留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

内蒙古三河铅锌矿床的矿化特征及构造控矿规律

毕亚强 李永新 陈文科 马虎彪 于超 冯宇 周林 岳雷 杨在京 扈德峰

毕亚强, 李永新, 陈文科, 等, 2022. 内蒙古三河铅锌矿床的矿化特征及构造控矿规律. 地质力学学报, 28 (1): 36-49. DOI: 10.12090/j.issn.1006-6616.2021131
引用本文: 毕亚强, 李永新, 陈文科, 等, 2022. 内蒙古三河铅锌矿床的矿化特征及构造控矿规律. 地质力学学报, 28 (1): 36-49. DOI: 10.12090/j.issn.1006-6616.2021131
BI Yaqiang, LI Yongxin, CHEN Wenke, et al., 2022. Mineralization styles and structure-controlled mineralization rules of the Sanhe Pb-Zn Deposit in Inner Mongolia. Journal of Geomechanics, 28 (1): 36-49. DOI: 10.12090/j.issn.1006-6616.2021131
Citation: BI Yaqiang, LI Yongxin, CHEN Wenke, et al., 2022. Mineralization styles and structure-controlled mineralization rules of the Sanhe Pb-Zn Deposit in Inner Mongolia. Journal of Geomechanics, 28 (1): 36-49. DOI: 10.12090/j.issn.1006-6616.2021131

内蒙古三河铅锌矿床的矿化特征及构造控矿规律

doi: 10.12090/j.issn.1006-6616.2021131
基金项目: 

国家重点研发计划 2017YFC0601300

详细信息
    作者简介:

    毕亚强(1986-), 男, 工程师, 主要从事矿产普查与勘探研究。E-mail: 409561475@qq.com

    通讯作者:

    陈文科(1997-), 男, 在读硕士, 主要从事矿床学研究。E-mail: 1402147343@qq.com

  • 中图分类号: P618.4

Mineralization styles and structure-controlled mineralization rules of the Sanhe Pb-Zn Deposit in Inner Mongolia

Funds: 

the National Key Research and Development Plan 2017YFC0601300

  • 摘要: 以内蒙三河铅锌矿床为研究对象,通过详细的野外和井下地质调研、勘查资料综合分析、构造地质测量、矿石和蚀变岩的岩石学和矿物学研究等,对矿区主要的构造类型、产状特征、脉体和蚀变的类型及矿化与断裂构造的关系进行了详细的研究。研究结果表明,矿区矿体主要呈脉状-网脉状产于北西西向断裂构造中。根据矿区断裂-脉体类型-蚀变的关系可以看出,走向北西西、倾向南南西的断裂为矿区主要的控矿断裂,主控矿断裂产状平直或呈舒缓波状,其间常发育铁锰碳酸盐-石英-硫化物脉,脉侧蚀变以硅化、黄铁矿化和绿泥石化为主。矿区主要矿体呈北西西走向,倾向南南西,其在走向和倾向上延伸规模大、产状稳定,地表常表现为蚀变片理化带,但其中常可见张性角砾岩脉或晶洞构造,其应为早期剪性断裂再次活化的产物。北北西和北北东向断裂为成矿后断裂,其间常被正长斑岩脉、闪斜煌斑岩脉充填,或发育方解石±石英±萤石±黏土矿物脉,可切穿含矿构造和含矿碳酸盐脉;成矿后断裂产状变化较大,分枝分叉和侧列现象常见,且其中常发育不规则状方解石-萤石脉及晶洞构造,显示了张性断裂的特征;同时对矿体有一定的错断,但断距不大,对找矿影响较小。无矿方解石-萤石-黏土矿脉两侧蚀变以黏土矿化为主,并发育少量浸染状黄铁矿化。铁锰碳酸盐脉两侧发育绿泥石化、硅化、黄铁矿化为矿区重要的找矿标志。这一认识对指导矿区及邻区同类矿床的找矿具有重要意义。

     

  • 图  1  额尔古纳及周边地区区域地质图(据武广等, 2014; 徐志刚等, 2008修改)

    a—蒙古-鄂霍茨克缝合带; b—额尔古纳及周边地区矿点分布

    Figure  1.  Regional geological map of Ergun and surrounding areas (modified after Wu et al., 2014; Xu et al., 2008)

    (a) Mongolia-Okhotsk suture zone; (b) Distribution of mines in the Ergun and surrounding areas

    图  2  三河铅锌矿床矿区地质图

    Figure  2.  Geological map of the Sanhe Pb-Zn deposit

    图  3  三河矿区双顶山矿段27号勘探线钻孔剖面图

    Figure  3.  Drilling profile of the No.27 exploration line in the Shuangdingshan section of the Sanhe mining area

    图  4  三河铅锌矿区双顶山矿段断裂构造简图

    Figure  4.  Schematic diagram showing the faulted structure in the Shuangdingshan section of the Sanhe Pb-Zn mining area

    图  5  北西西向断裂中碳酸盐脉的分支复合及边部的羽状裂隙

    Ank—铁白云石; Dol—白云石; Qtz—石英; Chl—绿泥石; Gn—方铅矿; Sp—闪锌矿
    a—碳酸盐脉的分支复合; b—碳酸盐脉边部的羽状裂隙

    Figure  5.  The branching and recombination of carbonate veins in the NWW-trending fault and the pinnate fissures at the edges

    (a) Branching complex of carbonate veins; (b) Pinnate fissures at the edges of carbonate veins
    Ank-Iron dolomite; Dol-Dolomite; Qtz-Quartz; Chl-Chlorite; Gn-Galena; Sp-Sphalerite

    图  6  矿区不同脉体之间的穿插关系

    Ank—铁白云石; Dol—白云石; Qtz—石英; Cal—方解石; Chl—绿泥石; Clay—黏土矿物; Gn—方铅矿; Sp—闪锌矿
    a—黏土矿物、石英和方解石脉切穿张性石英网脉; b—石英、方解石脉错断含矿铁锰碳酸盐脉

    Figure  6.  Interspersed relationship between different veins in the mining area

    (a) Clay minerals, quartz and calcite veins cut through tensile quartz veins; (b) Quartz and calcite veins discontinue ore-bearing iron-manganese carbonate veins
    Ank-Iron dolomite; Dol-Dolomite; Qtz-Quartz; Cal-Calcite; Chl-Chlorite; Clay-Clay mineral; Gn-Galena; Sp-Sphalerite

    图  7  矿区主要热液脉体类型

    Ank—铁白云石; Dol—白云石; Qtz—石英; Chl—绿泥石; Cal—方解石; Clay—黏土矿物; Gn—方铅矿; Sp—闪锌矿; Sulf—硫化物
    a—含暗色硫化物的铁锰碳酸盐脉; b—方解石脉错断含矿石英脉; c—含铅锌矿化的铁锰碳酸盐脉; d—黏土矿物脉切穿含矿铁锰碳酸盐脉

    Figure  7.  Main types of hydrothermal veins in the mining area

    (a) Iron-manganese carbonate veins with dark sulfide; (b) Calcite veins disjoint ore-bearing veins; (c) Iron-manganese carbonate veins with Pb-Zn mineralization; (d) Clay mineral veins cut through ore-bearing iron-manganese carbonate veins
    Ank-Iron dolomite; Dol-Dolomite; Qtz-Quartz; Chl-Chlorite; Cal-Calcite; Clay-Clay mineral; Gn-Galena; Sp-Sphalerite; Sulf-Sulfide

    图  8  矿区常见金属矿物组合

    Sti—辉锑矿; Py—黄铁矿; Ccp—黄铜矿; Sp—闪锌矿; Gn—方铅矿; Ank—铁白云石; Clay—黏土矿物
    a—与含铁白云石同期的辉锑矿、黄铁矿; b—与细晶石英同期的方铅矿、闪锌矿等金属硫化物

    Figure  8.  Common metal mineral combinations in the mining area

    (a) Stibnite and pyrite at the same time as iron-bearing dolomite; (b) Metal sulfides such as galena and sphalerite at the same time as fine-crystal quartz
    Sti-Stibnite; Py-Pyrite; Ccp-Chalcopyrite; Sp-Sphalerite; Gn-Galena; Ank-Iron dolomite; Clay-Clay mineral

    图  9  主要矿石矿物SEM/EDS分析

    Ank—铁白云石; Qtz—石英; Clay—黏土矿物; Ap—磷灰石; Rt—金红石; Brt—重晶石; Gn—方铅矿; Py—黄铁矿; Ccp—黄铜矿; Tet—黝铜矿

    Figure  9.  SEM/EDS analysis of main ore minerals

    Ank-Iron dolomite; Qtz-Quartz; Clay-Clay mineral; Ap-Apatite; Rt-Rutile; Brt-Barite; Gn-Galena; Py-Pyrite; Ccp-Chalcopyrite; Tet-Tetrahedrite

    图  10  部分脉体穿插关系的正交偏光和单偏光显微照片

    Ank—铁白云石; Qtz—石英; Chl—绿泥石; Clay—黏土矿物; Sp—闪锌矿; Py—黄铁矿; Ccp—黄铜矿
    a、b—石英脉切穿含矿铁白云石脉(a为正交偏光, b为单偏光); c、d—石英和黏土矿物脉切穿成矿期石英和绿泥石脉(c为正交偏光, d为单偏光)

    Figure  10.  Cross-polarized light (a, c) and single-polarized light (b, d) micrographs of the intervening relationship of part of the veins

    (a, b) Quartz veins cut through ore-bearing iron-manganese dolomite veins; (c, d) Quartz and clay mineral veins cut through ore-forming quartz and chlorite veins
    Ank-Iron dolomite; Qtz-Quartz; Chl-Chlorite; Clay-Clay mineral; Sp-Sphalerite; Py-Pyrite; Ccp-Chalcopyrite

    图  11  矿区主要矿体产状统计等密度图(n=69)

    Figure  11.  Isodensity map showing the occurrence statistics of the main ore bodies (n=69) in the mining area

  • Bureau of Geology and Mineral Resources of Inner Mongolia Autonomous Region, 1991. Regional geology of Inner Mongolia autonomous region[M]. Beijing: Geological Publishing House. 7-498. (in Chinese with English abstract)
    CARRANZA E J M, 2009. Controls on mineral deposit occurrence inferred from analysis of their spatial pattern and spatial association with geological features[J]. Ore Geology Reviews, 35(3-4): 383-400. doi: 10.1016/j.oregeorev.2009.01.001
    CHEN B L. Fracture tectonic development process and evolution of ore-control structure formation: the case of Zoujiashan uranium deposit[J]. Journal of Geomechanics, 2020, 26(3): 285-298. (in Chinese with English abstract)
    CHEN C Y, GAO Y F, WU H B, et al., 2016. Zircon U-Pb chronology of volcanic rocks in the Hailaer Basin, NE China and its geological implications[J]. Earth Science, 41(8): 1259-1274. (in Chinese with English abstract)
    CHEN Z G, ZHANG L C, WAN B, 2006. Geological setting and metallogenic prognosis of the De'erbugan polymetallic belt in the Da Hinggan Mountains[J]. Mineral Deposits, 25(S1): 11-14. (in Chinese with English abstract)
    CHERNICOFF C J, RICHARDS J P, ZAPPETTINI E O, 2002. Crustal lineament control on magmatism and mineralization in northwestern Argentina: geological, geophysical, and remote sensing evidence[J]. Ore Geology Reviews, 21(3-4): 127-155. doi: 10.1016/S0169-1368(02)00087-2
    CHI G J, 2003. Composition of silver deposit in Deierbuer Inner Mongolia[J]. Mineral Resources and Geology, 17(S1): 439-442. (in Chinese with English abstract)
    COX S F, KNACKSTEDT M A, BRAUN J, 2001. Principles of structural control on permeability and fluid flow in hydrothermal systems[J]. Reviews in Economic Geology, 14: 1-24. https://pubs.geoscienceworld.org/segweb/books/book/1227/chapter/107022596/Principles-of-Structural-Control-on-Permeability
    DAI M, YAN G S, LIU C, et al., 2016. The zircon U-Pb geochronology and the geochemistry of magmatic rocks and their constraints on the mineralization of Jiawula Pb-Zn-Ag deposit, Inner Mongolia, China[J]. Earth Science Frontiers, 23(5): 266-280. (in Chinese with English abstract)
    DUAN M X, REN Y S, HOU Z S, et al., 2014. Ore-forming fluid and ore genesis of the Biliya valley lead-zinc (silver) deposit in Erguna Region, Inner Mongolia[J]. Journal of Mineralogy and Petrology, 34(2): 60-67. (in Chinese with English abstract)
    DUAN P, FANG H B, 2003. The extensional direction of the Notheast part of Deerbugan deep fault: a remote sensing interpretation[J]. Remote Sensing for Land and Resources, (2): 1-4, 77. (in Chinese with English abstract)
    GE W C, LI X H, LIN Q, et al., 2001. Geochemistry of early cretaceous alkaline rhyolites from Hulun lake, Daxing'anling and its tectonic implications[J]. Chinese Journal of Geology, 36(2): 176-183. (in Chinese with English abstract)
    GE W C, WU F Y, ZHOU C Y, et al., 2005a. The age of the Tahe granite body in the northern Great Hinggan Mountains and its constraints on the structural ownership of the Erguna block[J]. Chinese Science Bulletin, 50(12): 1239-1247. (in Chinese) doi: 10.1360/csb2005-50-12-1239
    GE W C, WU F Y, ZHOU C Y, et al., 2005b. Zircon U-Pb ages and its significance of the Mesozoic granites in the Wulanhaote region, central Da Hinggan Mountain[J]. Acta Petrologica Sinica, 21(3): 749-762. (in Chinese with English abstract) https://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB200503016.htm
    GOLDFARB R J, GROVES D I, GARDOLL S, 2001. Orogenic gold and geologic time: a global synthesis[J]. Ore Geology Reviews, 18(1-2): 1-75. doi: 10.1016/S0169-1368(01)00016-6
    GROVES D I, GOLDFARB R J, GEBRE-MARIAM M, et al., 1998. Orogenic gold deposits: a proposed classification in the context of their crustal distribution and relationship to other gold deposit types[J]. Ore Geology Reviews, 13(1-5): 7-27. doi: 10.1016/S0169-1368(97)00012-7
    GUO Z J, LI J W, XU X Y, et al., 2016. Sm-Nd dating and REE composition of scheelite for the Honghuaerji scheelite deposit, Inner Mongolia, northeast China[J]. Lithos, 261: 307-321. doi: 10.1016/j.lithos.2016.03.006
    HUANG S Q, DONG S W, ZHANG F Q, et al., 2014. Tectonic deformation and dynamic characteristics of the middle part of the Mongolia-Okhotsk Collisional Belt, Mongolia[J]. Acta Geoscientia Sinica, 35(4): 415-424. (in Chinese with English abstract)
    JAQUES A L, JAIRETH S, WALSHE J L, 2002. Mineral systems of Australia: An overview of resources, settings and processes[J]. Australian Journal of Earth Sciences, 49(4): 623-660. doi: 10.1046/j.1440-0952.2002.00946.x
    JIA L M, LIU H Z, JU J X, et al., 2018. Protolith reconstruction and geotectonic environmental research of Xinghuadukou rock group in Lvlin forestry center, Daxing'anling[J]. Journal of Geomechanics, 24(4): 544-554. (in Chinese with English abstract)
    KUTINA J, 1999. The type of crustal fracture and the control of mineralization formed by the discontinuity of the mantle root structure[J]. Geoscience Frontiers, 6(1): 29-53.
    LI J W, LIANG Y W, WANG X Y, et al., 2011. The origin of the Erdaohezi lead-zinc Deposit, Inner Mongolia[J]. Journal of Jilin University (Earth Science Edition), 41(6): 1745-1754, 1783. (in Chinese with English abstract)
    LI J W, ZHANG D Q, ZHAO S B, et al., 2006. Metallogenic regularity and prospecting targets in the southwest part of the Derbugan PAGEXXXetallogenic belt[J]. Mineral Deposits, 25(S1): 19-22. (in Chinese with English abstract)
    LI J Y, 1986. A preliminary study on the ancient suture zone between the Sino-Korean plate and the Siberian plate in eastern Inner Mongolia[J]. Chinese Science Bulletin, 31(14): 1093-1096. (in Chinese) doi: 10.1360/csb1986-31-14-1093
    LI J Y. 2006. Permian geodynamic setting of Northeast China and adjacent regions: closure of the Paleo-Asian Ocean and subduction of the Paleo-Pacific Plate[J]. Journal of Asian Earth Sciences, 26(3-4): 207-224. doi: 10.1016/j.jseaes.2005.09.001
    LI J Y, ZHANG J, YANG T N, et al., 2009. Crustal tectonic division and evolution of the southern part of the North Asian orogenic region and its adjacent areas[J]. Journal of Jilin University (Earth Science Edition), 39(4): 584-605. (in Chinese with English abstract) https://en.cnki.com.cn/Article_en/CJFDTOTAL-CCDZ200904002.htm
    LI T G, WU G, LIU J, et al., 2016. Geochronology, fluid inclusions and isotopic characteristics of the Chaganbulagen Pb-Zn-Ag deposit, Inner Mongolia, China[J]. Lithos, 261: 340-355. doi: 10.1016/j.lithos.2016.04.029
    LI Y X, BI Y Q, LIU F H, et al., 2020. The ore-controlling rule and metallogenic prediction of No. 21 vein structure in Sanhe lead-zinc deposit[J]. China Resources Comprehensive Utilization, 38(6): 46-51. (in Chinese with English abstract)
    LIN Q, GE W C, CAO L, et al., 2003. Geochemistry of Mesozoic volcanic rocks in Da Hinggan Ling: The bimodal volcanic rocks[J]. Geochimica, 32(3): 208-222. (in Chinese with English abstract) https://www.researchgate.net/publication/281425583_Geochemistry_of_Mesozoic_volcanic_rocks_in_Da_Hinggan_Ling_The_bimodal_volcanic_rocks
    LIU Y J, LI W M, FENG Z Q, et al., 2017. A review of the Paleozoic tectonics in the eastern part of Central Asian Orogenic Belt[J]. Gondwana Research, 43: 123-148. doi: 10.1016/j.gr.2016.03.013
    MAO A S, XING L, LIU Z M, 2007. Geologic features, ore-hunting indicator of the Deerbuer Ag-Pb-Zn deposit[J]. Jilin Geology, 26(3): 18-21. (in Chinese with English abstract)
    MING Z, SUN J G, YAN J, et al., 2015. Forming environment and magmatic-hydrothermal evolution history of andesite in Deerbuer lead-zinc deposit of eastern Inner Mongolia: Zircon U-Pb dating[J]. Global Geology, 34(3): 590-598. (in Chinese with English abstract) http://html.rhhz.net/JLDXXBDQKXB/html/20170213.htm
    MUHTAR M N, WU C Z, BRZOZOWSKI M J, et al., 2020. Geochronology, geochemistry, and Sr-Nd-Pb-Hf-S isotopes of the wall rocks of the Kanggur gold polymetallic deposit, Chinese North Tianshan: Implications for petrogenesis and sources of ore-forming materials[J]. Ore Geology Reviews, 125: 103688. doi: 10.1016/j.oregeorev.2020.103688
    ROBERT F, 1990. Structural Setting and Control of Gold-bearing Quartz Veins of the Vald'Or Area, Southeastern Abitibi Subprovince. University of Western Australia Short Course Notes, 24: 167-210.
    SHE H Q, LI J W, XIANG A P, et al., 2012. U-Pb ages of the zircons from primary rocks in middle-northern Daxinganling and its implications to geotectonic evolution[J]. Acta Petrologica Sinica, 28(2): 571-594. (in Chinese with English abstract) https://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB201202019.htm
    SHUANG B, 2012. Metallogenic series and metallogenic prognosis of nonferrous and precious metal deposits in Manzhouli-Xinbarag Youqi[D]. Changchun: Jilin University. (in Chinese with English abstract)
    SIBSON R H, ROBERT F, POULSEN K H, 1988. High-angle reverse faults, fluid-pressure cycling, and mesothermal gold-quartz deposits[J]. Geology, 16(6): 551-555. doi: 10.1130/0091-7613(1988)016<0551:HARFFP>2.3.CO;2
    SILLITOE R H, 2000. Gold-rich porphyry deposits: descriptive and genetic models and their role in exploration and discovery[J]. Reviews in Economic Geology, 13: 315-345. https://pubs.geoscienceworld.org/segweb/books/book/1223/chapter/107028611/Gold-Rich-Porphyry-Deposits-Descriptive-and
    SUN G R, LI Y C, ZHANG Y, 2002. The basement tectonics of Ergun massif[J]. Geology and Resources, 11(3): 129-139. (in Chinese with English abstract)
    SUN L X, REN B F, ZHAO F Q, et al., 2013. Late Paleoproterozoic magmatic records in the Eerguna massif: evidences from the zircon U-Pb dating of granitic gneisses[J]. Geological Bulletin of China, 32(2-3): 341-352. (in Chinese with English abstract) https://www.researchgate.net/publication/279767980_Late_Paleoproterozoic_magmatic_records_in_the_Eerguna_massif_evidences_from_the_zircon_U-Pb_dating_of_granitic_gneisses
    WANG F, ZHOU X H, ZHANG L C, et al., 2006. Late Mesozoic volcanism in the Great Xing'an Range (NE China): Timing and implications for the dynamic setting of NE Asia[J]. Earth and Planetary Science Letters, 251(1-2): 179-198. doi: 10.1016/j.epsl.2006.09.007
    WU F Y, SUN D Y, GE W C, et al., 2011. Geochronology of the Phanerozoic granitoids in northeastern China[J]. Journal of Asian Earth Sciences, 41(1): 1-30. doi: 10.1016/j.jseaes.2010.11.014
    WU G, 2006. Metallogenic setting and metallogenesis of nonferrous-precious metals in Northern Da Hinggan Mountain[D]. Changchun: Jilin University. (in Chinese with English abstract)
    WU G, WANG G R, LIU J, et al., 2014. Metallogenic series and ore-forming pedigree of main ore deposits in northern Great Xing'an range[J]. Mineral Deposits, 33(6): 1127-1150. (in Chinese with English abstract)
    WU T T, ZHAO D F, SHAO J, et al., 2014. Geological and geochemical characteristics and genesis of the Biliyagu lead-zinc-silver deposit, Inner Mongolia[J]. Geology in China, 41(4): 1242-1252. (in Chinese with English abstract) https://en.cnki.com.cn/Article_en/CJFDTOTAL-DIZI201404017.htm
    XU W L, JI W Q, PEI F P, et al., 2009. Triassic volcanism in eastern Heilongjiang and Jilin provinces, NE China: Chronology, geochemistry, and tectonic implications[J]. Journal of Asian Earth Sciences, 34(3): 392-402. doi: 10.1016/j.jseaes.2008.07.001
    XU Z G, CHEN Y C, WANG D H, et al., 2008. Scheme of the classification of the minerogenetic units in China[M]. Beijing: Geological Publishing House. (in Chinese with English abstract)
    ZHANG B, LI J W, ZHANG D Q, et al., 2011. Geochemic features of Dongjun lead-zinc-silver deposit, Hailar Basin, Inner Mongolia[J]. Geological Review, 57(2): 253-260. (in Chinese with English abstract)
    ZHAO D, HAN R S, WANG J S, et al. 2020. Tectonic analysis of the Xiaohe Pb-Zn deposit in the northeast Yunnan mining area and its ore control model[J]. Journal of Geomechanics, 26(3): 345-362. (in Chinese with English abstract)
    ZHANG Y Q, DONG S W, 2019. East Asia multi-plate convergence in Late Mesozoic and the development of continental tectonic systems[J]. Journal of Geomechanics, 25(5): 613-641. (in Chinese with English abstract)
    ZHAO Y, 2017. Metallogenetic model and prospectings of the Pb-Zn-Ag deposit in the De'rbugan metallogenic belt, Inner Mongolia[D]. Beijing: China University of Geosciences (Beijing). (in Chinese with English abstract)
    ZHAO Y, LV J C, ZHANG D B, et al., 2017. Rb-Sr isochron age of De'rbur Pb-Zn-Ag deposit in Erguna massif of northeast Inner Mongolia and its geological significance[J]. Mineral Deposits, 36(4): 893-904. (in Chinese with English abstract) http://html.rhhz.net/ysxb/20181210.htm
    ZHAO Y, LV J C, ZHANG P, et al., 2018. Characteristics of ore-forming fluids in the De'rbur Pb-Zn-Ag deposit in the NW Great Hinggan mountains and its significance[J]. Acta Geologica Sinica, 92(1): 142-153. (in Chinese with English abstract) https://en.cnki.com.cn/Article_en/CJFDTotal-DZXE201801010.htm
    ZHAO Y, YANG Z Y, MA X H, 1994. Geotectonic transition from Paleoasian system and Paleotethyan system to Paleopacific active continental margin in eastern Asia[J]. Scientia Geologica Sinica, 29(2): 105-119. (in Chinese with English abstract)
    ZHOU Z H, 2011. Geology and geochemistry of Huanggang Sn-Fe deposit, Inner Mongolia[D]. Beijing: Chinese Academy of Geological Sciences. (in Chinese with English abstract)
    陈柏林. 2020. 断裂构造发育过程与控矿构造形成演化: 以邹家山铀矿床为例[J]. 地质力学学报, 26(3): 285-298. doi: 10.12090/j.issn.1006-6616.2020.26.03.027
    陈崇阳, 高有峰, 吴海波, 等, 2016. 海拉尔盆地火山岩的锆石U-Pb年龄及其地质意义[J]. 地球科学, 41(8): 1259-1274. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201608001.htm
    陈志广, 张连昌, 万博, 2006. 大兴安岭得尔布干多金属成矿带地质背景与成矿预测[J]. 矿床地质, 25(S1): 11-14. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ2006S1008.htm
    池贵军, 2003. 内蒙古得耳布尔银矿床物质组分特征[J]. 矿产与地质, 17(S1): 439-442. https://www.cnki.com.cn/Article/CJFDTOTAL-KCYD2003S1051.htm
    戴蒙, 严光生, 刘翠, 等, 2016. 内蒙古甲乌拉铅锌银矿区岩浆岩年代学、地球化学特征及其对成矿的约束[J]. 地学前缘, 23(5): 266-280. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201605032.htm
    段明新, 任云生, 侯召硕, 等, 2014. 内蒙古额尔古纳地区比利亚谷铅锌(银)矿床成矿流体特征与矿床成因[J]. 矿物岩石, 34(2): 60-67. https://www.cnki.com.cn/Article/CJFDTOTAL-KWYS201402010.htm
    段鹏, 方洪宾, 2003. 关于得尔布干深大断裂北东段延伸去向问题的遥感分析[J]. 国土资源遥感, (2): 1-4, 77. https://www.cnki.com.cn/Article/CJFDTOTAL-GTYG200302001.htm
    葛文春, 李献华, 林强, 等, 2001. 呼伦湖早白垩世碱性流纹岩的地球化学特征及其意义[J]. 地质科学, 36(2): 176-183. doi: 10.3321/j.issn:0563-5020.2001.02.005
    葛文春, 吴福元, 周长勇, 等, 2005a. 大兴安岭北部塔河花岗岩体的时代及对额尔古纳地块构造归属的制约[J]. 科学通报, 50(12): 1239-1247. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200512014.htm
    葛文春, 吴福元, 周长勇, 等, 2005b. 大兴安岭中部乌兰浩特地区中生代花岗岩的锆石U-Pb年龄及地质意义[J]. 岩石学报, 21(3): 749-762. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200503016.htm
    黄始琪, 董树文, 张福勤, 等, 2014. 蒙古-鄂霍茨克构造带中段构造变形及动力学特征[J]. 地球学报, 35(4): 415-424. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB201404004.htm
    贾立民, 刘洪章, 鞠佳星, 等, 2018. 大兴安岭绿林林场一带兴华渡口岩群原岩恢复及大地构造环境探讨[J]. 地质力学学报, 24(4): 544-554. doi: 10.12090/j.issn.1006-6616.2018.24.04.057
    李进文, 张德全, 赵士宝, 等, 2006. 得尔布干成矿带西南段金属成矿规律及找矿方向[J]. 矿床地质, 25(S1): 19-22. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ2006S1010.htm
    李进文, 梁玉伟, 王向阳, 等, 2011. 内蒙古二道河子铅锌矿成因研究[J]. 吉林大学学报(地球科学版), 41(6): 1745-1754, 1783. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201106009.htm
    李锦轶, 1986. 内蒙古东部中朝板块与西伯利亚板块之间古缝合带的初步研究[J]. 科学通报, 31(14): 1093-1096. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB198614014.htm
    李锦轶, 张进, 杨天南, 等, 2009. 北亚造山区南部及其毗邻地区地壳构造分区与构造演化[J]. 吉林大学学报(地球科学版), 39(4): 584-605. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ200904002.htm
    李永新, 毕亚强, 刘芳华, 等, 2020. 三河铅锌矿床21号脉构造控矿规律及成矿预测[J]. 中国资源综合利用, 38(6): 46-51. doi: 10.3969/j.issn.1008-9500.2020.06.015
    林强, 葛文春, 曹林, 等, 2003. 大兴安岭中生代双峰式火山岩的地球化学特征[J]. 地球化学, 32(3): 208-222. doi: 10.3321/j.issn:0379-1726.2003.03.002
    毛爱生, 邢琳, 刘智明, 2007. 得耳布尔银铅锌矿床地质特征及找矿标志[J]. 吉林地质, 26(3): 18-21. doi: 10.3969/j.issn.1001-2427.2007.03.005
    明珠, 孙景贵, 闫佳, 等, 2015. 内蒙古东部得耳布尔铅锌矿床安山岩的形成环境和岩浆热液演化史: 锆石U-Pb定年[J]. 世界地质, 34(3): 590-598. doi: 10.3969/j.issn.1004-5589.2015.03.002
    内蒙古自治区地质矿产局, 1991. 内蒙古自治区区域地质志[M]. 北京: 地质出版社.
    佘宏全, 李进文, 向安平, 等, 2012. 大兴安岭中北段原岩锆石U-Pb测年及其与区域构造演化关系[J]. 岩石学报, 28(2): 571-594. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201202019.htm
    双宝, 2012. 满洲里-新巴尔虎右旗有色、贵金属矿床成矿系列与成矿预测[D]. 长春: 吉林大学.
    孙广瑞, 李仰春, 张昱, 2002. 额尔古纳地块基底地质构造[J]. 地质与资源, 11(3): 129-139. doi: 10.3969/j.issn.1671-1947.2002.03.001
    孙立新, 任邦方, 赵凤清, 等, 2013. 内蒙古额尔古纳地块古元古代末期的岩浆记录: 来自花岗片麻岩的锆石U-Pb年龄证据[J]. 地质通报, 32(2-3): 341-352. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD2013Z1012.htm
    武广, 2006. 大兴安岭北部区域成矿背景与有色、贵金属矿床成矿作用[D]. 长春: 吉林大学.
    武广, 王国瑞, 刘军, 等, 2014. 大兴安岭北部主要金属矿床成矿系列和区域矿床成矿谱系[J]. 矿床地质, 33(6): 1127-1150. doi: 10.3969/j.issn.0258-7106.2014.06.001
    吴涛涛, 赵东芳, 邵军, 等, 2014. 内蒙古比利亚谷铅锌银矿床地质地球化学特征及成因[J]. 中国地质, 41(4): 1242-1252. doi: 10.3969/j.issn.1000-3657.2014.04.017
    徐志刚, 陈毓川, 王登红, 等, 2008. 中国成矿区带划分方案[M]. 北京: 地质出版社.
    张斌, 李进文, 张德全, 等, 2011. 内蒙古海拉尔盆地东珺铅锌银矿床地球化学特征[J]. 地质论评, 57(2): 253-260. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201102013.htm
    赵冻, 韩润生, 王加昇, 等. 2020. 滇东北矿集区小河铅锌矿床构造解析及其控矿模式[J]. 地质力学学报, 26(3): 345-362. doi: 10.12090/j.issn.1006-6616.2020.26.03.031
    张岳桥, 董树文, 2019. 晚中生代东亚多板块汇聚与大陆构造体系的发展[J]. 地质力学学报, 25(5): 613-641. doi: 10.12090/j.issn.1006-6616.2019.25.05.059
    赵越, 杨振宇, 马醒华, 1994. 东亚大地构造发展的重要转折[J]. 地质科学, 29(2): 105-119. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX402.000.htm
    赵岩, 2017. 内蒙古得尔布干成矿带铅锌银矿成矿模式与找矿预测[D]. 北京: 中国地质大学(北京).
    赵岩, 吕骏超, 张德宝, 等, 2017. 内蒙古东北部得耳布尔铅锌银矿床闪锌矿Rb-Sr年龄及地质意义[J]. 矿床地质, 36(4): 893-904. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ201704007.htm
    赵岩, 吕骏超, 张朋, 等, 2018. 大兴安岭北段得耳布尔铅锌银矿床成矿流体特征与意义[J]. 地质学报, 92(1): 142-153. doi: 10.3969/j.issn.0001-5717.2018.01.010
    周振华, 2011. 内蒙古黄岗锡铁矿床地质与地球化学[D]. 北京: 中国地质科学院.
  • 加载中
图(11)
计量
  • 文章访问数:  713
  • HTML全文浏览量:  171
  • PDF下载量:  77
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-29
  • 修回日期:  2021-11-15

目录

    /

    返回文章
    返回