Provenance study on geochemical elements of detrital K-feldspar in Quaternary gravel layer in Yichang and its geological significance
-
摘要: 位于长江三峡出口的宜昌地区分布着一套第四纪砂砾石层,详细记录了区域内古环境变迁以及长江的形成与演化,但这些砾石层何时与长江上游物质建立物源关系一直存在较大争议。而钾长石是河流沉积物中常见的矿物,其地球化学元素组成在不同区域内存在显著差异,是进行河流物源对比研究的理想矿物。基于此,利用激光剥蚀电感耦合等离子质谱仪(LA-ICP-MS)对宜昌第四纪砾石层和宜昌以上长江流域开展碎屑钾长石原位主微量元素和主成分(PCA)分析,结合砾石层已发表的地层沉积年龄,综合区域内已发表的研究结果,系统对比分析宜昌砾石层与长江上游物质建立物源联系的时间,结果表明在1.15 Ma时宜昌砾石层和长江流域存在物源关系;在0.75 Ma时随着长江上游水系的拓展与调整,有新物源区的物质进入长江。这些物源变化现象,主要体现了1.2~0.7 Ma期间长江流域受东亚和南亚夏季风的气候影响出现的沉积过程。Abstract: The Yichang area located at the exit of the Three Gorges is covered with a set of thick Quaternary gravel layers, recording the evolution of the paleoenvironment and the formation of the Yangtze River. However, there has been a great dispute over the time when the Yangtze River materials in the upper reaches entered the western margin of the Jianghan Basin. K-feldspar is a common mineral in fluvial sediments, and its geochemical element compositions are significantly different in different regions, making it an ideal mineral for the fluvial provenance study. In this case, we utilized the laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) to analyze the elementary compositions of detrital K-feldspar grains (n=340) on the gravel layers of the Yichang area and the upper reaches of the Yangtze River. In combination of principal component analysis (PCA) with formation sedimentary ages of gravel layers, we discussed the time when they established the provenance connection. The results show that the provenance connection has been established since 1.15 Ma and a new provenance area appeared at 0.75 Ma, suggesting that the Yangtze River drainage was strongly influenced by the East and South Asian summer monsoon during the period of 1.2~0.7 Ma.
-
Key words:
- gravel layer in Yichang /
- K-feldspar /
- element characteristics /
- provenance tracing /
- Yangtze River
-
图 1 研究区位置图
a—江汉盆地和采样位置分布图; b—宜昌砾石层主要研究地点位置图; c—李家院子和机场路柱状剖面图(据康春国等, 2014修改; 地层年龄引用自Xiang et al., 2020和Wei et al., 2020)
Figure 1. Location map of the study area
(a) Distribution diagram of the Jianghan Basin and the sampling location; (b) Location map of the main study site in the gravel layers in Yichang; (c) Columnar profile of Lijiayuanzi and Jichang Road (modified after Kang et al., 2014; Stratigraphic ages were cited from Xiang et al., 2020 and Wei et al., 2020)
图 5 江汉盆地和长江三角洲第四纪钻孔地球化学指标与南海、黄土高原和塔里木盆地气候变化指标综合对比图(江汉盆地数据参考张玉芬等, 2008; 康春国等, 2009; 袁胜元等, 2012; 长江三角洲数据参考黎兵等, 2011; 南海气候指标引自Wan et al., 2007; 黄土高原气候指标引自Meng et al., 2018; 塔里木盆地气候指标引自Liu et al., 2020)
Figure 5. A comprehensive comparison map of the Quaternary borehole geochemical index of the Jianghan Basin(Zhang et al., 2008; Kang et al., 2009; Yuan et al., 2012) and Yangtze River Delta(Li et al., 2011) with the climate change index of South China Sea(Wan et al., 2007), Loess Plateau(Meng et al., 2018) and Tarim Basin(Liu et al., 2020)
表 1 宜昌砾石层和长江上游碎屑钾长石LA-ICP-MS数据统计表
Table 1. Descriptive statistics of LA-ICP-MS data for K-feldspar grains from the fluvial sands from gravel layers in Yichang and upper reaches of the Yangtze River
元素名称(单位) 金沙江(n=50) 岷江(n=50) 嘉陵江(n=50) 长江(n=50) 机场路(n=70) 李家院子(n=70) 最小值 最大值 平均值 最小值 最大值 平均值 最小值 最大值 平均值 最小值 最大值 平均值 最小值 最大值 平均值 最小值 最大值 平均值 K2O(×10-2) 10.6 16.9 14.8 10.1 16.6 14.4 12.7 17.9 14.9 10.1 16.3 14.7 10.5 16.1 14.3 10.1 16.3 14.6 Na2O(×10-2) 0.1 4.0 1.1 0.2 4.5 1.4 0.1 2.5 1.0 0.2 4.4 1.0 0.2 3.5 1.1 0.1 4.3 1.0 SiO2(×10-2) 63.6 65.7 64.4 62.9 65.8 64.2 61.6 65.0 64.0 62.8 65.6 64.1 63.0 65.5 64.3 63.1 65.7 64.0 CaO(×10-2) 0.01 0.4 0.1 0.01 0.5 0.09 0.02 0.4 0.1 0.01 0.4 0.1 0.01 1.0 0.23 0.01 0.6 0.1 P2O5(×10-2) 0.04 0.2 0.06 0.05 0.1 0.06 0.05 0.3 0.07 0.05 0.2 0.07 0.04 0.2 0.05 0.05 0.2 0.07 B(×10-6) 7.0 43.7 16.0 7.2 63.2 15.1 4.5 39.1 13.0 5.5 29.2 10.8 12.3 47.9 22.9 2.8 19.2 12.3 Li(×10-6) 0.0 40.2 2.7 0.0 41.5 6.2 0.0 18.2 3.0 0.0 40.8 3.1 0.0 17.7 2.0 0.0 51.7 3.2 Sc(×10-6) 0.9 3.6 1.5 1.3 3.1 1.7 1.0 2.2 1.6 1.1 2.1 1.5 1.9 4.5 2.7 1.2 4.0 1.8 Sn(×10-6) 0.3 8.5 3.0 2.3 6.3 4.3 1.2 10.4 3.9 2.0 9.8 3.8 2.9 20.6 5.2 2.4 9.6 4.4 Zn(×10-6) 0 54.9 2.9 0 13.2 1.2 0 5.9 1.0 0 9.5 1.1 0 6.1 1.4 0 23.9 1.4 -
ADAM J, GREEN T H, SIE S H, et al., 1997. Trace element partitioning between aqueous fluids, silicate melts and minerals[J]. European Journal of Mineralogy, 9(3): 569-584. doi: 10.1127/ejm/9/3/0569 ALIZAI A, CLIFT P D, GIOSAN L, et al., 2011. Pb isotopic variability in the modern-Pleistocene Indus River system measured by ion microprobe in detrital K-feldspar grains[J]. Geochimica et Cosmochimica Acta, 75(17): 4771-4795. doi: 10.1016/j.gca.2011.05.039 BEA F, PEREIRA M D, STROH A. 1994. Mineral/leucosome trace-element partitioning in a peraluminous migmatite (a laser ablation-ICP-MS study)[J]. Chemical Geology, 117(1-4): 291-312. doi: 10.1016/0009-2541(94)90133-3 BUREAU H, MÉNEZ B, KHODJA H, et al., 2003. The partitioning of barium and lead between silicate melts and aqueous fluids at high pressures and temperatures[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 210: 434-440. http://www.sciencedirect.com/science/article/pii/S0168583X03011005/ CHEN J, WANG Z, WANG Z H, et al., 2007. Heavy mineral distribution and its provenance implication in Late Cenozoic sediments in western and eastern area of the Changjiang River delta[J]. Quaternary Sciences, 27(5): 700-708. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-DSJJ200705013.htm CHEN L D, SHAO C S. 2015. Research on the pleistocene Yichang gravel bed[J]. Journal of Stratigraphy, 39(3): 255-266. (in Chinese with English abstract) CHEN P. 2014. Research on principal component analysis and its application in feature extraction[D]. Xi'an: Shaanxi Normal University: 1-65. (in Chinese with English abstract) DENG B, CHEW D, MARK C, et al., 2021. Late Cenozoic drainage reorganization of the paleo-Yangtze river constrained by multi-proxy provenance analysis of the Paleo-lake Xigeda[J]. GSA Bulletin, 133(1-2): 199-211. doi: 10.1130/B35579.1 DONG M, SU H, SHI Z T, et al., 2018. The age of river terraces in the Jinjiangjie reach of the Jinsha River and its implications for valley and drainage evolution[J]. Acta Geographica Sinica, 73(9): 1728-1736. (in Chinese with English abstract) doi: 10.11821/dlxb201809009 FAN D D, LI C X, KAZUMI Y. 2006. Constraints on the Yangtze river running-through time, using Th (U)-Pb dating of monazite[J]. Marine Geology Frontiers, 22(7): 11-15. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-HYDT200607003.htm FANG X M, AN Z S, CLEMENS S C, et al., 2020. The 3.6-Ma aridity and westerlies history over midlatitude Asia linked with global climatic cooling[J]. Proceedings of the National Academy of Sciences of the United States of America, 117(40): 24729-24734. doi: 10.1073/pnas.1922710117 FLOWERDEW M J, TYRRELL S, RILEY T R, et al., 2012. Distinguishing East and West Antarctic sediment sources using the Pb isotope composition of detrital K-feldspar[J]. Chemical Geology, 292-293: 88-102. doi: 10.1016/j.chemgeo.2011.11.006 JIA J T, ZHENG H B, HUANG X T, et al., 2010. Detrital zircon U-Pb ages of Late Cenozoic sediments from the Yangtze delta: Implication for the evolution of the Yangtze River[J]. Chinese Science Bulletin, 55(15): 1502-1528. doi: 10.1007/s11434-010-3091-x/email/correspondent/c1/new JOHNSON S P, KIRKLAND C L, EVANS N J, et al., 2018. The complexity of sediment recycling as revealed by common Pb isotopes in K-feldspar[J]. Geoscience Frontiers, 9(5): 1515-1527. doi: 10.1016/j.gsf.2018.03.009 KANG C G, LI C A, WANG J T, et al., 2009. Heavy minerals characteristics of sediments in Jianghan plain and its indication to the forming of the three gorges[J]. Earth Science-Journal of China University of Geosciences, 34(3): 419-427. (in Chinese with English abstract) doi: 10.3799/dqkx.2009.047 KANG C G, LI C A, ZHANG Y F, et al., 2014. Heavy mineral characteristics of the Yichang gravel layers and provenance tracing[J]. Acta Geologica Sinica, 88(2): 254-262. (in Chinese with English abstract) KIM Y, YI S, JUN C P, et al., 2020. New findings on palynofacies characteristics of semi-enclosed deep-sea environments in the East Sea over 2 million years[J]. Scientific Reports, 10: 16432. doi: 10.1038/s41598-020-73493-3 KONG P, GRANGER D E, WU F Y, et al., 2009. Cosmogenic nuclide burial ages and provenance of the Xigeda paleo-lake: Implications for evolution of the Middle Yangtze River[J]. Earth and Planetary Science Letters, 278(1-2): 131-141. doi: 10.1016/j.epsl.2008.12.003 LI B, WEI Z X, LI X, et al., 2011. Records from Quaternary sediment and palaeo-environment in the Yangtze river delta[J]. Quaternary Sciences, 31(2): 316-328. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-DSJJ201102013.htm LI J J, XIE S Y, KUANG M S. 2001. Geomorphic evolution of the Yangtze Gorges and the time of their formation[J]. Geomorphology, 41(2-3): 125-135. doi: 10.1016/S0169-555X(01)00110-6 LI T, LI C A, KANG C G, et al., 2010. Sedimentary environment and geomorphological significance of the gravel bed in Yichang[J]. Geology in China, 37(2): 438-445. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-DIZI201002018.htm LI Y, CAO S Y, ZHOU R J, et al., 2005. Late Cenozoic Minjiang incision rate and its constraint on the uplift of the eastern margin of the Tibetan Plateau[J]. Acta Geologica Sinica, 79(1): 28-37. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/ http://search.cnki.net/down/default.aspx?filename=DZXE200501003&dbcode=CJFD&year=2005&dflag=pdfdown LI Y W, LI C A, ZHANG Y F, et al., 2019. Progress of detrital zircon chronology in sediment provenance studies in the Yangtze river basin[J]. Seismology and Geology, 41(2): 521-544. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTotal-DZDZ201902016.htm LI Y, ZHAO J, LI C, et al., 2021. Cadmium and clay mineral analysis of late Pliocene-Pleistocene deposits from Jianghan Basin, central China: Implications for sedimentary provenance and evolution of the Yangtze River[J]. Quaternary International, in press. LIN X. 2011. Reconstructed the flow direction of the ancient Jialing River and the Yangtze River since the Miocene by using the common Pb isotope of detrital K-feldspar[D]. Wuhan: China University of Geosciences, Wuhan: 1-55. (in Chinese with English abstract) LIN X, LIU J. 2019. A review of mountain-basin coupling of Jianghan and Dongting basins with their surrounding mountains[J]. Seismology and Geology, 41(2): 499-520. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTotal-DZDZ201902015.htm LIN X, LIU J, WU Z H, et al., 2020a. Detrital zircon U-Pb ages and K-feldspar main and trace elements provenance studying from fluvial to marine sediments in northern China[J]. Acta Geologica Sinica, 94(10): 3024-3035. (in Chinese with English abstract) LIN X, ZHAO X T, WU Z H, et al., 2020b. Source tracing elements of K-feldspars of main rivers around Bohai Bay basin[J]. Bulletin of Geological Science and Technology, 39(6): 10-18. (in Chinese with English abstract) https://dzkjqb.cug.edu.cn/CN/abstract/abstract10067.shtml LIN X, LIU J, WU Z H, et al., 2021. The studying of fluvial sediments spreading in Bohai Bay Basin-double constraints from detrital zircon U-Pb age and in situ geochemical element of apatite grains[J]. Journal of Geomechanics, 27(2): 304-316. (in Chinese with English abstract) https://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?file_no=20210213&flag=1 LIU C C, DENG C L, LIU Q S. 2012. Mineral magnetic studies of the vermiculated red soils in southeast China and their paleoclimatic significance[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 329-330: 173-183. doi: 10.1016/j.palaeo.2012.02.035 LIU D Y, PENG S S, QIAO Y S, et al., 2009. Evolution of the southwest monsoon on orbital time-scale revealed by a loess-Paleosol seouence on thsoutheastern margin of the Qinghai-Tibetan plateau for the last 1.16 m[J]. Marine Geology & Quaternary Geology, 29(5): 115-121. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-HYDZ200905021.htm LIU F L, GAO H S, LI Z M, et al., 2020. Terraces development and their implications for valley evolution of the Jinsha River from Qiaojia to Menggu[J]. Acta Geographica Sinica, 75(5): 1095-1105. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTotal-DLXB202005016.htm LIU W G, LIU Z H, SUN J M, et al., 2020. Onset of permanent Taklimakan Desert linked to the mid-Pleistocene transition[J]. Geology, 48(8): 782-786. doi: 10.1130/G47406.1 LIU Y M, XIANG F, CHEN Z H, et al., 2018. Characters of heavy minerals in Quaternary sediments from Chongqing to Yichang and its implication to the evolution of the Three Gorges of Yangtze River, China[J]. Journal of Chengdu University of Technology: (Science & Technology Edition), 45(2): 189-198. (in Chinese with English abstract) http://en.cnki.com.cn/article_en/cjfdtotal-cdlg201802006.htm LIU Y S, HU Z C, GAO S, et al., 2008. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard[J]. Chemical Geology, 257(1-2): 34-43. doi: 10.1016/j.chemgeo.2008.08.004 LUO C, ZHENG H B, WU W H, et al., 2012. Sr-Nd isotope stratification along water depth: An example from Datong hydrological station of Yangtze River[J]. Chinese Science Bulletin, 57(34): 4482-4490. doi: 10.1007/s11434-012-5311-z MCCARTHY T S, HASTY R A. 1976. Trace element distribution patterns and their relationship to the crystallization of granitic melts[J]. Geochimica et Cosmochimica Acta, 40(11): 1351-1358. doi: 10.1016/0016-7037(76)90125-3 MENG X Q, LIU L W, WANG X T, et al., 2018. Mineralogical evidence of reduced East Asian summer monsoon rainfall on the Chinese loess plateau during the early Pleistocene interglacials[J]. Earth and Planetary Science Letters, 486: 61-69. doi: 10.1016/j.epsl.2017.12.048 PATTERSON C, TATSUMOTO M. 1964. The significance of lead isotopes in detrital feldspar with respect to chemical differentiation within the earth's mantle[J]. Geochimica et Cosmochimica Acta, 28(1): 1-22. doi: 10.1016/0016-7037(64)90052-3 QIAO Y S, GUO Z T, HAO Q Z, et al., 2003. Loess-soil sequences in southern Anhui Province: Magnetostratigraphy and paleoclimatic significance[J]. Chinese Science Bulletin, 48(19): 2088-2093. doi: 10.1360/03wd0183 RHODES J M. 1969. On the chemistry of potassium feldspars in granitic rocks[J]. Chemical Geology, 4(3-4): 373-392. doi: 10.1016/0009-2541(69)90004-7 SHAO L, LI C A, YUAN S Y, et al., 2012. Neodymium isotopic variations of the late Cenozoic sediments in the Jianghan Basin: Implications for sediment source and evolution of the Yangtze River[J]. Journal of Asian Earth Sciences, 45: 57-64. doi: 10.1016/j.jseaes.2011.09.018 SUN X L, LI C A, KUIPER K F, et al., 2018. Geochronology of detrital muscovite and zircon constrains the sediment provenance changes in the Yangtze River during the late Cenozoic[J]. Basin Research, 30(4): 636-649. doi: 10.1111/bre.12268 SUN X L, KUIPER K F, TIAN Y T, et al., 2020. 40Ar/39Ar mica dating of late Cenozoic sediments in SE Tibet: implications for sediment recycling and drainage evolution[J]. Journal of the Geological Society, 177(4): 843-854. doi: 10.1144/jgs2019-099 SUN Y B, AN Z S, CLEMENS S C, et al., 2010. Seven million years of wind and precipitation variability on the Chinese Loess Plateau[J]. Earth and Planetary Science Letters, 297(3-4): 525-535. doi: 10.1016/j.epsl.2010.07.004 TAKAHASHI T, NAKAGAWA H, SATOFUKA Y, et al., 2001. Flood and sediment disasters triggered by 1999 rainfall in Venezuela: A river restoration plan for an alluvial fan[J]. Journal of Natural Disaster Science, 23(2): 65-82. http://jsnds.org/jnds/23_2_2.pdf TULLOCH A J, PALIN M. 2013. Provenance of detrital feldspar: calibration of an LA-ICPMS trace element chemistry finger printing tool[J]. GNS Science, 35: 1-24. http://www.gns.cri.nz/static/pubs/2012/SR%202012-035.pdf TYRRELL S, HAUGHTON P D W, DALY J S, et al., 2006. The use of the common Pb isotope composition of detrital K-feldspar grains as a provenance tool and its application to Upper Carboniferous paleodrainage, northern England[J]. Journal of Sedimentary Research, 76(2): 324-345. doi: 10.2110/jsr.2006.023 WAN S M, LI A C, CLIFT P D, et al., 2007. Development of the East Asian monsoon: mineralogical and sedimentologic records in the northern South China Sea since 20 Ma[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 254(3-4): 561-582. doi: 10.1016/j.palaeo.2007.07.009 WANG J T, LI C A, YANG Y, et al., 2009. The LA-LCPMS U-Pb detrital zircon geochronology and provenance study of sedimentary core in the Zhoulao town, the Jianghan plain, China[J]. Quaternary Sciences, 29(2): 343-351. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-DSJJ200902026.htm WANG P, ZHENG H B, LIU S F, et al., 2018. Late Cretaceous drainage reorganization of the Middle Yangtze River[J]. Lithosphere, 10(3): 392-405. doi: 10.1130/L695.1 WANG Q. 2019. Incised Valley of last glacial maximum stage in the drilling strata on the Tianjin-Hebei coastal plain[J]. Journal of Geomechanics, 25(5): 877-888. (in Chinese with English abstract) https://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?flag=1&file_no=20190516&journal_id=dzlxxb WANG T, SUN Y B, LIU X X. 2017. Mid-Pleistocene climate transition: Characteristic, mechanism and perspective[J]. Chinese Science Bulletin, 62(33): 3861-3872. (in Chinese with English abstract) doi: 10.1360/N972017-00427 WEI C Y, LIU C R, LI C A, et al., 2020. Chronology of Yichang gravel layer based on Ouartz Ti-Li center ESR dating and its implications for the incision timing of the three gorges valley[J]. Seismology and Geology, 42(1): 65-78. (in Chinese with English abstract) WEI C Y, VOINCHET P, ZHANG Y F, et al., 2020. Chronology and provenance of the Yichang gravel layer deposits in the Jianghan Basin, middle Yangtze River Valley, China: Implications for the timing of channelization of the Three Gorges Valley[J]. Quaternary International, 550: 39-54. doi: 10.1016/j.quaint.2020.03.020 XIANG F. 2004. Forming of the Three Gorges of the Yangtze River and sedimentary response in the west edge of Jianghan Basin and adjacent area[D]. Chengdu: Chengdu University of Technology: 1-176. (in Chinese with English abstract) XIANG F, WANG C S, LI G Z, et al., 2006a. Character of heavy minerals in quaternary sediments in Yichang area and its relationship with cut-through of the Yangtze Three Gorges, China[J]. Journal of Chengdu University of Technology (Science & Technology Edition), 33(2): 117-121. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-CDLG200602001.htm XIANG F, ZHU L D, WANG C S, et al., 2006b. Character of basaltic gravels in quaternary sediments in Yichang area and its relationship with formation of Yangtze three gorges[J]. Journal of Earth Sciences and Environment, 28(2): 6-10, 24. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-XAGX200602001.htm XIANG F, YANG D, TIAN X, et al., 2011. LA-ICP-MS U-Pb Geochronology of zircons in the quaternary sediments from the Yichang area of Hubei province and its provenance significance[J]. Journal of Mineralogy and Petrology, 31(2): 106-114. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-KWYS201102015.htm XIANG F, HUANG H X, OGG J G, et al., 2020. Quaternary sediment characteristics and paleoclimate implications of deposits in the Three Gorges and Yichang areas of the Yangtze River[J]. Geomorphology, 351: 106981. doi: 10.1016/j.geomorph.2019.106981 XU Y M, JIANG S Y. 2017. In-situ analysis of trace elements and Sr-Pb isotopes of K-feldspars from Tongshankou Cu-Mo deposit, SE Hubei Province, China: Insights into early potassic alteration of the porphyry mineralization system[J]. Terra Nova, 29(6): 343-355. doi: 10.1111/ter.12287 YAN M D, FANG X M, CHEN S Y, et al., 2001. Pleistocene magnetic susceptibility and paleomagnetism of the Tibetan loess and its implications on large climatic change events[J]. Science in China Series D: Earth Sciences, 44(1): 227-232. doi: 10.1007/BF02911991 YANG D Y. 1988. The origin and evolution of the three gorges of the Changjiang Yangtze River[J]. Journal of Nanjing University (Natural Science Edition), 24(3): 466-473. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-SXXT198803010.htm YANG J, LI C A, KANG C G, et al., 2009. Augite in Jianghan plain sediments and its implication to source tracing[J]. Quaternary Sciences, 29(5): 1000-1007. (in Chinese with English abstract) http://d.wanfangdata.com.cn/Periodical/dsjyj200905019 YANG J, LI C A, DEMBELE N D J, et al., 2014. Emeishan basalts as provenance indicators: implications for formation of the three gorges[J]. Earth Science-Journal of China University of Geosciences, 39(4): 431-442. (in Chinese with English abstract) doi: 10.3799/dqkx.2014.041 YANG S Y. 2006. Advances in sedimentary geochemistry and tracing applications of Asian rivers[J]. Advances in Earth Science, 21(6): 648-655. (in Chinese with English abstract) YANG S Y, LI C X, YOKOYAMA K. 2006. Elemental compositions and monazite age patterns of core sediments in the Changjiang Delta: Implications for sediment provenance and development history of the Changjiang River[J]. Earth and Planetary Science Letters, 245(3-4): 762-776. doi: 10.1016/j.epsl.2006.03.042 YE F, LIU Z F, TUO S T, et al., 2007. Grain size record of terrigenous clast during mid-pleistocene transition (0.78~1.0 Ma) in the northern South China Sea[J]. Marine Geology and Quaternary Geology, 27(2): 77-83. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-HYDZ200702013.htm YIN Q Z, GUO Z T. 2006. Mid-Pleistocene vermiculated red soils in southern China as an indication of unusually strengthened East Asian monsoon[J]. Chinese Science Bulletin, 51(2): 213-220. doi: 10.1007/s11434-005-0490-5 YUAN S Y, LI C A, ZHANG Y F, et al., 2012. Trace element characteristics of sediments in Jianghan Basin: Implications for expansion of the upper reaches of the Yangtze River[J]. Geology in China, 39(4): 1042-1048. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-DIZI201204021.htm YUE W, JIN B F, ZHAO B C. 2018. Transparent heavy minerals and magnetite geochemical composition of the Yangtze River sediments: Implication for provenance evolution of the Yangtze Delta[J]. Sedimentary Geology, 364: 42-52. doi: 10.1016/j.sedgeo.2017.12.006 ZHANG Y, ZHANG Y F, LI C A, et al., 2009. Magnetic properties of the gravel layers in Yichang area and their provenance[J]. Quaternary Sciences, 29(2): 380-386. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTotal-DSJJ200902030.htm ZHANG Y F, LI C A, WANG Q L, et al., 2008. Magnetic characteristics of sediments in Jianghan Plain and an indication for the cut-through of the Three Gorges of the Yangtze River[J]. Chinese Science Bulletin, 53(4): 584-590. doi: 10.1007/s11434-008-0111-1 ZHANG Y F, LI C A, ZHOU C, et al., 2014. Magnetism and provenance analysis of high position gravel layer in the middle reaches of Yangtze River[J]. Journal of Jilin University (Earth Science Edition), 44(5): 1669-1677. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-CCDZ201405027.htm ZHAO X T, ZHANG Y S, HU D G, et al., 2006. Discovery of early Pleistocene gravels of the Jinsha River in the Daju basin, Yunnan, China, and its significance[J]. Geological Bulletin of China, 25(12): 1381-1386. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZQYD200612004.htm ZHAO X T, HU D G, ZHANG Y S. 2008. Genesis and age of the gravels underlying the Xigeda formation of Panzhihua, Sichuan, China, and valley development of the Ancient Jinsha River[J]. Acta Geoscientica Sinica, 29(1): 1-12. (in Chinese with English abstract) http://www.oalib.com/paper/1558621 ZHAO X T, HU D G, WU Z H, et al., 2017. Reviews on the research of late Cenozoic geology and environment of the Yangtze river delta area[J]. Journal of Geomechanics, 23(1): 1-64. (in Chinese with English abstract) https://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?file_no=20170101&flag=1 ZHENG H B, CLIFT P D, WANG P, et al., 2013. Pre-miocene birth of the Yangtze River[J]. Proceedings of the National Academy of Sciences of the United States of America, 110(19): 7556-7561. doi: 10.1073/pnas.1216241110 ZHENG H B, WEI X C, WANG P, et al., 2017. Geological evolution of the Yangtze River[J]. Scientia Sinica Terrae, 47(4): 385-393. (in Chinese with English abstract) doi: 10.1360/N072017-00003 陈静, 王哲, 王张华, 等, 2007. 长江三角洲东西部晚新生代地层中的重矿物差异及其物源意义[J]. 第四纪研究, 27(5): 700-708. https://www.cnki.com.cn/Article/CJFDTOTAL-DSJJ200705013.htm 陈立德, 邵长生. 2015. 宜昌地区更新世砾石层研究[J]. 地层学杂志, 39(3): 255-266. https://www.cnki.com.cn/Article/CJFDTOTAL-DCXZ201503002.htm 陈佩. 2014. 主成分分析法研究及其在特征提取中的应用[D]. 西安: 陕西师范大学: 1-65. http://cdmd.cnki.com.cn/Article/CDMD-10718-1014400060.htm 董铭, 苏怀, 史正涛, 等, 2018. 金沙江金江街段河流阶地年代及对河谷水系演化历史的启示[J]. 地理学报, 73(9): 1728-1736. https://www.cnki.com.cn/Article/CJFDTOTAL-DLXB201809010.htm 范代读, 李从先, KAZUMI Y. 2006. 河口地层独居石Th (U)-Pb年龄对长江贯通时限的约束[J]. 海洋地质动态, 22(7): 11-15. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDT200607003.htm 贾军涛, 郑洪波, 黄湘通, 等, 2010. 长江三角洲晚新生代沉积物碎屑锆石U-Pb年龄及其对长江贯通的指示[J]. 科学通报, 55(4-5): 350-358. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB2010Z1009.htm 康春国, 李长安, 王节涛, 等, 2009. 江汉平原沉积物重矿物特征及其对三峡贯通的指示[J]. 地球科学-中国地质大学学报, 34(3): 419-427. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200903006.htm 康春国, 李长安, 张玉芬, 等, 2014. 宜昌砾石层重矿物组合特征及物源示踪分析[J]. 地质学报, 88(2): 254-262. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201402008.htm 黎兵, 魏子新, 李晓, 等, 2011. 长江三角洲第四纪沉积记录与古环境响应[J]. 第四纪研究, 31(2): 316-328. https://www.cnki.com.cn/Article/CJFDTOTAL-DSJJ201102013.htm 李庭, 李长安, 康春国, 等, 2010. 宜昌砾石层的沉积环境及地貌意义[J]. 中国地质, 37(2): 438-445. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201002018.htm 李勇, 曹叔尤, 周荣军, 等, 2005. 晚新生代岷江下蚀速率及其对青藏高原东缘山脉隆升机制和形成时限的定量约束[J]. 地质学报, 79(1): 28-37. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200501003.htm 李亚伟, 李长安, 张玉芬, 等, 2019. 长江流域碎屑锆石U-Pb年龄物源示踪研究进展[J]. 地震地质, 41(2): 521-544. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDZ201902016.htm 林旭. 2011. 利用碎屑钾长石普通Pb同位素重建古嘉陵江、古长江自中新世以来的流向[D]. 武汉: 中国地质大学(武汉): 1-55. https://d.wanfangdata.com.cn/thesis/Y2009806 林旭, 刘静. 2019. 江汉和洞庭盆地与周缘造山带盆山耦合研究进展[J]. 地震地质, 41(2): 499-520. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDZ201902015.htm 林旭, 刘静, 吴中海, 等, 2020a. 中国北部陆架海碎屑锆石U-Pb年龄和钾长石主微量元素物源示踪研究[J]. 地质学报, 94(10): 3024-3035. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE202010016.htm 林旭, 赵希涛, 吴中海, 等, 2020b. 渤海湾周缘主要河流钾长石物源示踪指标研究[J]. 地质科技通报, 39(6): 10-18. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ202006002.htm 林旭, 刘静, 吴中海, 等, 2021. 渤海湾盆地河流沉积物扩散研究: 碎屑锆石U-Pb年龄和磷灰石原位地球化学元素双重约束[J]. 地质力学学报, 27(2): 304-316. https://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?flag=1&file_no=20210213&journal_id=dzlxxb 刘冬雁, 彭莎莎, 乔彦松, 等, 2009. 青藏高原东南缘甘孜黄土磁化率揭示的西南季风演化[J]. 海洋地质与第四纪地质, 29(5): 115-121. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ200905021.htm 刘芬良, 高红山, 李宗盟, 等, 2020. 金沙江巧家-蒙姑段的阶地发育与河谷地貌演化[J]. 地理学报, 75(5): 1095-1105. https://www.cnki.com.cn/Article/CJFDTOTAL-DLXB202005016.htm 刘一鸣, 向芳, 陈灼华, 等, 2018. 重庆-宜昌地区第四纪沉积物中重矿物特征及其对三峡演化的指示[J]. 成都理工大学学报(自然科学版), 45(2): 189-198. https://www.cnki.com.cn/Article/CJFDTOTAL-CDLG201802006.htm 王节涛, 李长安, 杨勇, 等, 2009. 江汉平原周老孔中碎屑锆石LA-ICPMS定年及物源示踪[J]. 第四纪研究, 29(2): 343-351. https://www.cnki.com.cn/Article/CJFDTOTAL-DSJJ200902026.htm 王强. 2019. 天津-河北沿海钻孔地层中的末次盛冰期下切河谷[J]. 地质力学学报, 25(5): 877-888. https://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?flag=1&file_no=20190516&journal_id=dzlxxb 王婷, 孙有斌, 刘星星. 2017. 中更新世气候转型: 特征、机制和展望[J]. 科学通报, 62(33): 3861-3872. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201733012.htm 魏传义, 刘春茹, 李长安, 等, 2020. 宜昌砾石层石英Ti-Li心ESR年龄及其对三峡贯通时限的指示[J]. 地震地质, 42(1): 65-78. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDZ202001005.htm 向芳. 2004. 长江三峡的贯通与江汉盆地西缘及邻区的沉积响应[D]. 成都: 成都理工大学: 1-176. http://cdmd.cnki.com.cn/article/cdmd-10616-2004085871.htm 向芳, 王成善, 李国忠, 等, 2006a. 宜昌地区第四纪沉积物重矿物特征及其与三峡贯通的关系[J]. 成都理工大学学报(自然科学版), 33(2): 117-121. https://www.cnki.com.cn/Article/CJFDTOTAL-CDLG200602001.htm 向芳, 朱利东, 王成善, 等, 2006b. 宜昌地区第四纪沉积物中玄武岩砾石特征及其与长江三峡贯通的关系[J]. 地球科学与环境学报, 28(2): 6-10, 24. https://www.cnki.com.cn/Article/CJFDTOTAL-XAGX200602001.htm 向芳, 杨栋, 田馨, 等, 2011. 湖北宜昌地区第四纪沉积物中锆石的U-Pb年龄特征及其物源意义[J]. 矿物岩石, 31(2): 106-114. https://www.cnki.com.cn/Article/CJFDTOTAL-KWYS201102015.htm 杨达源. 1988. 长江三峡的起源与演变[J]. 南京大学学报(自然科学), 24(3): 466-473. https://www.cnki.com.cn/Article/CJFDTOTAL-NJDZ198803009.htm 杨建, 李长安, 康春国, 等, 2009. 江汉平原沉积物中普通辉石的特征及物源示踪意义[J]. 第四纪研究, 29(5): 1000-1007. https://www.cnki.com.cn/Article/CJFDTOTAL-DSJJ200905020.htm 杨建, 李长安, DEMBELE N D J, 等, 2014. 峨眉山玄武岩作为长江上游特征源岩对三峡贯通的指示[J]. 地球科学-中国地质大学学报, 39(4): 431-442. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201404006.htm 杨守业. 2006. 亚洲主要河流的沉积地球化学示踪研究进展[J]. 地球科学进展, 21(6): 648-655. https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ200606013.htm 叶芳, 刘志飞, 拓守廷, 等, 2007. 南海北部中更新世0.78~1.0 Ma期间的陆源碎屑粒度记录[J]. 海洋地质与第四纪地质, 27(2): 77-83. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ200702013.htm 袁胜元, 李长安, 张玉芬, 等, 2012. 江汉盆地沉积物微量元素特征与长江上游水系拓展[J]. 中国地质, 39(4): 1042-1048. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201204021.htm 张勇, 张玉芬, 李长安, 等, 2009. 宜昌地区砾石层的磁性特征与物源分析[J]. 第四纪研究, 29(2): 380-386. https://www.cnki.com.cn/Article/CJFDTOTAL-DSJJ200902030.htm 张玉芬, 李长安, 王秋良, 等, 2008. 江汉平原沉积物磁学特征及对长江三峡贯通的指示[J]. 科学通报, 53(5): 577-582. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200805014.htm 张玉芬, 李长安, 周稠, 等, 2014. 长江中游高位砾石层的磁性特征与物源分析[J]. 吉林大学学报(地球科学版), 44(5): 1669-1677. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201405027.htm 赵希涛, 张永双, 胡道功, 等, 2006. 云南丽江地区大具盆地早更新世金沙江砾石层的发现及其意义[J]. 地质通报, 25(12): 1381-1386. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD200612004.htm 赵希涛, 胡道功, 张永双. 2008. 四川攀枝花昔格达组下伏砾石层成因和时代探讨与古金沙江河谷发育[J]. 地球学报, 29(1): 1-12. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB200801002.htm 赵希涛, 胡道功, 吴中海, 等, 2017. 长江三角洲地区晚新生代地质与环境研究进展述评[J]. 地质力学学报, 23(1): 1-64. https://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?flag=1&file_no=20170101&journal_id=dzlxxb 郑洪波, 魏晓椿, 王平, 等, 2017. 长江的前世今生[J]. 中国科学: 地球科学, 47(4): 385-393. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201704002.htm