] LIU B, HUANG W H, AO W H, et al., 2015. Geochemistry characteristics of rare earth elements in the late Paleozoic coal from Qinshui Basin[J]. Journal of China Coal Society, 40(12): 2916-2926. (in Chinese with English abstract [77] LIU D N, ZHOU A C, CHANG Z G, 2015. Geochemistry characteristics of major and rare earth elements in No. 8 raw and weathered coal from Taiyuan Formation of Datong coalfield[J]. Journal of China Coal Society, 40(2): 422-430. (in Chinese with English abstract [78] LIU D R, GAO G M, CHI J Z, et al., 2018. Distribution rule of rare earth and trace elements in the Heidaigou openpit coal mine in the Junggar coal field[J]. Acta Geologica Sinica, 92(11): 2368-2375. (in Chinese with English abstract [79] LIU F, YANG F Q, LI Y H, et al., 2009. Trace element and rare earth element characteristics of apatite from Abagong iron deposit in Altay City, Xinjiang[J]. Mineral Deposits, 28(3): 251-264. (in Chinese with English abstract [80] LIU J Z, FU Z K, WAN D X, et al. , 2015. Report of integrated exploration of phosphate rock in Kaiyang area, Guizhou province[R]. Guiyang: Geological Brigade 105 of Guizhou Geological and Mineral Exploration and Development Bureau. (in Chinese) [81] LIU P, 1999. Geochemical characteristics of Carboniferous bauxite deposits in central Guizhou-southern Sichuan[J]. Geological Bulletin of China, 18(2): 210-217. (in Chinese with English abstract [82] LIU R, LIU Z J, GUO W, et al., 2015a. Characteristics and comprehensive utilization potential of oil shale of the Yin’E Basin, Inner Mongolia, China[J]. Oil Shale, 32(4): 293-312. doi: 10.3176/oil.2015.4.02 [83] LIU R, LIU Z J, SUN P C, et al., 2015b. Geochemistry of the Eocene Jijuntun Formation oil shale in the Fushun Basin, northeast China: implications for source-area weathering, provenance and tectonic setting[J]. Geochemistry, 75(1): 105-116. doi: 10.1016/j.chemer.2014.08.004 [84] LIU X F, WANG Q F, FENG Y W, et al., 2013. Genesis of the Guangou karstic bauxite deposit in western Henan, China[J]. Ore Geology Reviews, 55: 162-175. doi: 10.1016/j.oregeorev.2013.06.002 [85] LIU X F, WANG Q F, ZHANG Q Z, et al., 2016. Genesis of REE minerals in the karstic bauxite in western Guangxi, China, and its constraints on the deposit formation conditions[J]. Ore Geology Reviews, 75: 100-115. doi: 10.1016/j.oregeorev.2015.12.015 [86] LIU Y J, NAIDU R, 2014. Hidden values in bauxite residue (red mud): recovery of metals[J]. Waste Management, 34(12): 2662-2673. doi: 10.1016/j.wasman.2014.09.003 [87] LIU Z G, 2005. Study on mineral composition of Xinwei Bauxite ore in Jingxi County, Guangxi[J]. Southern Natural Resources(11): 30-32. (in Chinese) [88] LONG K S, FU Y, CHEN R, et al., 2019. The REE enrichment mechanism of bauxite deposits in the Northern Guizhou: a case study of the Xinmin bauxite deposit[J]. Acta Mineralogica Sinica, 39(4): 443-454. (in Chinese with English abstract [89] LONG Y Z, CHI G X, LIU J P, et al., 2017. Trace and rare earth elements constraints on the sources of the Yunfeng paleo-karstic bauxite deposit in the Xiuwen-Qingzhen area, Guizhou, China[J]. Ore Geology Reviews, 91: 404-418. doi: 10.1016/j.oregeorev.2017.09.014 [90] LU Z, LIU Y S, NIE B F, et al., 2022. Petrological characteristics and genesis of Late Proterozoic gabbro-norite in Damiao area, Chengde, Hebei province[J]. Chinese Journal of Geology, 57(1): 243-261. (in Chinese with English abstract [91] LU Z H, 2022. Study on sedimentary environment of black rock series of Ediacaran-Cambrian slope facies in eastern Guizhou[D]. Guiyang: Guizhou University. (in Chinese with English abstract [92] MA X M, 2019. Geochemistry characteristics and sedimentary environment indicating significances of elements in paleogene coal from Huangxian Basin[J]. Science Technology and Engineering, 19(24): 46-55. (in Chinese with English abstract [93] MA Y, XIANG Q Y, DING K L, 2024. Development of oil shale at home and abroad[J]. World Petroleum Industry, 31(1): 16-25. (in Chinese with English abstract [94] MA Z H, CHEN Q S, SHI Z W, et al., 2016. Geochemistry of oil shale from Chang 7 reservoir of Yanchang Formation in south Ordos Basin and its geological significance[J]. Geological Bulletin of China, 35(9): 1550-1558. (in Chinese with English abstract [95] MAMELI P, MONGELLI G, OGGIANO G, et al., 2007. Geological, geochemical and mineralogical features of some bauxite deposits from Nurra (Western Sardinia, Italy): insights on conditions of formation and parental affinity[J]. International Journal of Earth Sciences, 96(5): 887-902. doi: 10.1007/s00531-006-0142-2 [96] MAO J W, SONG S W, LIU M, et al., 2022. REE deposits: basic characteristics and global metallogeny[J]. Acta Geologica Sinica, 96(11): 3675-3697. (in Chinese with English abstract [97] MCDONOUGH W F, SUN S S, 1995. The composition of the Earth[J]. Chemical Geology, 120(3-4): 223-253. doi: 10.1016/0009-2541(94)00140-4 [98] MCLENNAN S M, 1989. Rare earth elements in sedimentary rocks: influence of provenance and sedimentary processes[M]//LIPIN B R, MCKAY G A. Geochemistry and mineralogy of rare earth elements. Washington: De Gruyter: 169-200. [99] MENG J Y, WANG Q F, LIU X F, et al., 2011. Mineralogy and geochemistry of the Pangjiazhuang bauxite deposit in Jiaokou county, Shanxi province[J]. Geology and Exploration, 47(4): 593-604. (in Chinese with English abstract [100] MENG Q T, 2010. Research on petrologic and geochemical characteristics of eocene oil shale and its enrichment regularity, Huadian Basin[D]. Changchun: Jilin University. (in Chinese with English abstract [101] Ministry of Natural Resources, PRC, 2020. Specifications for bauxite mineral exploration: DZ/T 0202-2020[S]. Beijing: Ministry of Natural Resources, PRC: 1-48. (in Chinese) [102] Ministry of Natural Resources, PRC, 2022. China mineral resources[R]. Beijing: Geology Press, PRC: 5-6. (in Chinese) [103] Ministry of Natural Resources, PRC, 2023. China mineral resources[R]. Beijing: Geology Press, PRC: 1-17. (in Chinese) [104] MISHRA B, BORA D K, GAJERA P, et al., 2022. Exploratory study for the utilization of low-grade kachchh bauxite and its prospects for rare-earth elements[J]. Journal of Sustainable Metallurgy, 8(1): 321-332. doi: 10.1007/s40831-021-00478-5 [105] MORDBERG L E, 1999. Geochemical evolution of a Devonian diaspore-crandallite-svanbergite-bearing weathering profile in the Middle Timan, Russia[J]. Journal of Geochemical Exploration, 66(1-2): 353-361. doi: 10.1016/S0375-6742(99)00021-7 [106] MORDBERG L E, STANLEY C J, GERMANN K, 2000. Rare earth element anomalies in crandallite group minerals from the Schugorsk bauxite deposit, Timan, Russia[J]. European Journal of Mineralogy, 12(6): 1229-1243. doi: 10.1127/ejm/12/6/1229 [107] MORDBERG L E, STANLEY C J, GERMANN K, 2001. Mineralogy and geochemistry of trace elements in bauxites: the Devonian Schugorsk deposit, Russia[J]. Mineralogical Magazine, 65(1): 81-101. doi: 10.1180/002646101550145 [108] MU B L, CAI J J, BIAN Z H, 1998. Gold geochemistry of the Fanshan alkaline igneous complex and Apatite-Magnetite deposit in Hebei province[J]. Acta Petrologica et Mineralogica, 17(4): 359-370. (in Chinese with English abstract [109] OU Y, 2015. The research of occurrence state of rare-earth element in typical western Szechuan phosphate ore deposit[D]. Chengdu: Chengdu University of Technology. (in Chinese with English abstract [110] PANDA S, COSTA R B, SHAH S S, et al., 2021. Biotechnological trends and market impact on the recovery of rare earth elements from bauxite residue (red mud)-A review[J]. Resources, Conservation and Recycling, 171: 105645. doi: 10.1016/j.resconrec.2021.105645 [111] QIAO L, 2016. Tectonic evolution and bauxite metallogenesis in the Youjiang Basin and Adjacent Area[D]. Beijing: China University of Geosciences (Beijing). (in Chinese with English abstract [112] QIN G H, DENG L J, LIU K, et al., 2016. Characteristic of rare earth elements in coal in western margin of Ordos basin[J]. Coal Geology & Exploration, 44(6): 8-14. (in Chinese with English abstract [113] QIN H, ZHOU Q, HONG T, et al., 2022. Geochemical characteristics and sedimentary environment of Yangchang phosphorite deposit in Zhenxiong county, Yunnan province[J]. Contributions to Geology and Mineral Resources Research, 37(3): 259-269. (in Chinese with English abstract [114] REN H L, 2017. Palaeo-sedimentary environment and enrichment mechanism of iodine for Late Sinian phosphorite from Weng’an-Fuquan of Guizhou, China[D]. Guiyang: Guizhou University. (in Chinese with English abstract [115] RIESGO GARCÍA M V, KRZEMIEŃ A, MANZANEDO DEL CAMPO M Á, et al., 2017. Rare earth elements mining investment: it is not all about China[J]. Resources Policy, 53: 66-76. doi: 10.1016/j.resourpol.2017.05.004 [116] SEREDIN V V, 1996. Rare earth element-bearing coals from the Russian Far East deposits[J]. International Journal of Coal Geology, 30(1-2): 101-129. doi: 10.1016/0166-5162(95)00039-9 [117] SEREDIN V V, FINKELMAN R B, 2008. Metalliferous coals: a review of the main genetic and geochemical types[J]. International Journal of Coal Geology, 76(4): 253-289. doi: 10.1016/j.coal.2008.07.016 [118] SEREDIN V V, DAI S F, 2012. Coal deposits as potential alternative sources for lanthanides and yttrium[J]. International Journal of Coal Geology, 94: 67-93. doi: 10.1016/j.coal.2011.11.001 [119] SHE Y W, SONG X Y, YU S Y, et al., 2014. The compositions of magnetite and ilmenite of the Taihe layered intrusion, Sichuan province: constraints on the formation of the P-rich Fe-Ti oxide ores[J]. Acta Petrologica Sinica, 30(5): 1443-1456. (in Chinese with English abstract [120] SONG X Y, SHE Y W, LUAN Y, et al., 2024. Resources of Co, Ga and Sc of V-Ti magnetite deposits in the Panxi area within the Emeishan Large Igneous provence and their integrated utilization potentials[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 43(1): 218-231. (in Chinese with English abstract [121] SUN S L, 2011. Geologoical and geochemical characteristics of Kuancaoping bauxite deposit in Ningwu County, Shanxi province[D]. Beijing: China University of Geosciences (Beijing). (in Chinese with English abstract [122] SUN S L, WANG Q F, LIU X F, et al., 2012. Geologoical and geochemical characteristics of the Shiqiang bauxite deposit in Shanxi province[J]. Geology and Exploration, 48(3): 487-501. (in Chinese with English abstract [123] TAO S, TANG D Z, XU H, et al., 2013. Organic geochemistry and elements distribution in Dahuangshan oil shale, southern Junggar Basin: origin of organic matter and depositional environment[J]. International Journal of Coal Geology, 115: 41-51. doi: 10.1016/j.coal.2013.05.004 [124] TAO S, SHAN Y S, TANG D Z, et al., 2016. Mineralogy, major and trace element geochemistry of Shichanggou oil shales, Jimusaer, Southern Junggar Basin, China: implications for provenance, palaeoenvironment and tectonic setting[J]. Journal of Petroleum Science and Engineering, 146: 432-445. doi: 10.1016/j.petrol.2016.06.014 [125] TAYLOR S R, MCLENNAN S M, 1985. The continental crust: its composition and evolution[M]. Oxford: Blackwell Scientific Publications. [126] TEZYAPAR KARA I, KREMSER K, WAGLAND S T, et al., 2023. Bioleaching metal-bearing wastes and by-products for resource recovery: a review[J]. Environmental Chemistry Letters, 21(6): 3329-3350. doi: 10.1007/s10311-023-01611-4 [127] TIAN M J, 2013. Research on geological characteristics and genesis of bauxite deposit in Wenshan -Tianshengqiao, Yunnan province[D]. Kunming: Kunming University of Science and Technology. (in Chinese with English abstract [128] TORRÓ L, PROENZA J A, AIGLSPERGER T, et al., 2017. Geological, geochemical and mineralogical characteristics of REE-bearing Las Mercedes bauxite deposit, Dominican Republic[J]. Ore Geology Reviews, 89: 114-131. doi: 10.1016/j.oregeorev.2017.06.017 [129] TUO B Y, WANG J L, ZHANG Q, 2007. Occurrence and utilization of rare earth element in bauxite[J]. Chinese Rare Earths, 28(1): 117-119. (in Chinese with English abstract [130] U. S. Geological Survey, 2024. Mineral commodity summaries 2024[R]. Reston: U. S. Geological Survey: 142-143. [131] WAGH A S, PINNOCK W R, 1987. Occurrence of scandium and rare earth elements in Jamaican bauxite waste[J]. Economic Geology, 82(3): 757-761. doi: 10.2113/gsecongeo.82.3.757 [132] WANG J Y, QIAO Z K, 2024. Study on the material source and enrichment mechanism of REE-rich phosphorite in Zhijin, Guizhou[J]. Scientific Reports, 14(1): 6474. doi: 10.1038/s41598-024-57074-2 [133] WANG L M, CHEN P, 2020. On the occurrence and genesis of rare earth and scandium in Jiuzigou rock mass of Fengxian county, Shaanxi province[J]. Northwestern Geology, 53(3): 86-92. (in Chinese with English abstract [134] WANG L S, JIN Z M, 1995. Roasting process and pyrolysis kinetics of svanbergite ore[J]. Chinese Science Bulletin, 40(19): 1767-1770. (in Chinese) doi: 10.1360/csb1995-40-19-1767 [135] WANG M, VEKSLER I, ZHANG Z C, et al., 2017a. The origin of nelsonite constrained by melting experiment and melt inclusions in apatite: the Damiao anorthosite complex, North China Craton[J]. Gondwana Research, 42: 163-176. doi: 10.1016/j.gr.2016.10.015 [136] WANG M X, JIANG C Y, XIA M Z, et al., 2017b. Petrogenesis of the Fe-P-REE mineralized Shangzhuang ultramafic intrusion in the Lajishan tectonic belt, South Qilian Belt: implications for mantle metasomatism and tectonic setting[J]. Geological Journal, 52(S1): 314-328. doi: 10.1002/gj.3113 [137] WANG S D, JIANG K X, JIANG X X, et al. , 2011. Study on leaching of rare earth in preparing phosphoric acid with nitric acid[J]. Nonferrous Metals (Extractive Metallurgy)(8): 25-27. (in Chinese with English abstract [138] WANG W Q, 2016. Geochemical characteristics of Marine phosphorus blocks and enrichment of uranium polymetals in Hunan-Guizhou area[D]. Beijing: Beijing Research Institute of Uranium Geology. (in Chinese) [139] WANG W W, PRANOLO Y, CHENG C Y, 2011. Metallurgical processes for scandium recovery from various resources: a review[J]. Hydrometallurgy, 108(1-2): 100-108. doi: 10.1016/j.hydromet.2011.03.001 [140] WANG X J, WANG Z T, WANG G H, et al., 2017. Geochemical characteristics and ore-forming environment of the Songgui Bauxite Deposit in Heqing County, Northwest Yunnan province[J]. Northwestern Geology, 50(3): 205-221. (in Chinese with English abstract [141] WANG X M, JIAO Y Q, DU Y S, et al., 2013. REE mobility and Ce anomaly in bauxite deposit of WZD area, Northern Guizhou, China[J]. Journal of Geochemical Exploration, 133: 103-117. doi: 10.1016/j.gexplo.2013.08.009 [142] WANG Y, XING S W, ZHANG Y, et al., 2015. Geological and geochemical characteristics of the Jinlong bauxite deposit in Guangxi province[J]. Geology and Exploration, 51(2): 266-274. (in Chinese with English abstract [143] WANG Y, XIONG X X, DONGYE M X, et al., 2022. Prediction model and exploration prospect analysis of phosphate mineral resources in China[J]. Geology in China, 49(2): 435-454. (in Chinese with English abstract [144] WANG Y, LI L X, LI H M, et al., 2024. Geochronology and genesis of the Zhaobinggou Fe-P deposit, Northern Hebei, China[J]. Geoscience, 38(1): 46-55. (in Chinese with English abstract [145] WANG Y H, 2023. Study on the restrictive mechanism of the differential mineralization on the phosphorus enrichment degree in early Cambrian phosphate deposits in Guizhou[D]. Guiyang: Guizhou University. (in Chinese with English abstract [146] WANG Y R, WANG Q F, LIU X F, et al., 2012. Geochemical background of the Mianchi bauxite mineralization area, Henan province[J]. Geology and Exploration, 48(3): 526-532. (in Chinese with English abstract [147] WANG Z S, LI Y, ALGEO T J, et al., 2024. Critical metal enrichment in Upper Carboniferous karst bauxite of North China Craton[J]. Mineralium Deposita, 59(2): 237-254. doi: 10.1007/s00126-023-01207-6 [148] WEDEPOHL K H,1995. The composition of the continental crust[J]. Geochimica et Cosmochimica Acta,59(7):1217-1232 [149] WEI Y C, HUA F H, HE W B, et al., 2020. Difference of trace elements characteristics of No. 2 coal in Fengfeng mining area[J]. Journal of China Coal Society, 45(4): 1473-1487. (in Chinese with English abstract [150] WU Y Y, QIN Y, YI T S, 2010. Enrichment of rare earth elements in high sulfur coal of Liangshan formation from Kaili, Guizhou, China and geological origin[J]. Acta Geologica Sinica, 84(2): 280-285. (in Chinese with English abstract doi: 10.1111/j.1755-6724.2010.00086.x [151] XIA X H, LIU C T, 1986. Relationship between rock chemistry and phosphorus content of Shagou ultrabasic complex in Zaozhuang, Shandong province[J]. Geology of Chemical Minerals(02): 62-69. (in Chinese) [152] XIA X H, YUAN J H, XI G Q, et al., 2009. The feasibility studay and metallogenic prediction of endogenesis phosphorite resources in the Northern Edge of Talimu Platform[J]. Geology of Chemical Minerals, 31(3): 129-158. (in Chinese with English abstract [153] XIA X H, YUAN J Z, XI G Q, et al., 2010. Geochemistry of complex rocks and characteristics of Daxigou Iron-Phosphorite deposits, Xinjiang[J]. Journal of Jilin University (Earth Science Edition), 40(4): 879-885. (in Chinese with English abstract [154] XIA X H, XI G Q, YUAN J Z, et al., 2011a. Study on geology and comprehensive utilization of magnetite and apatite deposit of Kawuliuke tag in Sinkiang[J]. Geology of Chemical Minerals, 33(4): 193-200. (in Chinese with English abstract [155] XIA X H, YUAN J H, DU J H, et al., 2011b. Distribution characteristics and resource potential of sedimentary phosphatite deposits in China[J]. Journal of Wuhan Institute of Technology, 33(2): 6-11. (in Chinese with English abstract [156] XIA X H, TAN Y J, YANG H Y, et al., 2012. Iron-phosphate deposit geology and metallogenic specialization in the Tianshan metallogenic belt, Xinjiang[J]. Geology in China, 39(2): 486-496. (in Chinese with English abstract [157] XIE Y L, HOU Z Q, GOLDFARB R J, et al. , 2016. Rare earth element deposits in China[J]. Economic Geology, 18, doi: https://doi.org/10.5382/Rev.18.06 [158] XIE Y L, QU Y W, YANG Z F, et al., 2019. Giant Bayan Obo Fe-Nb-REE deposit: progresses, controversaries and new understandings[J]. Mineral Deposits, 38(5): 983-1003. (in Chinese with English abstract [159] XIE Y L, VERPLANCK P L, HOU Z Q, et al. , 2019. Chapter 12 Rare earth element deposits in China: A review and new understandings[J]. Economic Geology, 22, doi: https://doi.org/10.5382/SP.22 [160] XING J Q, JIANG Y H, XIAN H Y, et al., 2021. Hydrothermal activity during the formation of REY-rich phosphorites in the early Cambrian Gezhongwu Formation, Zhijin, South China: a micro- and nano-scale mineralogical study[J]. Ore Geology Reviews, 136: 104224. doi: 10.1016/j.oregeorev.2021.104224 [161] XU K, MA J B, CHENG Z G, et al. , 2023. Sedimentary geochemical characteristics and paleoenvironmental reconstruction of the lower Cambrian Yuhucun Formation in Huize Area, Eastern Yunnan[J]. Acta Sedimentologica Sinica, doi: 10.14027/j.issn.1000-0550.2023.017. (in Chinese with English abstract [162] YANG F, 2011. Sedimentary environment and geochemistry of the Kunyang phosphorite deposit in Yunnan province[D]. Beijing: China University of Geosciences (Beijing). (in Chinese with English abstract [163] YANG F Q, LIU F, CHAI F M, et al., 2011. Iron deposits in Altay, Xinjiang: geological characteristics, time-space distribution and metallogenesis[J]. Mineral Deposits, 30(4): 575-598. (in Chinese with English abstract [164] YANG H Q, 2020. Luojiaxia magmatic phosphate rock in Gansu province[J]. Northwestern Geology, 53(3): 251. (in Chinese) doi: 10.3724/SP.J.7102812705 [165] YANG H Y, XIAO J F, XIA Y, et al., 2019a. Origin of the Ediacaran Weng'an and Kaiyang phosphorite deposits in the Nanhua basin, SW China[J]. Journal of Asian Earth Sciences, 182: 103931. doi: 10.1016/j.jseaes.2019.103931 [166] YANG H Y, XIAO J F, HU R Z, et al., 2020. Formation environment and metallogenic mechanism of Weng’an phosphorite in the Early Sinian, Central Guizhou province[J]. Journal of Palaeogeography (Chinese Edition), 22(5): 929-946. (in Chinese with English abstract [167] YANG J C, WANG F L, LI D S, et al., 2004. Investigation on occurrence and trend of rare and rare-earth elements associated in bauxite[J]. Mining and Metallurgy, 13(2): 89-92. (in Chinese with English abstract [168] YANG L, LIU C Y, LI H Y, 2008. Geochemistry of trace elements and rare earth elements of coal in Chenjiashan coal mine[J]. Coal Geology & Exploration, 36(2): 10-14. (in Chinese with English abstract [169] YANG L Q, LI R H, GAO X, et al., 2020. A preliminary study of extreme enrichment of critical elements in the Jiaodong gold deposits, China[J]. Acta Petrologica Sinica, 36(5): 1285-1314. (in Chinese with English abstract doi: 10.18654/1000-0569/2020.05.01 [170] YANG P D, HAN G H, HUANG Y F, et al., 2024. Research progress on extraction and separation technology of rare earth from red mud[J]. Industrial Minerals & Processing, 53(8): 51-61. (in Chinese with English abstract [171] YANG S J, YANG M, YANG Y L, et al., 1996. The study on phase indentification of red mud of Pingguo aluminium plant[J]. Journal of Central South University of Technology, 27(5): 66-69. (in Chinese with English abstract [172] YANG S J, WANG Q F, DENG J, et al., 2019b. Genesis of karst bauxite-bearing sequences in Baofeng, Henan (China), and the distribution of critical metals[J]. Ore Geology Reviews, 115: 103161. doi: 10.1016/j.oregeorev.2019.103161 [173] YANG W J, HE B B, ZHU G H, et al., 2022. Review on the technology of wet-process phosphoric acid from phosphate rock[J]. Eco-industry Science & Phosphorus Fluorine Engineering, 37(8): 26-28. (in Chinese with English abstract [174] YANG X, 2019. Research on geochemistry characteristrics and sedimentary environments of the bahuang phosphorite deposit in Tongren, Guizhou[D]. Guiyang: Guizhou University. (in Chinese with English abstract [175] YANG Z H, 2011. Study on the comprehensive exploitation and utilization of bauxite (clay) deposits in Shanxi province, China[D]. Beijing: China University of Geosciences (Beijing). (in Chinese with English abstract [176] YANG Z Q, WANG C W, HU C L, et al., 2022. Characteristics of the Ore-bearing rock series in rare earth of Yuba section of Weining Area, Guizhou[J]. Guizhou Geology, 39(1): 11-18. (in Chinese with English abstract [177] YANG Z S, HUANG X W, MENG Y M, et al., 2024. Iron deposits associated critical metals in China: basic features, distribution, and resource potential[J]. Mineral Deposits, 43(2): 319-338. (in Chinese with English abstract [178] YE F, DONG G C, GUO H D, et al., 2015a. The rare-earth elements features and significances of bauxite deposits in Shanxi Wangrun-Xiyadi region Shanxi province[J]. China Mining Magazine, 24(6): 76-80. (in Chinese with English abstract [179] YE F, DONG G C, MENG Z G, et al., 2015b. Geochemical features of rare-earth elements of the bauxite deposit in the Gaojiashan region, Shanxi province and their implications[J]. Geology and Exploration, 51(3): 486-495. (in Chinese with English abstract [180] YU J J, MAO J W, 2002. Rare earth elements in apatite from porphyrite iron deposits of Ningwu Area[J]. Mineral Deposits, 21(1): 65-73. (in Chinese with English abstract [181] YU W C, WANG R H, ZHANG Q L, et al., 2014. Mineralogical and geochemical evolution of the Fusui bauxite deposit in Guangxi, South China: from the original Permian orebody to a Quarternary Salento-type deposit[J]. Journal of Geochemical Exploration, 146: 75-88. doi: 10.1016/j.gexplo.2014.07.020 [182] YUAN A G, 2010. Resource distribution and exploitation strategy of the bauxite deposits in the Henan province, China[D]. Beijing: China University of Geosciences (Beijing). (in Chinese with English abstract [183] YUAN J Z, XIA X H, XI G Q, et al., 2010. Geological characteristics and porspecting significance of Magnetite-Apatite deposit of aertang area in sinkiang[J]. Geology of Chemical Minerals, 32(2): 105-111. (in Chinese with English abstract [184] ZHANG H, YU H C, ZHANG J, 2024. Characteristics of rare earth elements associated with coal in Lvjiatuo mine[J]. Coal Geology of China, 36(4): 30-37. (in Chinese with English abstract [185] ZHANG H J, FAN H F, WEN H J, et al., 2022. Controls of REY enrichment in the early Cambrian phosphorites[J]. Geochimica et Cosmochimica Acta, 324: 117-139. doi: 10.1016/j.gca.2022.03.003 [186] ZHANG H Y, MA H Z, CHENG H D, et al., 2024. Geochemical characteristics and geological significance of the Shangzhuang Carbonate Complex, Qinghai[J]. Journal of Salt Lake Research, 32(2): 62-71. (in Chinese with English abstract [187] ZHANG L, 2021. Study on the enrichment mechanism of phosphorous in the epigenetic environment of Tongren, Guizhou[D]. Guiyang: Guizhou University. (in Chinese with English abstract [188] ZHANG L J, ZHOU T F, FAN Y, et al., 2011. A LA-ICP-MS study of apatite from the Taocun magnetite-apatite deposit, Ningwu Basin[J]. Acta Geologica Sinica, 85(5): 834-848. (in Chinese with English abstract [189] ZHANG M, WANG X Y, LIU J Z, et al., 2018. Ore forming materials source and sedimentary environment study of Biliba bauxite deposit in Xiuwen, Guizhou province[J]. Guizhou Geology, 35(2): 88-95. (in Chinese with English abstract [190] ZHANG N, LIU X M, SUN H H, et al., 2011. Evaluation of blends bauxite-calcination-method red mud with other industrial wastes as a cementitious material: properties and hydration characteristics[J]. Journal of Hazardous Materials, 185(1): 329-335. doi: 10.1016/j.jhazmat.2010.09.038 [191] ZHANG S Q, ZHANG W X, ZHONG Z H, et al., 2018. REE geochemical characteristics and geological significance of bauxite from Xing County, Shanxi province[J]. Journal of the Chinese Society of Rare Earths, 36(3): 338-349. (in Chinese with English abstract [192] ZHANG X K, ZHOU K G, CHEN W, et al., 2019a. Recovery of iron and rare earth elements from red mud through an acid leaching-stepwise extraction approach[J]. Journal of Central South University, 26(2): 458-466. doi: 10.1007/s11771-019-4018-6 [193] ZHANG Y, WU G C, LIU X F, et al., 2015. Mineral evolution and element migration during the formation of accumulated bauxite in Jiaomei ore deposit, Pingguo County, Western Guangxi[J]. Geoscience, 29(1): 20-31. (in Chinese with English abstract [194] ZHANG Y H, LING W L, WU H, et al., 2013. Geochemistry of varied type ores of Northern Guizhou bauxites and its implication for mineralization[J]. Geological Science and Technology Information, 32(1): 71-79. (in Chinese with English abstract [195] ZHANG Y X, HE Q G, SHAO S X, et al., 1999. Geochemical characteristics of Sc in bauxite[J]. Geology-Geochemistr, 27(2): 55-62. (in Chinese with English abstract [196] ZHANG Y X, SHI Q, LUO M X, et al., 2019b. Improved bauxite residue dealkalization by combination of aerated washing and electrodialysis[J]. Journal of Hazardous Materials, 364: 682-690. doi: 10.1016/j.jhazmat.2018.10.023 [197] ZHANG Y Y, 2015. The rare earth elements characteristics and the comprehensive utilization research of devonian Shifang phosphate deposit[D]. Mianyang: Southwest University of Science and Technology. (in Chinese with English abstract [198] ZHAO M, LIU Y, JIAO X, et al., 2023. Major, trace and rare earth element geochemistry of the Permian Lucaogou oil shales, eastern Junggar Basin, NW China: implications for weathering, provenance and tectonic setting[J]. Australian Journal of Earth Sciences, 70(4): 585-602. doi: 10.1080/08120099.2023.2186951 [199] ZHEN Y Q, WANG Z Y, 1991. Geochemical characteristics of the rare earth elements in North China Pattern (G Strata) alumina ores and their geological, significance[J]. Journal of Guilin College of Geology, 11(1): 49-56. (in Chinese with English abstract [200] ZHENG X, SPIRO B, HAN Z Z, 2020. Comparison of geochemical and mineralogical characteristics of Palaeogene oil shales and coals from the Huangxian Basin, Shandong province, East China[J]. Minerals, 10(6): 496. doi: 10.3390/min10060496 [201] ZHOU J L, ZHANG Z W, YOU F H, 2011. Analysis of the depositional environment for the supernormal enrichment of rare earth elements in the lower part of the Upper Permian Xuanwei Formation in Western Guizhou[J]. Acta Mineralogica Sinica, 31(S1): 328-329. (in Chinese) [202] ZHOU M F, ARNDT N T, MALPAS J, et al., 2008. Two magma series and associated ore deposit types in the Permian Emeishan large igneous province, SW China[J]. Lithos, 103(3-4): 352-368. doi: 10.1016/j.lithos.2007.10.006 [203] ZHU S F, CAO B, WANG T, et al., 2020. Geochemical features of coal REE in Wanfu coalmine area, Shanglin County, Guangxi[J]. Coal Geology of China, 32(9): 64-69. (in Chinese with English abstract [204] ZOU J H, WANG B F, WANG H, et al., 2022. Geochemical characteristics of trace and rare earth elements in the late Permian coals from the Lutang Mine, Chongqing[J]. Journal of China Coal Society, 47(8): 3117-3127. (in Chinese with English abstract [205] ZU S Z, 1999. A rational exploitation for the bauxite resource[J]. Nonferrous Metals Science and Engineering, 13(2): 12-14, 19. (in Chinese) [206] 曹泊,朱士飞,秦云虎,等,2022. 煤中稀土元素研究现状及展望[J]. 煤炭科学技术,50(4):181-194. [207] 曹金鑫,2022. 贵州织金含稀土磷矿床Y元素赋存状态研究[D]. 贵阳:贵州大学. [208] 曹金鑫,陈吉艳,赵威,等,2022. 云南白龙潭磷块岩元素地球化学特征及其指示意义[J]. 桂林理工大学学报,42(2):320-332. doi: 10.3969/j.issn.1674-9057.2022.02.004 [209] 车青松,2021. 渭北煤田与沁水盆地煤中稀土元素地球化学特征[D]. 北京:中国地质大学(北京). [210] 车英丹,吴明安,张舒,等,2017. 安徽庐枞盆地黄屯闪长玢岩地球化学特征及其地质意义[J]. 安徽地质,27(4):241-246,262. doi: 10.3969/j.issn.1005-6157.2017.04.001 [211] 陈伟,赵太平,魏庆国,等,2008. 河北大庙Fe-Ti-P矿床中铁钛磷灰岩的成因:来自磷灰石的证据[J]. 岩石学报,24(10):2301-2312. [212] 陈晓甫,吴攀,刘江,等,2022. 黔中蔡家坝铝土矿床微量元素特征及地质意义[J]. 地质科学,57(3):879-896. doi: 10.12017/dzkx.2022.050 [213] 程春,2001. 矾山磷铁矿床稀土元素地球化学特征[J]. 化工矿产地质,23(2):104-108. doi: 10.3969/j.issn.1006-5296.2001.02.007 [214] 崔文鹏,孙泽炼,周骏宏,等,2014. 织金磷矿中伴生稀土的提取研究[J]. 稀土,35(4):42-46. [215] 代世峰,赵蕾,魏强,等,2020. 中国煤系中关键金属资源:富集类型与分布[J]. 科学通报,65(33):3715-3729. [216] 戴塔根,龙永珍,张起钻,等,2003. 桂西某些铝土矿床稀土元素地球化学研究[J]. 地质与勘探,39(4):1-5. doi: 10.3969/j.issn.0495-5331.2003.04.001 [217] 代作文,谢玉玲,徐航航,等,2024. 四川什邡式磷矿床中、重稀土元素富集规律及资源潜力—以绵竹清平磷矿为例[J]. 岩石矿物学杂志,43(5):1175-1187. [218] 董挨管,张尚清,钟庄华,等,2017. 晋西北兴县地区铝土矿层准沉积期古气候及其沉积环境研究[J]. 河北地质大学学报,40(5):1-6. [219] 杜蔺,唐永永,张世帆,等,2023. 贵州铝土矿含铝岩系中关键金属富集特征及资源潜力[J]. 沉积学报,41(5):1512-1529. [220] 杜美艳,2012. 赤峰东南部大西沟磷—铁矿矿床地球化学特征及成因[D]. 长春:吉林大学. [221] 冯林永,蒋训雄,汪胜东,等,2016. 磷酸法中稀土溶出的动力学模型研究[J]. 有色金属(冶炼部分)(1):18-21. [222] 冯跃文,2013. 河南三门峡铝土矿成矿带地质与地球化学研究[D]. 北京:中国地质大学(北京). [223] 何宏平,杨武斌,2022. 我国稀土资源现状和评价[J]. 大地构造与成矿学,46(5):829-841. [224] 侯增谦,1990. 河北阳原—矾山环状杂岩体的岩浆不混溶成因及矾山式铁磷矿床成因探讨[J]. 矿床地质,9(2):119-128. [225] 胡瑞忠,温汉捷,叶霖,等,2020. 扬子地块西南部关键金属元素成矿作用[J]. 科学通报,65(33):3700-3714. [226] 黄文辉,久博,李媛,2019. 煤中稀土元素分布特征及其开发利用前景[J]. 煤炭学报,44(1):287-294. [227] 黄于新,何润州,2010. 广东省惠阳市沙尾磷钇矿核查区资源储量核查报告[R]. 深圳:深圳市地质局. [228] 霍婷,刘世明,祁文强,等,2020. 青海木里煤田聚乎更矿区煤中稀土元素地球化学特征及其对成煤环境的指示[J]. 地质通报,39(7):995-1005. [229] 蒋权,杨勇,唐云,等,2023. 贵州织金互层型稀土磷块岩工艺矿物学研究[J]. 矿物学报,43(3):358-370. [230] 金中国,郑明泓,刘玲,等,2018. 贵州福泉高洞铝土矿床成矿地质地球化学特征[J]. 地质与勘探,54(3):522-534. doi: 10.3969/j.issn.0495-5331.2018.03.008 [231] 康微,2013. 河南宝丰铝土矿田地质特征与成矿环境[D]. 北京:中国地质大学(北京). [232] 柯昌辉,王晓霞,李金宝,等,2013. 华北地块南缘黑山—木龙沟地区中酸性岩的锆石U-Pb年龄、岩石化学和Sr-Nd-Hf同位素研究[J]. 岩石学报,29(3):781-800. [233] 匡敬忠,肖坤明,曾军龙,2012. 从铝土矿、磷矿及铌钽矿中综合回收稀土的研究进展[J]. 稀土,33(1):81-85. doi: 10.3969/j.issn.1004-0277.2012.01.017 [234] 李厚民,王登红,李立兴,等,2012. 中国铁矿成矿规律及重点矿集区资源潜力分析[J]. 中国地质,39(3):559-580. doi: 10.3969/j.issn.1000-3657.2012.03.001 [235] 李金虎,张智慧,秦明,等,2011. 新疆且日克其菱铁矿床稀土元素地球化学特征[J]. 矿产与地质,25(1):69-73. doi: 10.3969/j.issn.1001-5663.2011.01.012 [236] 李六权,崔江荣,陈浩,2019. 陕西木龙沟—黄龙铺地区钼、铼、稀土资源量概况及铼、稀土赋存特征[J]. 陕西地质,37(1):1-7. doi: 10.3969/j.issn.1001-6996.2019.01.001 [237] 李普涛,张起钻,2008. 广西靖西县三合铝土矿稀土元素地球化学研究[J]. 矿产与地质,22(6):536-540. doi: 10.3969/j.issn.1001-5663.2008.06.013 [238] 李再会,闫武,廖朝贵,等,2012. 重庆南川-武隆铝土矿矿物学、地球化学特征[J]. 沉积与特提斯地质,32(3):87-100. doi: 10.3969/j.issn.1009-3850.2012.03.009 [239] 李朝荣,苏殊,杨秀山,等,2020. 硝酸法湿法磷酸工艺的研究进展[C]//2020中国环境科学学会科学技术年会论文集(第一卷). 南京:中国环境科学学会:557-561. [240] 李佐强,陈敏,卢君勇,等,2023. 川南马边黄家坪地区下寒武统麦地坪组磷块岩稀土元素地球化学特征及成因机制[J]. 矿产综合利用(1):75-87. [241] 梁坤萍,2022. 贵州瓮福磷矿白岩矿区磷矿床地质特征及地球化学研究[D]. 贵阳:贵州大学. [242] 林钦亮,1987. 广东阳山坑尾高岭土矿区初步地质普查报告[R]. 清远:广东省地矿局706队. [243] 刘贝,黄文辉,敖卫华,等,2015. 沁水盆地晚古生代煤中稀土元素地球化学特征[J]. 煤炭学报,40(12):2916-2926. [244] 刘大锐,高桂梅,池君洲,等,2018. 准格尔煤田黑岱沟露天矿煤中稀土及微量元素的分配规律[J]. 地质学报,92(11):2368-2375. doi: 10.3969/j.issn.0001-5717.2018.11.012 [245] 刘东娜,周安朝,常泽光,2015. 大同煤田8号原煤及风化煤中常量元素和稀土元素地球化学特征[J]. 煤炭学报,40(2):422-430. [246] 刘锋,杨富全,李延河,等,2009. 新疆阿勒泰市阿巴宫铁矿磷灰石微量和稀土元素特征及矿床成因探讨[J]. 矿床地质,28(3):251-264. doi: 10.3969/j.issn.0258-7106.2009.03.003 [247] 刘建中,付芝康,万大学,等,2015. 贵州省开阳地区磷矿整装勘查报告[R]. 贵阳:贵州省地质矿产勘查开发局一〇五地质大队. [248] 刘平,1999. 黔中—川南石炭纪铝土矿的地球化学特征[J]. 中国区域地质,18(2):210-217. [249] 刘枝刚,2005. 广西靖西县新圩铝土矿矿石物质组分研究[J]. 南方国土资源(11):30-32. [250] 龙克树,付勇,陈蕤,等,2019. 黔北铝土矿稀土元素富集机制:以新民铝土矿为例[J]. 矿物学报,39(4):443-454. [251] 卢正浩,2022. 黔东埃迪卡拉系-寒武系斜坡相黑色岩系沉积环境演化研究[D]. 贵阳:贵州大学. [252] 路智,刘永顺,聂保锋,等,2022. 河北承德大庙地区元古代的晚期辉长—苏长岩的岩石特征及其成因[J]. 地质科学,57(1):243-261. doi: 10.12017/dzkx.2022.015 [253] 马小敏,2019. 黄县盆地古近系煤中元素地球化学特征及其沉积环境指示意义[J]. 科学技术与工程,19(24):46-55. doi: 10.3969/j.issn.1671-1815.2019.24.007 [254] 马跃,向卿谊,丁康乐,2024. 国内外油页岩工业发展现状[J]. 世界石油工业,31(1):16-25. [255] 马中豪,陈清石,史忠汪,等,2016. 鄂尔多斯盆地南缘延长组长7油页岩地球化学特征及其地质意义[J]. 地质通报,35(9):1550-1558. doi: 10.3969/j.issn.1671-2552.2016.09.022 [256] 毛景文,宋世伟,刘敏,等,2022. 稀土矿床:基本特点与全球分布规律[J]. 地质学报,96(11):3675-3697. doi: 10.3969/j.issn.0001-5717.2022.11.001 [257] 孟健寅,王庆飞,刘学飞,等,2011. 山西交口县庞家庄铝土矿矿物学与地球化学研究[J]. 地质与勘探,47(4):593-604. [258] 孟庆涛,2010. 桦甸盆地始新统油页岩岩石地球化学特征及富集规律研究[D]. 长春:吉林大学. [259] 牟保磊,蔡俊军,边振辉,1998. 矾山碱性岩体磷铁矿床金的地球化学[J]. 岩石矿物学杂志,17(4):359-37. doi: 10.3969/j.issn.1000-6524.1998.04.010 [260] 欧洋,2015. 川西典型磷矿床中稀土元素的赋存状态研究 [D]. 成都:成都理工大学. [261] 乔龙,2016. 右江盆地及其周缘地区构造演化及铝土矿成矿作用[D]. 北京:中国地质大学(北京). [262] 秦国红,邓丽君,刘亢,等,2016. 鄂尔多斯盆地西缘煤中稀土元素特征[J]. 煤田地质与勘探,44(6):8-14. doi: 10.3969/j.issn.1001-1986.2016.06.002 [263] 秦欢,周骞,洪托,等,2022. 云南省镇雄县羊场磷矿地球化学特征及其沉积环境分析[J]. 地质找矿论丛,37(3):259-269. doi: 10.6053/j.issn.1001-1412.2022.03.001 [264] 任海利,2017. 贵州瓮安—福泉地区晚震旦世成磷期沉积环境与磷块岩中碘富集机理[D]. 贵阳:贵州大学. [265] 佘宇伟,宋谢炎,于宋月,等,2014. 磁铁矿和钛铁矿成分对四川太和富磷灰石钒钛磁铁矿床成因的约束[J]. 岩石学报,30(5):1443-1456. [266] 宋谢炎,佘宇伟,栾燕,等,2024. 峨眉大火成岩省攀西钒钛磁铁矿矿集区钴、镓、钪资源及综合利用潜力[J]. 矿物岩石地球化学通报,43(1):218-231. [267] 孙思磊,2011. 山西宁武县宽草坪铝土矿床地质与地球化学特征研究[D]. 北京:中国地质大学(北京). [268] 孙思磊,王庆飞,刘学飞,等,2012. 山西省石墙区铝土矿地质与地球化学特征研究[J]. 地质与勘探,48(3):487-501. [269] 田茂军,2013. 云南省文山县天生桥铝土矿矿床地质特征及成因探讨[D]. 昆明:昆明理工大学. [270] 庹必阳,王建丽,张覃,2007. 稀土元素在铝土矿中的赋存状态及利用现状[J]. 稀土,28(1):117-119. doi: 10.3969/j.issn.1004-0277.2007.01.031 [271] 王励生,金作美,1995. 硫磷铝锶矿的焙烧过程和热解动力学[J]. 科学通报,40(19):1767-1770. doi: 10.3321/j.issn:0023-074X.1995.19.010 [272] 汪胜东,蒋开喜,蒋训雄,等,2011. 硝酸法生产磷酸过程中稀土的浸出研究[J]. 有色金属(冶炼部分)(8):25-27. [273] 王行军,王梓桐,王根厚,等,2017. 滇西北鹤庆县松桂铝土矿床地球化学特征及成矿环境分析[J]. 西北地质,50(3):205-221. doi: 10.3969/j.issn.1009-6248.2017.03.022 [274] 王文全,2016. 湘黔地区海相磷块岩地球化学特征及铀多金属富集作用[D]. 北京:核工业北京地质研究院. [275] 王岩,邢树文,张勇,等,2015. 广西金龙铝土矿地质与地球化学特征研究[J]. 地质与勘探,51(2):266-274. [276] 王亿,李立兴,李厚民,等,2024. 冀北招兵沟铁磷矿床成矿时代及成因研究[J]. 现代地质,38(1):46-55. [277] 汪宇航,2023. 差异性成矿作用对贵州早寒武世磷矿磷质富集程度的制约机理研究[D]. 贵阳:贵州大学. [278] 王燕茹,王庆飞,刘学飞,等,2012. 河南渑池铝土矿成矿区地球化学背景[J]. 地质与勘探,48(3):526-532. [279] 王莹,熊先孝,东野脉兴,等,2022. 中国磷矿资源预测模型及找矿远景分析[J]. 中国地质,49(2):435-454. [280] 魏迎春,华芳辉,何文博,等,2020. 峰峰矿区2号煤中微量元素富集特征差异性研究[J]. 煤炭学报,45(4):1473-1487. [281] 吴艳艳,秦勇,易同生,2010. 贵州凯里梁山组高硫煤中稀土元素的富集及其地质成因[J]. 地质学报,84(2):280-285. [282] 夏学惠,刘昌涛,1986. 山东枣庄沙沟超基性杂岩体岩石化学与含磷性的关系[J]. 化工地质,(2):62-69. [283] 夏学惠,袁家忠,郗国庆,等,2009. 塔里木地台北缘内生磷矿预测及资源远景评价[J]. 化工矿产地质,31(3):129-158. doi: 10.3969/j.issn.1006-5296.2009.03.001 [284] 夏学惠,袁家忠,郗国庆,等,2010. 新疆大西沟杂岩体地球化学及铁磷矿床特征[J]. 吉林大学学报(地球科学版),40(4):879-885. [285] 夏学惠,郗国庆,袁家忠,等,2011a. 新疆卡乌留克塔格铁磷矿地质及地球化学研究[J]. 化工矿产地质,33(4):193-200. [286] 夏学惠,袁俊宏,杜家海,等,2011b. 中国沉积磷矿床分布特征及资源潜力[J]. 武汉工程大学学报,33(2):6-11. [287] 夏学惠,谭云基,杨辉艳,等,2012. 新疆天山成矿带铁磷矿地质及成矿专属性[J]. 中国地质,39(2):486-496. doi: 10.3969/j.issn.1000-3657.2012.02.019 [288] 谢玉玲,曲云伟,杨占峰,等,2019. 白云鄂博铁、铌、稀土矿床:研究进展、存在问题和新认识[J]. 矿床地质,38(5):983-1003. [289] 徐凯,马江波,成战刚,等,2023. 滇东会泽地区下寒武统渔户村组沉积地球化学特征与古环境重建[J]. 沉积学报,doi: 10.14027/j.issn.1000-0550.2023.01. [290] 杨帆,2011. 昆阳磷矿沉积环境与矿床地球化学[D]. 北京:中国地质大学(北京). [291] 杨富全,刘锋,柴凤梅,等,2011. 新疆阿尔泰铁矿:地质特征、时空分布及成矿作用[J]. 矿床地质,30(4):575-598. doi: 10.3969/j.issn.0258-7106.2011.04.001 [292] 杨海英,肖加飞,胡瑞忠,等,2020. 黔中瓮安早震旦世磷块岩的形成环境及成因机制[J]. 古地理学报,22(5):929-946. doi: 10.7605/gdlxb.2020.05.063 [293] 杨合群,2020. 甘肃罗家峡岩浆型磷矿[J]. 西北地质,53(3):251. [294] 杨军臣,王凤玲,李德胜,等,2004. 铝土矿中伴生稀有稀土元素赋存状态及走向查定[J]. 矿冶,13(2):89-92. doi: 10.3969/j.issn.1005-7854.2004.02.024 [295] 杨磊,刘池洋,李洪英,2008. 陈家山矿煤中微量元素和稀土元素地球化学特征[J]. 煤田地质与勘探,36(2):10-14. doi: 10.3969/j.issn.1001-1986.2008.02.003 [296] 杨立强,李瑞红,高雪,等,2020. 胶东金矿床中关键金属超常富集特征与机理初探[J]. 岩石学报,36(5):1285-1314. doi: 10.18654/1000-0569/2020.05.01 [297] 杨佩东,韩桂洪,黄艳芳,等,2024. 赤泥中稀土提取与分离技术研究进展[J]. 化工矿物与加工,53(8):51-6. [298] 杨世杰,杨明,杨元龙,等,1996. 平果铝厂赤泥的物相分析[J]. 中南工业大学学报,27(5):66-69. [299] 杨文娟,何宾宾,朱桂华,等,2022. 磷矿制湿法磷酸技术综述[J]. 磷肥与复肥,37(8):26-28. doi: 10.3969/j.issn.1007-6220.2022.08.008 [300] 杨旭,2019. 铜仁坝黄磷块岩地球化学特征及沉积环境研究[D]. 贵阳:贵州大学. [301] 杨志爽,黄小文,孟郁苗,等,2024. 中国铁矿床伴生关键金属:基本特征、分布规律及资源潜力[J]. 矿床地质,43(2):319-338. [302] 杨中华,2011. 山西省铝(粘)土矿综合开发利用研究[D]. 北京:中国地质大学(北京). [303] 杨忠琴,王常微,胡从亮,等,2022. 贵州威宁地区鱼坝剖面稀土含矿岩系特征[J]. 贵州地质,39(1):11-18. doi: 10.3969/j.issn.1000-5943.2022.01.002 [304] 叶枫,董国臣,郭红党,等,2015a. 山西王润-西崖底铝土矿稀土元素特征及意义[J]. 中国矿业,24(6):76-80. [305] 叶枫,董国臣,孟兆国,等,2015b. 山西高家山铝土矿稀土元素地球化学特征及意义[J]. 地质与勘探,51(3):486-495. [306] 余金杰,毛景文,2002. 宁芜玢岩铁矿磷灰石的稀土元素特征[J]. 矿床地质,21(1):65-73. doi: 10.3969/j.issn.0258-7106.2002.01.009 [307] 袁爱国,2010. 河南省铝土矿资源分布与开发策略[D]. 北京:中国地质大学(北京). [308] 袁家忠,夏学惠,郗国庆,等,2010. 新疆奥尔塘铁磷矿地质特征及找矿意义[J]. 化工矿产地质,32(2):105-111. doi: 10.3969/j.issn.1006-5296.2010.02.005 [309] 张海云,马海州,程怀德,等,2024. 青海上庄含碳酸岩杂岩体的地球化学特征及其地质意义[J]. 盐湖研究,32(2):62-71. doi: 10.12119/j.yhyj.202402009 [310] 张华,于海成,张冀,2024. 吕家坨矿煤中伴生稀土元素地球化学特征[J]. 中国煤炭地质,36(4):30-37. doi: 10.3969/j.issn.1674-1803.2024.04.06 [311] 张兰,2021. 铜仁磷矿区表生环境中磷的富集机理研究[D]. 贵阳:贵州大学. [312] 张乐骏,周涛发,范裕,等,2011. 宁芜盆地陶村铁矿床磷灰石的LA-ICP-MS研究[J]. 地质学报,85(5):834-848. [313] 张明,汪小勇,刘建中,等,2018. 贵州修文比例坝铝土矿成矿物质来源及沉积环境研究[J]. 贵州地质,35(2):88-95. doi: 10.3969/j.issn.1000-5943.2018.02.002 [314] 张尚清,张文旭,钟庄华,等,2018. 山西省兴县铝土矿稀土元素地球化学特征及其地质意义[J]. 中国稀土学报,36(3):338-349. [315] 章颖,吴功成,刘学飞,等,2015. 桂西平果教美矿区堆积型铝土矿形成过程中矿物转化与元素迁移[J]. 现代地质,29(1):20-31. doi: 10.3969/j.issn.1000-8527.2015.01.003 [316] 张莹华,凌文黎,吴慧,等,2013. 黔北铝土矿不同类型矿石地球化学特征及其对成矿作用的指示[J]. 地质科技情报,32(1):71-79. [317] 张玉学,何其光,邵树勋,等,1999. 铝土矿钪的地球化学特征[J]. 地质地球化学,27(2):55-62. [318] 张跃跃,2015. 泥盆纪什邡式磷矿稀土元素特征及综合利用研究[D]. 绵阳:西南科技大学. [319] 真允庆,王振玉,1991. 华北式(G层)铝土矿稀土元素地球化学特征及其地质意义[J]. 桂林冶金地质学院学报,11(1):49-56. [320] 中华人民共和国自然资源部,2020. 中华人民共和国自然资源部 矿产地质勘查规范 铝土矿:DZ/T 0202-2020[S]. 北京:中华人民共和国自然资源部:1-48. [321] 中华人民共和国自然资源部,2022. 中国矿产资源报告[R]. 北京:地质出版社:5-6. [322] 中华人民共和国自然资源部,2023. 中国矿产资源报告[R]. 北京:地质出版社:1-17. [323] 周灵洁,张正伟,游富华,2011. 黔西上二叠统宣威组下段超常富集稀土元素的沉积环境分析[J]. 矿物学报,31(S1):328-329. [324] 朱士飞,曹泊,王佟,等,2020. 广西上林县万福矿区煤中稀土元素地球化学特征[J]. 中国煤炭地质,32(9):64-69. doi: 10.3969/j.issn.1674-1803.2020.09.10 [325] 邹建华,王冰峰,王慧,等,2022. 重庆芦塘矿晚二叠世煤中微量元素和稀土元素的地球化学特征[J]. 煤炭学报,47(8):3117-3127. [326] 祖树正,1999. 铝土矿资源合理开发利用的探讨[J]. 江西有色金属,13(2):12-14,19. doi: 10.3969/j.issn.1674-9669.1999.02.004 期刊类型引用(2)
1. 陈杰江,周仕娇,杨兵,童雄,芦元廷,张裕,谢贤,杜嘉澳,李蒋,孙代馨. 某稀土-萤石中矿中萤石的高效回收试验研究. 非金属矿. 2025(01): 38-42 . 百度学术
2. 潘文辉,戴知友. 硝酸铋改性赤泥颗粒降解多氯联苯研究. 绿色科技. 2024(24): 173-178 . 百度学术
其他类型引用(0)
-