留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

滇东北矿集区小河铅锌矿床构造解析及其控矿模式

赵冻 韩润生 王加昇 张小培 崔峻豪 李孜腾

许顺山, Nieto-SamaniegoAF, Alaniz-ÁlvarezSA, 2008. 断裂引起的应变量计算方法. 地质力学学报, 14 (4): 320-327.
引用本文: 赵冻, 韩润生, 王加昇, 等, 2020. 滇东北矿集区小河铅锌矿床构造解析及其控矿模式. 地质力学学报, 26 (3): 345-362. DOI: 10.12090/j.issn.1006-6616.2020.26.03.031
XU Shun-shan, Nieto-Samaniego AF, Alaniz-Álvarez SA, 2008. METHODS TO CALCULATE THE FAULT-RELATED STRAIN. Journal of Geomechanics, 14 (4): 320-327.
Citation: ZHAO Dong, HAN Runsheng, WANG Jiasheng, et al., 2020. Structural analysis and ore-controlling model of the Xiaohe lead-zinc deposit in ore-concentrated area, northeastern Yunnan, China. Journal of Geomechanics, 26 (3): 345-362. DOI: 10.12090/j.issn.1006-6616.2020.26.03.031

滇东北矿集区小河铅锌矿床构造解析及其控矿模式

doi: 10.12090/j.issn.1006-6616.2020.26.03.031
基金项目: 

国家自然科学基金项目 U1133602

国家自然科学基金项目 41572060

国家重点研发计划项目 2018YFC0603902

中国地质调查局整装勘查综合研究项目 12120114013901

云岭学者项目 2014

云南省矿产资源预测与评价工程实验室项目 2012

详细信息
    作者简介:

    赵冻(1990-), 男, 在读博士, 矿产普查与勘探专业。E-mail:zhaodong6511@163.com

    通讯作者:

    韩润生(1964-), 男, 研究员, 博士生导师, 从事矿床学、构造成矿动力学及隐伏矿床预测研究。E-mail:554670042@qq.com

  • 中图分类号: P618.4;P613

Structural analysis and ore-controlling model of the Xiaohe lead-zinc deposit in ore-concentrated area, northeastern Yunnan, China

  • 摘要: 小河铅锌矿是滇东北铅锌矿集区内少数几个由北西向主断裂控制的典型铅锌矿床之一,矿化蚀变的空间展布严格受构造控制。为查明其区内构造对矿化蚀变的控制作用特征,通过不同中段大比例尺构造-蚀变岩相学填图,对不同方向构造进行筛分,并对不同中段不同矿(化)体特征和蚀变特征开展了系统的剖析,结果表明:小河铅锌矿床矿化蚀变的岩石组成、类型及结构等相对简单,围岩蚀变以热液白云石化、方解石化、硅化和黄铁矿化为主;矿化主要为闪锌矿化、方铅矿化;该区构造组合形迹反映矿区内存在6期构造体系,分别为加里东期-海西期、印支早-中期、印支晚期-燕山早期、燕山中期、燕山晚期和喜马拉雅期;印支晚期-燕山早期成矿流体沿区内北西向张性-张扭性构造发生大规模运移,在断裂上盘及与之配套的次级断裂、构造破碎带、节理裂隙等构造有利部位成矿,并依次形成以断裂为中心且平面上呈带状展布的矿化蚀变分带:矿化边缘带(Ⅰ)→矿化过渡带(Ⅱ)→矿化中心带(Ⅲ)。最终建立了小河铅锌矿床构造控矿模式。研究成果对同类矿床及川滇黔接壤区的找矿预测具有重要指导意义。

     

  • 断裂作用可导致两种不同形式应变:连续应变和非连续应变。由断裂位移来估算的应变是非连续应变[1~3] (图 1)。由于应变概念只能应用于连续变形, 所以Jamison (1989) [1]引进了断裂应变这一词, 用来描述由一系列断裂位移导致的非连续变形。实际上, 断裂应变是非连续应变还是连续变形取决于所研究的范围和断裂位移的相对大小[1, 4]。如果所研究地区的尺度与断裂位移相比大很多, 断裂应变就可以视为连续变形。到目前为止, 断裂应变在构造地质界尤其在中国构造地质界没有得到足够重视。这主要是由于计算断裂应变必须获得每一条断裂位移大小和方向。这在野外工作中是比较困难的。因为往往缺乏合适的和足够的被错动标志体。但是对于露头条件很好的地区, 尤其是现代断裂活动区, 比较而言容易观察到断裂运动标志体。这些标志物很少经过后期的破坏和沉积物覆盖。

    图  1  一系列地堑和地垒引起地壳水平拉伸为Lf -L0。所以水平方向的应变为(Lf -L0) L0
    Figure  1.  The horizontal extension due to grabens and horsts is Lf -L0. Therefore, the horizontal strain is (Lf -L0) L0

    对于断裂应变, 有两种计算方法。一种是计算单个断裂引起的应变量, 也就是垂直断裂方向的剖面上求水平方向的应变。另一种通过研究区内所有断裂数据求断裂应变椭球体, 这样就可以知道主应变的方向和大小。本文只介绍第一种方法。

    变形实验表明, 在断裂发生前, 有一定的弹性应变积累。在静岩应力条件下(σv=σH=σh=ρgz), 其表达式为:

    (1)

    这里εh为静岩应力条件下的水平应变, E是扬氏模量, ν为泊松比, ρgz就是垂直应力。如果岩体变形已经达到断裂阶段, 这种弹性应变已不可恢复。但是它与断裂引起的塑性应变相比通常可以忽略不计。

    断裂作用过程中, 并不总是断块的刚性运动, 而是可以引起地块一定的塑性变形。这种塑性应变与断裂最大位移量和断裂长度有关。Schultz和Fossen (2002) [5]给出了一个计算公式:

    (2)

    这里D为断裂最大位移, L为断裂长度, δ为断裂倾角, 而σ为断裂面上有效应力的校正值, 其具体的计算表达式见Schultz和Fossen (2002) [5]

    据Schultz和Fossen (2002), 对于正断层, 计算出的伸展应变为2 %~ 3 %; 对于逆断层, 计算出的压缩应变为4 %~ 5 %。如图 2所示, 这种应变与断裂最大位移(D)与断裂长度(L)的比值成正相关。即比值越大, 应变量越大。

    图  2  断裂引起的塑性应变随深度和D/L比率的变化
    纵坐标表示深度, 深度单位为千米。横坐标表示应变, 单位为%
    Figure  2.  Map showing the relationships between plastic strain due to faulting and D/L ratio and depth of deformation
    Depth (km)is shown in the axis X and strain (%)is shown in the axis Y

    断裂应变与三个因素有关:断裂几何形态、断裂的旋转性、断裂的位移大小。这三种因素的不同组合, 给出的计算方法不一样。断裂有很多的分类方法, 在这里不一一列举。我们只介绍Wernicke (1982) [6]的分类方法。他是根据断裂形态和断裂旋转性来进行分类的(表 1)。按照这个分类, 只有平面状断裂不会引起地层旋转情况。铲状断裂可以引起地层旋转但本身不一定旋转。如果同时有地层和断裂旋转, 可以是平面状断裂也可以铲状断裂引起。

    表  1  据断裂形态和断裂旋转性的断裂分类(Wernicke, 1982) [6]
    Table  1.  The types of faults based on the geometry and rotation of faults[6]
    下载: 导出CSV 
    | 显示表格

    到目前为止, 已提出了三种断裂旋转机制。最早认为, 断裂旋转是刚性的, 断块内部没有任何变形[7]。这种机制存在的问题是断裂旋转产生的空隙, 这些空隙没有用其他的机制加以完满解释。而且这种空隙与旋转幅度成正比(图 3)。由于上述原因产生了垂直简单剪切和斜向简单剪切模型。垂直剪切机制提出断裂上盘由于断裂作用, 发生垂直方向的简单剪切作用。越靠近断裂, 剪切作用越强, 同时认为这种剪切机制也是地层旋转的原因[8~10]。然而有作者认为, 在铲状断裂的上盘, 剪切方向不一定是垂直的, 它可以在任何方向进行, 这取决于断裂的几何形态和远场应力作用状态。这就是所谓的斜向简单剪切机制[11] (图 4)。

    图  3  断裂刚性旋转示意图
    (a)表示断裂还没有位移时的状态; (b)表示断裂发生位移同时发生旋转, 断裂倾角变小。在问号处留下的空隙没有得到很好的解释。断裂旋转的角度等于地层的倾角, 也就是θ =δ0-δ
    Figure  3.  Diagram of the rigid -body mechanism
    (a)The initial state in which the faults are with no displacement; (b)The fault dips decrease with the rotation of faults.The spaces with interrogation marks are not well explained. The rotated angle of the bed is equal to that of the faults, that is to say, θ =δ0-δ
    图  4  断裂旋转的简单剪切模型
    (a)垂直剪切机制; (b)斜向剪切机制.剪切强度在靠近断裂时逐渐变大
    Figure  4.  Simple shear models for fault rotation
    (a) Vertical shear model; (b) Oblique shear model. For two models, the shear stress increases close to the fault plane

    当断裂和地层都不发生旋转时(δ =δ0), 断裂作用前后地层的长度不变(图 5)。断裂引起的伸长CB (对正断层而言)或缩短(对逆断层而言)等于断裂水平断距或平错。因为CB等于dcos (δ), 所以应变量应为:

    (3)
    图  5  断裂和地层都不发生旋转的断块示意图
    (a)为断裂运动前的状态; (b)为断裂运动后的状态
    Figure  5.  Diagram showing no rotation of both faults and bed
    (a) The state before the movement of faults; (b) The state after the movement of faults

    从(3)式可以看到, 应变的大小与断裂倾角成反相关关系; 也就是说, 对相同的总位移, 断裂倾角越大, 应变越小。同时也能看到, 应变与位移大小成正相关关系; 也就是说, 相同的断裂倾角, 总位移越大, 应变越大。

    对于刚性旋转机制断块(图 6), 由于在断块内部没有变形, 断裂旋转的角度等于地层的倾角, 即θ=δ0-δ。断裂的平错等于L0cot(δ)sin(θ), 断裂作用后的长度为DC′=DB+BC′=L0[cot(δ)sin(θ)+cos(θ)], 所以应变大小为:

    (4)
    图  6  刚性旋转机制断块示意图
    断裂旋转以后, 地层长度不发生变化
    Figure  6.  Diagram showing rigid -body rotation of faults and bed
    After rotation, the length of bed did not change

    由(4)式可以看到, 应变大小与断裂现在的倾角δ和地层的倾角θ有着很复杂的关系, 而不是我们想象的那么简单。特别地, 我们由断裂现在的倾角δ可以计算断裂形成时的倾角δ0, 其表达式是:

    (5)

    对于垂直剪切机制, 断块内部发生了垂直方向简单剪切。这样一来, 断块旋转以后的地层长度比原来的要长, 但在水平方向的投影与原始的长度一致。如图 7所示, 断裂平错为h =Lbcot(δ)sin(θ), 变形前的长为L0=Lbcos(θ), 所以应变大小为:

    (6)
    图  7  垂直剪切机制断块示意图
    断裂旋转使地层的长度发生变化
    Figure  7.  Sketch showing the vertical shear model
    The bed has changed its length after vertical shear

    由(6)式可以推断, 应变大小与断裂现在的倾角成反相关关系, 而与地层的倾角成正相关关系。有兴趣的读者可以计算一下, 对于相同的断裂旋转角, 垂直剪切引起的水平应变要大于刚性旋转引起的应变量[10]

    同样地, 由断裂现在的倾角δ可以计算断裂形成时的倾角δ0, 其表达式是:

    (7)

    可以看到, 对于垂直剪切机制, 变形前后的断裂倾角不是简单的代数关系。比较式(7)和式(5), 对于相同的地层倾角和断裂现在的倾角, 由垂直剪切机制得到的断裂原始倾角相对较小。

    斜向剪切机制与垂直剪切机制有些类似(图 8)。但是二者相比, 斜向剪切机制引起的拉伸量比垂直剪切机制引起的拉伸量大, 用等式表示为:

    (8)
    图  8  垂直剪切机制与斜向剪切机制拉伸量的对比
    α为剪切方向与垂直方向的夹角(据Westaway和Kusznir, 1993[10]修改)
    Figure  8.  Comparison of extension between the vertical shear and oblique shear
    The angle α is the intersection angle between shear and vertical direction (M odified from Westaway and Kusznir, 1993[10])

    其应变量为:

    (9)

    从这个方程可以推断, 当α等于零时, 式(9)等同于式(6)。式(9)可以进一步变为:

    (10)

    该式表明, 只要tan(α)tan(θ)小于1, 斜向剪切机制引起的拉伸量比垂直剪切机制引起的拉伸量大。据White等(1986)[11], α的大小一般小于45度, θ的大小也小于45度, 因此, tan(α)tan(θ)小于1。

    我们考察来自于墨西哥中央桌子山San Miguelito地区渐新世火山岩区的断裂。该区发育有一系列的多米诺式的正断层(图 9)。通过研究认为, 这些断裂经历了垂直剪切作用。

    图  9  墨西哥中央桌子山San Miguelito地区剖面地质图
    标志体为Cantera未熔结凝灰岩(据Xu等2004[12]修改)
    Figure  9.  Geological section from the San Miguelito of Mesa Central, Mexico
    The marker bed is Cantera unwelded tuff (Modified from Xu et al., 2004[12])

    断裂参数都是通过野外质地测量所得(表 2)。测量标志体为Cantera未熔结凝灰岩。地层倾角为断块内的平均值。也就是通过测量一系列的倾角值, 然后求得平均值。在一个断块内, 可以得到5~10个地层数据。我们看到, 每一断块的应变量各不相同。各断块的地层的拉伸应变的最大值15. 5 % (断块7), 而水平应变的最大值达31. 2 % (断块8)。对于整个剖面, 求得的应变量为20 %。

    表  2  图 9中各断块的断裂应变计算(据Xu等2004[12])
    Table  2.  Results of strains of the fault blocks in Fig. 9 (From Xu et al., 2004[12])
    下载: 导出CSV 
    | 显示表格

    (1) 断裂作用可导致连续应变即塑性变形与非连续应变。他们分别有不同的计算公式。

    (2) 计算断裂的非连续应变应考虑断裂几何形态、断裂的旋转与否、断裂的位移大小等三个因素。

    (3) 刚性旋转时, 没有断块内变形。它引起的水平非连续应变最小。垂直剪切作用使断块内地层变形, 即有地层的连续性应变。在相同条件下, 它引起的非连续应变量比刚性旋转机制引起的非连续应变量大。斜向剪切也使断块内地层变形, 也有地层的连续性应变。在相同条件下, 它引起的非连续应变比垂直剪切机制引起的非连续应变应变大。

    责任编辑:范二平
  • 图  1  滇东北小河铅锌矿区地质简图

    1-下二叠统栖霞茅口组;2-下二叠统梁山组;3-中泥盆统曲靖组;4-中泥盆统红石崖组;5-上奥陶统缩头山组;6-中奥陶统上巧家组;7-下奥陶统红石崖组;8-上寒武统龙头山组;9-中寒武统西王庙组;10-中寒武统陡坡寺组;11-下寒武统龙王庙组;12-下寒武统沧浪铺组;13-下寒武统筇竹寺组;14-上震旦统灯影组;15-逆断层;16-正断层;17-背斜;18-地质界线;19-矿体及编号;20-地层产状;21-大型铅锌矿床;22-中小型铅锌矿床;23-大型银矿床;24-市县;25-研究区a-区域构造和矿集区位置(据韩润生等,2014修改);b-小河铅锌矿区地质简况(据云南省煤田地质局昆明工程勘察公司,2010修改)

    Figure  1.  Geological sketch map of the Xiaohe Pb-Zn deposit

    图  2  不同成矿阶段的闪锌矿与方铅矿结构构造及产状

    P-黄铁矿;D-白云石;S-闪锌矿;G-方铅矿a-S1闪锌矿与G1方铅矿;b-块状S2闪锌矿与G2方铅矿;c-浸染状S1闪锌矿与G1方铅矿;d-D3白云石包裹S1闪锌矿和G1方铅矿;e-块状S2闪锌矿与G2方铅矿;f-脉状S2闪锌矿;g-浸染状方铅矿G2;h-D3脉状白云石包裹浸染状G2方铅矿;i-近断裂呈浸染状分布的方铅矿G2

    Figure  2.  Textures and occurrences of sphalerite and galena in different metallogenic stages

    图  3  不同成矿阶段的黄铁矿结构构造及产状

    P-黄铁矿;D-白云石a-围岩内发育浸染状黄铁矿P1;b-围岩中的浸染状黄铁矿P2;c-细脉状白云岩D1和浸染状黄铁矿P2;d, e-D3热液白云岩及块状黄铁矿P3;f-P3块状黄铁矿;g, h-透镜状黄铁矿;i-脉状白云岩D4穿插接触黄铁矿P4

    Figure  3.  Textures and occurrences of pyrite in different metallogenic stages

    图  4  不同成矿阶段的白云石、方解石结构构造及产状

    S-闪锌矿;P-黄铁矿;D-白云石;C-方解石a-细脉状白云石D1;b-D2呈细网脉状,内可见P2浸染状黄铁矿;c-D3脉状白云石中发育粒状黄铁矿P4和闪锌矿S1;d-团斑状白云石D4;e-方解石C1穿插接触D4白云岩;f-C1方解石包裹白云岩角砾及P3黄铁矿;g-i-浅灰白色白云岩中呈透明-半透明方解石C2

    Figure  4.  Textures and occurrences of dolomite and calcite in different metallogenic stages

    图  5  不同成矿阶段的石英结构构造及产状

    Q-石英;S-闪锌矿;D-白云石a-白云石-石英呈自形粒状结构(+);b-梳状构造石英Q1与D2共生(+);c-斑团状石英Q2和D2白云石共生(-);d-S1闪锌矿溶蚀它形粒状石英Q1(+);e-S1闪锌矿、D3白云石和Q2石英穿切白云岩(+);f-h-脉状石英Q2穿切白云岩(+);i-脉状石英Q2产与断裂带中(+);(+)-正交偏光;(-)-单偏光

    Figure  5.  Textures and occurrences of quartz in different metallogenic stages

    图  6  小河铅锌矿蚀变分带模式图

    a-老伙房6号坑991中段;b-炉房沟2号坑2中段

    Figure  6.  Alteration zoning patterns of the Xiaohe Pb-Zn deposit

    图  7  小河铅锌矿床6号和2号坑道编录图

    a-老伙房6号坑991中段1号穿脉: b-炉房沟2号坑2中段6号穿脉: c-炉房沟2号坑2中段2号穿脉; 图中产状表示方法为:走向 < 倾角倾向(以下类同)

    Figure  7.  Geolograph chart of the No.6 and No.2 adits in the Xiaohe Pb-Zn deposit

    图  8  小河铅锌矿床F9断裂剖面素描及断裂吴氏网下半球投影图

    ①-灰黑色-深灰色硅化细晶白云岩;②-灰-浅灰色硅质白云岩角砾,棱角分明,被泥质、土质胶结;③-灰黑色方解石化细晶硅质碎裂白云岩;④-断裂带内发育黄褐色断层泥及灰绿色-浅灰色白云质碎粉岩;⑤-浅灰色白云石化硅质碎裂-碎粒岩;⑥-浅灰色白云石化碎粒-斑岩;σ1-压应力;σ2-剪应力;σ3-张应力

    Figure  8.  Profile sketch and the lower hemisphere Wulff projection of the fault F9 in the Xiaohe Pb-Zn deposit

    图  9  小河铅锌矿床近南北向断裂素描及力学性质分析图

    Py-黄铁矿;Gn-方铅矿;Sp-闪锌矿a-F4断裂素描图及照片:①-灰色白云质碎裂岩;②-白云质构造角砾岩,被灰色、黄褐色泥质物胶结;③-黄褐色构造角砾岩;④-第四系堆积物b-f5与f6断裂素描图及照片:①-灰黑色细晶白云岩,具黄铁矿化、铅锌矿化;②-片理化带; σ1-压应力;σ2-剪应力;σ3-张应力

    Figure  9.  Profile sketch mapping and mechanical properties analysis of the near SN-trending faults in the Xiaohe Pb-Zn deposit

    图  10  小河矿段XH-22点断裂素描及力学性质分析图

    ①-灰白色硅化粉晶白云岩;②-灰-灰黑色细晶白云岩;Py-黄铁矿化;Cc-方解石化;σ1-压应力;σ2-剪应力;σ3-张应力

    Figure  10.  Sketch of the fault at the point XH-22 in the Xiaohe section and the diagrams of its mechanical properties

    图  11  小河铅锌矿床构造体系及其演化图解(据崔俊豪等,2018修改)

    1-压性断层;2-张性断层;3-扭性断层;4-压扭性断层;5-扭压性断层;6-张扭性断层;7-褶皱

    Figure  11.  Plots showing the tectonic system and evolution of the Xiaohe Pb-Zn deposit (modified after Cui et al, 2018)

    图  12  小河铅锌矿床构造控矿模式

    Figure  12.  Structure-controlling model of the Xiaohe Pb-Zn deposit

    表  1  小河铅锌矿床成矿阶段划分及矿物生成顺序

    Table  1.   Paragenetic sequence of minerals in the Xiaohe Pb-Zn deposit

  • CHEN X H, CHEN Z L, YANG N, 2009. Study on regional mineralizations and ore-field structures:building of mineralizing tectonic systems[J]. Journal of Geomechanics, 15(1):1-19. (in Chinese with English abstract)
    CHEN Z L, YANG N, WANG P A, et al., 2011. Analysis of the tectonic stress field in the Xiangshan uranium ore field, Linchuan area, Jiangxi, China[J]. Geological Bulletin of China, 30(4):514-531. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgqydz201104008
    CUI J H, HAN R S, WANG J S, et al., 2018. Generation and Development of Structures and Their Controls on Ore Mineralization in the Lehong Zinc-lead Deposit, Northeastern Yunnan[J]. Geotectonica et Metallogenia, 42(4):664-680. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ddgzyckx201804007
    DENG J, WANG C M, LI W C, et al., 2014. The situation and enlightenment of the research of the tectonic evolution and metallogenesis in the Sanjiang Tethys[J]. Earth Science Frontiers, 21(1):52-64. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dxqy201401006
    HAN K, 2019. Application of the structure-alteration lithofacies mapping method in ore prospecting:An example of the Huanglong gold deposit in Hanyin, South Qinling[J]. Geology and Exploration, 55(4):939-954. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTotal-DZKT201904005.htm
    HAN R S, CHEN J, HUANG Z L, et al., 2006. Dynamics of tectonic ore-forming processes and localization-prognosis of concealed orebodies:As exemplified by the Huize super-large Zn-Pb-(Ag-Ge) district, Yunnan[M]. Beijing:Science Press, 1-79. (in Chinese with English abstract)
    HAN R S, LIU C Q, HUANG Z L, et al., 2007. Geological features and origin of the Huize carbonate-hosted Zn-Pb-(Ag) district, Yunnan, South China[J]. Ore Geology Reviews, 31(1-4):360-383. doi: 10.1016-j.oregeorev.2006.03.003/
    HAN R S, ZOU H J, HU B, et al., 2007. Features of fluid inclusions and sources of ore-forming fluid in the Maoping carbonate-hosted Zn-Pb-(Ag-Ge) deposit, Yunnan, China[J]. Acta Petrologica Sinica, 23(9):2109-2118. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200709010
    HAN R S, LIU C Q, CARRANZA E J M, et al., 2012. REE geochemistry of altered tectonites in the huize base-metal district, Yunnan, China[J]. Geochemistry:Exploration, Environment, Analysis, 12(2):127-146. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=c74383dd02ccde1c345cf4661a279afe
    HAN R S, HU Y Z, WANG X K, et al., 2012. Mineralization model of rich Ge-Ag-bearing Zn-Pb polymetallic deposit concentrated district in northeastern Yunnan, China[J]. Acta Geologica Sinica, 86(2):280-294. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb201202007
    HAN R S, WANG F, HU Y Z, et al., 2014. Metallogenic tectonic dynamics and chronology constrains on the Huize-type (HZT) Germanium-rich silver-zinc-lead deposits[J]. Geotectonica et Metallogenia, 38(4):758-768. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ddgzyckx201404003
    HAN R S, LI B, NI P, et al., 2016. Infrared micro-thermometry of fluid inclusion in sphalerite and geological sigificance of Huize super-large Zn-Pb-(Ge-Ag) deposit, Yunnan Province[J]. Journal of Jilin University (Earth Science Edition). 38(4):758-768. (in Chinese with English abstract)
    He S H, Rong H F, Shang W, et al., 2006. Geological characterisitcs and genesis of Maozu lead and zinc deposit, Yunnan[J]. Mineral Resources and Geology. 20(4-5):397-402. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kcydz200604013
    HU Y G, 2000. Occurrence of silver, sources of mineralized substances and ore-forming mechanism of Yinchangpo silver polymetallic deposit, Guizhou Province, China[D]. Guiyang: Institute of Geochemistry Chinese Academy of Sciences: 1-88. (in Chinese)
    HUANG Z L, CHEN J, LIU C Q, et al., 2001. A preliminary discussion on the genetic relationship between Emeishan basalts and Pb-Zn deposits as exemplified by the Huize Pb-Zn deposit, Yunnan Province[J]. Acta Mineralogica Sinica, 21(4):681-688. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kwxb200104019
    Kunming Engineering Survey Company of Yunnan Coalfield Geology Bureau, 2010. Verification Report of Mineral Reserves of Xiaohe Lead-Zinc Mine in Ludian County, Yunnan Province[R]. 5-75. (in Chinese)
    LI B, HAN R S, WEN S M, et al., 2014. Structural characteristics and fault tectono-geochemistry of the Songliang lead-zinc deposit in Northeast Yunnan, China[J]. Geotectonica et Metallogenia, 38(4):855-865. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ddgzyckx201404011
    LI W B, HUANG Z L, ZHANG G, 2006. Sources of the ore metals of the Huize ore field in Yunnan Province:Constraints from Pb, S, C, H, O and Sr isotope geochemistry[J]. Acta Petrologica Sinica, 22(10):2567-2580. (in Chinese with English abstract) http://www.cnki.com.cn/Article/CJFDTotal-YSXB200610017.htm
    LIU H C, LIN W D, 1999. Regularity research of Ag-Zn-Pb ore deposits North-East Yunnan Province[M]. Kunming:Yunnan University Press, 1-468. (in Chinese with English abstract)
    L? G X, 2019. Research on tectonic dynamo-petrogenesis and metallogenesis and tectonophysicochemistry[J]. Journal of Geomechanics, 25(5):962-980. (in Chinese with English abstract) http://d.old.wanfangdata.com.cn/Periodical/dzlxxb201905024
    MAO J W, ZHOU Z H, FENG C Y, et al., 2012. A preliminary study of the Triassic large-scale mineralization in China and its geodynamic setting[J]. Geology in China, 39(6):1437-1471. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgdizhi201206001
    REN T, ZHOU J X, WANG D, et al., 2019. Trace elemental and S-Pb isotopic geochemistry of the Fule Pb-Zn deposit, NE Yunnan Province[J]. Acta Petrologica Sinica, 35(11):3493-3505. (in Chinese with English abstract) http://d.old.wanfangdata.com.cn/Periodical/ysxb98201911015
    SHI Y B, YAN C M, CHEN S H, et al., 2019. Geology of mineral resources of Yunnan Province[M]. Beijing: Geological Publishing House: 1-515. (in Chinese)
    TANG Z, LI W C, WANG C B, et al., 2016. Geochemical characteristics of primary halo and prospecting of Lehong Pb-Zn deposit in northeastern Yunnan[J]. Mineral Exploration, 7(4):657-666. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ytgcj201604020
    WANG J Z, LI Z Q, NI S J, 2003. Origin of ore-forming fluids of Mississippi Valley-Type (MVT) Pb-Zn deposits in Kangdian area, China[J]. Chinese Journal of Geochemistry, 22(4):369-376. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgdqhx-e200304010
    WU Y T, HAN R S, REN T, et al., 2017. REE geochemistry of fluorite from Maozu Pb-Zn deposit and its geological implications, Northeastern Yunnan, China[J]. Journal of the Chinese Society of Rare Earths, 35(3):403-412. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgxtxb201703013
    YU J, 2012. Progress and prospect in the study of ore field structure based on geomechanics theroy[J]. Geology and Exploration, 48(1):102-109. (in Chinese with English abstract) http://d.old.wanfangdata.com.cn/Periodical/dzykt201201012
    ZHANG C Q, MAO J W, WU S P, et al., 2005. Distribution, characteristics and genesis of Mississippi Valley-Type lead-zinc deposits in Sichuan-Yunnan-Guizhou area[J]. Mineral Deposits, 24(3):336-350. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kcdz200503013
    ZHANG C Q, WU Y, HOU L, et al., 2015. Geodynamic setting of mineralization of Mississippi Valley-type deposits in world-class Sichuan-Yunnan-Guizhou Zn-Pb triangle, southwest China:Implications from age-dating studies in the past decade and the Sm-Nd age of Jinshachang deposit[J]. Journal of Asian Earth Sciences, 103:103-114.
    ZHANG Y X, WU Y, TIAN G, et al., 2014. Mineralization age and the source of ore-forming material at Lehong Pb-Zn deposit, Yunnan Province:Constraints from Rb-Sr and S isotopes system[J]. Acta Mineralogica Sinica, 34(3):305-311. (in Chinese with English abstract) http://d.old.wanfangdata.com.cn/Periodical/kwxb201403002
    ZHAO D, HAN R S, REN T, et al., 2016. The mineralization and alteration zoning of the Le-hong lead zinc deposit, the large deposit concentration area in the Northeast of Yunnan Province, China[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 35(6):1258-1269. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kwysdqhxtb201606017
    ZHAO D, HAN R S, WANG J S, et al., 2017. REE Geochemical Characteristics in Lehong Large Lead-Zinc Deposit, Northeastern Yunnan Province, China[J]. Acta Mineralogica Sinica, 37(5):588-595. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-KWXB201705009.htm
    ZHOU J X, HUANG Z L, GAO J G, et al., 2012. Sources of ore-forming metals and fluids, and mechanism of mineralization, Maozu large carbonate-hosted lead-zinc deposit, northeast Yunnan Province[J]. Journal of Mineralogy & Petrology, 32(3):62-69. (in Chinese with English abstract) http://www.researchgate.net/publication/288131531_Sources_of_Ore-forming_metals_and_fluids_and_mechanism_of_mineralizationmaozu_large_carbonare-hosted_Lead-znic_deposit_Northeast_Yunnan_Province
    ZHOU J X, HUANG Z L, YAN Z F, 2013. The origin of the Maozu carbonate-hosted Pb-Zn deposit, southwest China:Constrained by C-O-S-Pb isotopic compositions and Sm-Nd isotopic age[J]. Journal of Asian Earth Sciences, 73:39-47. http://www.sciencedirect.com/science/article/pii/S1367912013002411
    ZHOU Y M, 2001. Characteristics and ore-controlling role of the thrusting nappe structure in the Lemachang silver deposit[J]. Mineral Deposits, 20(3):271-278. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kcdz200103011
    ZHOU Y M, 2003. Geological characteristics of the Lehong lead-zinc deposit in Northeastern Yunnan and its orr-search prospects[J]. Geology-Geochemistry, 31(4):16-21. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZDQ200304003.htm
    陈宣华, 陈正乐, 杨农, 2009.区域成矿与矿田构造研究:构建成矿构造体系[J].地质力学学报, 15(1):1-19. https://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?flag=1&file_no=20090101&journal_id=dzlxxb
    陈正乐, 杨农, 王平安, 等, 2011.江西临川地区相山铀矿田构造应力场分析[J].地质通报, 30(4):514-531. http://d.old.wanfangdata.com.cn/Periodical/zgqydz201104008
    崔峻豪, 韩润生, 王加昇, 等, 2018.滇东北乐红铅锌矿床构造成生发展及其控矿作用[J].大地构造与成矿学, 42(4):664-680. http://d.old.wanfangdata.com.cn/Periodical/ddgzyckx201804007
    邓军, 王长明, 李文昌, 等, 2014.三江特提斯复合造山与成矿作用研究态势及启示[J].地学前缘, 21(1):52-64. http://d.old.wanfangdata.com.cn/Periodical/dxqy201401006
    韩珂, 2019.构造-蚀变岩相填图方法在南秦岭汉阴黄龙金矿中的应用[J].地质与勘探, 55(4):939-954. http://d.old.wanfangdata.com.cn/Periodical/dzykt201904005
    韩润生, 陈进, 黄智龙, 等, 2006.构造成矿动力学及隐伏矿定位预测:以云南会泽超大型铅锌(银、锗)矿床为例[M].北京:科学出版社, 1-79.
    韩润生, 邹海俊, 胡彬, 等, 2007.云南毛坪铅锌(银、锗)矿床流体包裹体特征及成矿流体来源[J].岩石学报, 23(9):2109-2118. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200709010
    韩润生, 胡煜昭, 王学琨, 等, 2012.滇东北富锗银铅锌多金属矿集区矿床模型[J].地质学报, 86(2):280-294. http://d.old.wanfangdata.com.cn/Periodical/dizhixb201202007
    韩润生, 王峰, 胡煜昭, 等, 2014.会泽型(HZT)富锗银铅锌矿床成矿构造动力学研究及年代学约束[J].大地构造与成矿学, 38(4):758-771. http://d.old.wanfangdata.com.cn/Periodical/ddgzyckx201404003
    韩润生, 李波, 倪培, 等. 2016.闪锌矿流体包裹体显微红外测温及其矿床成因意义:以云南会泽超大型富锗银铅锌矿床为例[J].吉林大学学报:地球科学版, 46(1):91-104. http://d.old.wanfangdata.com.cn/Periodical/cckjdxxb201601010
    贺胜辉, 荣惠锋, 尚卫, 等. 2006.云南茂租铅-锌矿床地质特征及成因研究[J].矿产与地质, 20(4-5):397-402. http://d.old.wanfangdata.com.cn/Periodical/kcydz200604013
    胡耀国, 2000.贵州银厂坡银多金属矿床银的赋存状态、成矿物质来源与成矿机制[D].贵阳: 中国科学院地球化学研究所: 1-88.
    黄智龙, 陈进, 刘丛强, 等, 2001.峨眉山玄武岩与铅锌矿床成矿关系初探:以云南会泽铅锌矿床为例[J].矿物学报, 21(4):681-688. http://d.old.wanfangdata.com.cn/Periodical/kwxb200104019
    云南省煤田地质局昆明工程勘察公司, 2010.云南省鲁甸县小河铅锌矿核查矿区资源储量核查报告[R]. 5-75.
    李波, 韩润生, 文书明, 等, 2014.滇东北巧家松梁铅锌矿床构造特征及构造地球化学[J].大地构造与成矿学, 38(4):855-865. http://d.old.wanfangdata.com.cn/Periodical/ddgzyckx201404011
    柳贺昌, 林文达, 1999.滇东北铅锌银矿床规律研究[M].昆明:云南大学出版社, 1-468.
    吕古贤, 2019.构造动力成岩成矿和构造物理化学研究[J].地质力学学报, 25(5):962-980. https://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?flag=1&file_no=20190523&journal_id=dzlxxb
    李文博, 黄智龙, 张光, 等. 2006.云南会泽铅锌矿田成矿物质来源:Pb、S、C、H、O、Sr同位素制约[J].岩石学报, 22(10):2567-2580. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200610018
    毛景文, 周振华, 丰成友, 等, 2012.初论中国三叠纪大规模成矿作用及其动力学背景[J].中国地质, 39(6):1437-1471. http://d.old.wanfangdata.com.cn/Periodical/zgdizhi201206001
    任涛, 周家喜, 王蝶, 等, 2019.滇东北富乐铅锌矿床微量元素和S-Pb同位素地球化学研究[J].岩石学报, 35(11):3493-3505. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201911015
    唐忠, 李文昌, 王长兵, 等, 2016.滇东北乐红铅锌矿原生晕特征及深部找矿预测[J].矿产勘查, 7(4):657-666. http://d.old.wanfangdata.com.cn/Periodical/ytgcj201604020
    吴永涛, 韩润生, 任涛, 等, 2017.滇东北矿集区茂租铅锌矿床萤石的稀土元素特征及其指示意义[J].中国稀土学报, 35(3):403-412. http://d.old.wanfangdata.com.cn/Periodical/zgxtxb201703013
    余佳. 2012.地质力学矿田构造的进展与前景[J].地质与勘探, 48(1):102-109. http://d.old.wanfangdata.com.cn/Periodical/dzykt201201012
    张长青, 毛景文, 吴锁平, 等, 2005.川滇黔地区MVT铅锌矿床分布、特征及成因[J].矿床地质, 24(3):336-350. http://d.old.wanfangdata.com.cn/Periodical/kcdz200503013
    张云新, 吴越, 田广, 等, 2014.云南乐红铅锌矿床成矿时代与成矿物质来源:Rb-Sr和S同位素制约[J].矿物学报, 34(3):305-311. http://d.old.wanfangdata.com.cn/Periodical/kwxb201403002
    赵冻, 韩润生, 任涛, 等, 2016.滇东北大型矿集区乐红大型铅锌矿床矿化蚀变分带模式[J].矿物岩石地球化学通报, 35(6):1258-1269. http://d.old.wanfangdata.com.cn/Periodical/kwysdqhxtb201606017
    赵冻, 韩润生, 王加昇, 等, 2017.滇东北乐红大型铅锌矿床稀土元素地球化学特征[J].矿物学报, 37(5):588-595. http://www.cqvip.com/QK/95783X/20175/673768038.html
    周家喜, 黄智龙, 高建国, 等, 2012.滇东北茂租大型铅锌矿床成矿物质来源及成矿机制[J].矿物岩石, 32(3):62-69. http://d.old.wanfangdata.com.cn/Periodical/kwys201203009
    周云满, 2001.乐马厂银矿逆冲推覆构造特征及控矿作用[J].矿床地质, 20(3):271-278. http://d.old.wanfangdata.com.cn/Periodical/kcdz200103011
    周云满, 2003.滇东北乐红铅锌矿床地质特征及找矿远景[J].地质地球化学, 31(4):16-21. http://d.old.wanfangdata.com.cn/Periodical/dzdqhx200304003
  • 加载中
图(12) / 表(1)
计量
  • 文章访问数:  470
  • HTML全文浏览量:  97
  • PDF下载量:  53
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-04-30
  • 修回日期:  2020-05-13
  • 刊出日期:  2020-06-30

目录

/

返回文章
返回