Fundamental problems and prospects in the study of deposition dynamics of viscous debris flow in the gully-river junction
-
摘要: 粘性泥石流入汇主河极大地改变了入汇区的河床堆积地貌,其动力学实质是非牛顿流体与牛顿流体的交互作用,合理描述粘性泥石流入汇区河床堆积动力过程对于划定粘性泥石流风险区范围和认知流域地貌演化具有重大意义。粘性泥石流入汇区河床堆积体时空演化过程有别于粘性泥石流在地表的纯堆积过程,通过回顾国内外学者在泥石流入汇区堆积动力学方面的研究成果,可以发现在粘性泥石流入汇区内堆积现象复杂,存在"阵性"输移、"元堆积"和龙头"水滑"等特殊现象。但目前的研究对泥石流和水流交互机制都进行了简化,一是将粘性泥石流视为挟沙水流,直接采用异重流方法;二是将粘性泥石流视为"半固态",只考虑水流的输沙特征,研究认为基于这样的简化不足以描述粘性泥石流入汇的物理过程和特殊现象,也低估了粘性泥石流交汇区冲击速度和堆积范围。同时,根据粘性泥石流入汇区河床堆积动力过程的研究现状,结合粘性泥石流入汇的特殊运动过程,提出未来可开展的工作:一是粘性泥石流入汇的物理过程和其交互机制的合理简化;二是普适性高的粘性泥石流-水流堆积动力学模型的建立。Abstract: Viscous debris-flow deposits in the junction with mainstream channel may greatly change the morphology, and the dynamics relies on the interaction between the Newtonian fluid and non-Newtonian fluid. The deposition under water differs much from that on the surface, and properly describing the subaqueous process is significant for zoning the danger area and understanding the river evolution. This review provides a comprehensive survey of studies on subaqueous deposition of debris flows and puts forward some questions for the future. We found several new phenomena during the deposition under water, such as the intermittent transport, the "unitary" deposit due to separate surges, and the "water slip" of the surge front, which have been long ignored in previous studies. The existing studies are all based on oversimplification of the water-flow interaction, which considers debris flow as sediment-load flow and adopts the method of density flow, or treats debris flow as a semi-solid state and takes into account only the sediment transport by water flow. Such paradigms do not match the complexity of the real processes and usually underestimate the deposition scale. Then we suggest that further studies, based on the special phenomena, should be emphasized on 1) finding a new framework of the water-flow interaction in the junction, and 2) establishing a new model for debris-flow deposition under water.
-
Key words:
- viscous debris flow /
- confluence /
- cross-coupling /
- accumulation /
- dynamical process
-
图 1 野外观测云南东川蒋家沟阵流铺床过程(刘晶晶和李泳,2016)
Figure 1. Paving process in field observation (Photo was taken in Jiangjiagou, Dongchuan, Yunnan; Liu and Li, 2016)
图 3 Mohrig实验中的水滑现象(Mohrig et al., 1998)
Figure 3. Phenomenon of "water slip" in the Mohrig's experiment (Mohrig et al., 1998)
表 1 基于统计建立的泥石流入汇堵河判断公式
Table 1. Formula of debris flow blocking in river by the statistical-based method
泥石流入汇堵河判断公式 文献出处 公式编号 ${C_{\rm{M}}} = {\rm{ln}}{M_{\rm{R}}} - 1.189{(1 - {\rm{cos}}\theta )^2} - \frac{{3.677{\gamma _{\rm{B}}}}}{{{\gamma _{\rm{M}}}}} \le - 12.132$ 崔鹏等(2006) (1) ${C_{\rm{F}}} = \ln {F_{\rm{R}}} - 0.883{(1 - {\rm{cos}}\theta )^2} - \frac{{2.587{\gamma _{\rm{B}}}}}{{{\gamma _{\rm{M}}}}} \le - 8.572 $ (2) $R = \frac{{P{Q_{\rm{n}}}{J_{\rm{n}}}}}{{{K_{\rm{z}}}{Q_{\rm{z}}}{J_{\rm{z}}}}} $ 张金山和谢洪(2008) (3) $ C = {\left( {r/\tan \varphi } \right)^2}{\left[ {\tau /\left( {\rho gw} \right)} \right]^{1/3}}\tan \left( {\frac{D}{2}} \right) \ge 0.87$ 党超等(2009) (4) $C = \left( {{\gamma _{\rm{_S}}}qv} \right)\sin \alpha /\left( {{\gamma _{\rm{w}}}Qu} \right) \cdot {V_{\rm{s}}}/{V_0} $ 陈春光等(2013) (5) $ D = \frac{{{Q_{\rm{n}}}{J_{\rm{n}}}{r_{\rm{n}}}{\beta _{\rm{n}}}}}{{{K_z}{Q_z}{J_z}}}{\rm{ > }}6$ 刘文锐和周志远(2015) (6) 注:公式(1)、(2)中:CM、CF—泥石流堵塞主河的动量和流量;MR、FR—主、支槽的单宽动量比、单宽流量比;γM、γB—主槽水流、支槽泥石流的密度;θ—主支槽夹角。公式(3)中:R—泥石流堵塞度,即泥石流堵断主河可能性;P—泥石流暴发频率;Qn、Jn—泥石流流量、沟道比降;Kz、Qz、Jz—主河宽度、流量、比降。公式(4)中:C—泥石流堵河临界值,当C≥0.87时,堵河;r—泥石流与主河流量比;τ/(ρgw)—为泥石流体的抗冲强度和主河宽度综合参数,其中,w为主河宽度;tanφ—主河比降;tan(D/2)—泥石流与主河交汇角。公式(5)中:C—泥石流堵河判定综合因子;γs、q、v—泥石流容重、流量、平均流速;γw、Q、u—水流容重、流量、平均流速;γsqvsinα/(γwQu)—支主沟动量比;V0=b×B×H,b为泥石流沟宽;B为主河宽;H为主河水深;Vs—泥石流入汇体积;α—入汇角。公式(6)中:D—泥石流堵塞程度;Qn、Jn、rn—泥石流流量、沟道比降、容重;Kz、Qz、Jz—主河宽度、流量、比降;β—泥石流沟与主河夹角 -
AO R Z, GUO Z X, CAO S Y, 2004. Flume experiment study on deposit principle of debris flow when debris flow confluence with main river[J]. Journal of Soil and Water Conservation, 18(4):196-199.(in Chinese with English abstract) http://cn.bing.com/academic/profile?id=ab559f5f01a3d4bb58ed5f11f570f2f1&encoded=0&v=paper_preview&mkt=zh-cn BENDA L, 1990. The influence of debris flows on channels and valley floors in the Oregon Coast Range, U.S.A.[J]. Earth Surface Processes and Landforms, 15(5): 457-466. doi: 10.1002/esp.3290150508 BERTOLO P, WIECZOREK G F, 2005. Calibration of numerical models for small debris flows in Yosemite Valley, California, USA[J]. Natural Hazards and Earth System Sciences, 5(6):993-1001. doi: 10.5194/nhess-5-993-2005 BERZI D, JENKINS J T, LARCHER M, 2010. Debris flows:recent advances in experiments and modeling[J]. Advances in Geophysics, 52:103-138. doi: 10.1016/S0065-2687(10)52002-8 CHEN C G, YAO L K, 2006. Three dimensional numerical simulation of confluence of debris flow and main river[J]. Journal of Chongqing Jiaotong University (Natural Science), 25(2):61-65.(in Chinese with English abstract) https://www.sciencedirect.com/science/article/pii/S0169555X18303660 CHEN C G, YAO L K, LIU C R, et al., 2013. Study on conditions of river-blocking due to debris flow[J]. Journal of Water Conservancy, 44(6):648-656.(in Chinese with English abstract) http://cn.bing.com/academic/profile?id=4908a64f3b5ffb72f6b6d47f70e9dd69&encoded=0&v=paper_preview&mkt=zh-cn CHEN C G, YAO L K, YANG Q H, 2004a. Experimental research on confluence between debris flow and main river[J]. Journal of Southwest Jiaotong University, 39(1):10-14. (in Chinese with English abstract) http://cn.bing.com/academic/profile?id=47123da08bc6e8bdaca1a21bb0a32d7e&encoded=0&v=paper_preview&mkt=zh-cn CHEN C G, YAO L K, YANG Q H, 2004b. Movement of debris flow head in main channel at the confluence[J]. Journal of Hydraulic Engineering, 35(1):11-16. (in Chinese with English abstract) http://cn.bing.com/academic/profile?id=f946135420f25b7e2098e2e96dc738e4&encoded=0&v=paper_preview&mkt=zh-cn CHEN D M, 2000. Mechanism of confluence between debris flow and the main river[D]. Beijing: China Institute of Water Resources and Hydropower Research: 2-10, 60-90. (in Chinese with English abstract) CHEN R D, LIU X N, CAO S Y, et al., 2011. Numerical simulation of deposit in confluence zone of debris flow and mainstream[J]. Science in China (Series E), 41(10):1305-1314. (in Chinese with English abstract) http://cn.bing.com/academic/profile?id=88aff7b085b5dc22b2657c447dcad287&encoded=0&v=paper_preview&mkt=zh-cn CUI P, CHEN X Q, WAQNG Y, et al., 2005. Jiangjia Ravine debris flows in south-western China[M]//Debris-flow hazards and related phenomena. Berlin Heidelberg: Springer: 565-594. CUI P, HE Y P, CHEN J, 2006. Debris flow sediment transportation and its effects on rivers in mountain area[J]. Journal of Mountain Science, 24(5):539-549. (in Chinese with English abstract) http://cn.bing.com/academic/profile?id=f4bf93b561a050dfb35ffb13a85d440f&encoded=0&v=paper_preview&mkt=zh-cn DANG C, CHENG Z L, LIU J J, 2009. Critical conditions for dam-forming due to injunction of debris flow into mainstream[J]. Journal of Mountain Science, 27(5):557-563. (in Chinese with English abstract) http://cn.bing.com/academic/profile?id=3146c09fc42578e28a0e858561eedc0f&encoded=0&v=paper_preview&mkt=zh-cn DE HAAS T, BRAAT L, LEUVEN J R F W, et al., 2015. Effects of debris flow composition on runout, depositional mechanisms, and deposit morphology in laboratory experiments[J]. Journal of Geophysical Research:Earth Surface, 120(9):1949-1972. doi: 10.1002/2015JF003525 DU C, YAO L K, YANG Y L, et al., 2012. Criteria of debris flow damming of large river in terms of dynamical process and material composition[J]. Journal of Hydraulic Engineering, 43(S2):128-132. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=slxb2012z2023 FAN Y Y, WANG S J, WANG E Z, 2010. Analysis of conceptual two-phase resistance for accumulation state of debris flows[J]. Journal of Engineering Geology, 18(1):100-104. (in Chinese with English abstract) http://cn.bing.com/academic/profile?id=c740d5dfba481294afb27bbdf0840c8e&encoded=0&v=paper_preview&mkt=zh-cn FENG C J, QI B S, ZHANG P, et al., 2018. Crustal stress field and its tectonic significance near the Longmenshan fault belt, after the Wenchuan Ms8.0 Earthquake[J]. Journal of Geomechanics, 24(4):439-451. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTotal-DZLX201804001.htm GAO Q B, 1986. Study on mechanism of stopping and deposition of debris flows (II):Forming process of debris flows[J]. Progress in Geography, 5(2):39-44. (in Chinese) GÓMEZ-VILLAR A, GARCÍA-RUIZ J M, 2000. Surface sediment characteristics and present dynamics in alluvial fans of the central Spanish Pyrenees[J]. Geomorphology, 34(3-4):127-144. doi: 10.1016/S0169-555X(99)00116-6 GUO Z X, 2003. The movement characteristic of flow and sediment in confluence area when debris flows joine in the main river[D]. Chengdu: Sichuan University. (in Chinese with English abstract) GUO Z X, CAO S Y, LIU X N, et al., 2004a. Experimental study on parameters affecting the river-blocking due to debris flow[J]. Journal of Hydraulic Engineering, (11):39-45. (in Chinese with English abstract) http://cn.bing.com/academic/profile?id=bb7594c3777a2c5fe9dbcd8c42e332bd&encoded=0&v=paper_preview&mkt=zh-cn GUO Z X, FANG D, CAO S Y, et al., 2004b. Flow characteristic in conjunction area after confluence of debris flow and main river[J]. Advances in Water Science, 15(4):467-471. (in Chinese with English abstract) http://cn.bing.com/academic/profile?id=426e3b382e3e824931681d99183b9d44&encoded=0&v=paper_preview&mkt=zh-cn HE S T, WANG D J, CHEN S, et al., 2016. Natural consolidation characteristics of viscous debris flow deposition[J]. Journal of Mountain Science, 13(10):1723-1734. doi: 10.1007/s11629-016-3850-5 HE Y P, 2003. Influence of debris flow on riverbed evolution of mountain rivers[D]. Chengdu: Institute of Mountain Hazards and Environment, Chinese Academy of Sciences. (in Chinese) HU J, 2002. Confluence mechanism of debris flow and main river and numerical simulation of debris flow movement[D]. Beijing: China Institute of Water Resources and Hydropower Research. (in Chinese) HU X W, DIAO R H, LIANG J X, et al., 2016. Prediction of the scope of Jiangkou gully debris flow hazard using CFX software[J]. Rock and Soil Mechanics, 37(6):1689-1696. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ytlx201606020 HVBL J, STEINWENDTNER H, 2001. Two-dimensional simulation of two viscous debris flows in Austria[J]. Physics and Chemistry of the Earth, Part C:Solar, Terrestrial & Planetary Science, 26(9):639-644. http://cn.bing.com/academic/profile?id=20e2cef1587e404841e78fb16c128dce&encoded=0&v=paper_preview&mkt=zh-cn ILSTAD T, ELVERHØI A, ISSLER D, et al., 2004a. Subaqueous debris flow behaviour and its dependence on the sand/clay ratio:a laboratory study using particle tracking[J]. Marine Geology, 213(1-4):415-438. doi: 10.1016/j.margeo.2004.10.017 ILSTAD T, MARR J G, ELVERHØI A, et al., 2004b. Laboratory studies of subaqueous debris flows by measurements of pore-fluid pressure and total stress[J]. Marine Geology, 213(1-4):403-414. doi: 10.1016/j.margeo.2004.10.016 IOVINE G, D'AMBROSIO D, DI GREGORIO S, 2005. Applying genetic algorithms for calibrating a hexagonal cellular automata model for the simulation of debris flows characterised by strong inertial effects[J]. Geomorphology, 66(1-4):287-303. doi: 10.1016/j.geomorph.2004.09.017 IVERSON R M, GEORGE D L, 2014. A depth-averaged debris-flow model that includes the effects of evolving dilatancy. I. Physical basis[J]. Proceedings of the Royal Society A:Mathematical, Physical and Engineering Sciences, 470(2170):20130819. doi: 10.1098/rspa.2013.0819 KANG Z C, LI Z F, MA G N, 2004. Research on debris flow in China[M]. Beijing:Science Press:24-39. (in Chinese) KUANG S F, 1995. Study on behaviors and deposit processes of debris flow at the confluence[J]. Journal of Sediment Research, (1):1-15. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-NSYJ501.000.htm LI T C, LI Y Y, ZHANG S C, et al., 2008. Numerical simulation on inundation area of debris flow[J]. Advances in Science and Technology of Water Resources, 28(6):1-4. (in Chinese with English abstract) http://cn.bing.com/academic/profile?id=4a596660dc458240b1b2a356ad589f2c&encoded=0&v=paper_preview&mkt=zh-cn LI Y, HU K H, CHEN X Q, 2004. Thickness distribution of debris-flow deposition[J]. Journal of Mountain Science, 22(3):332-336. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=sdxb200403013 LI Y, YAO S F, HU K H, et al., 2003. Surges and deposits of debris flow in Jiangjia gully[J]. Journal of Mountain Science, 21(6):712-715. (in Chinese with English abstract) http://cn.bing.com/academic/profile?id=87ccbe9e1a29438154bfe453d9736514&encoded=0&v=paper_preview&mkt=zh-cn LIANG H X, SHANG M, XU X, 2016. Research on the influence factors of flow and deposition of debris flow based on the FLO-2D simulation[J]. Journal of Engineering Geology, 24(2):228-234. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gcdzxb201602010 LIN M L, WANG K L, HUANG J J, 2005. Debris flow run off simulation and verification-case study of Chen-You-Lan Watershed, Taiwan[J]. Natural Hazards and Earth System Sciences, 5(3):439-445. doi: 10.5194/nhess-5-439-2005 LIU C R, YAO L K, CHEN C G, et al., 2014. A distinguishing method for the river blocking from submerged dam based on the theory of gravity current[J]. Journal of Natural Disasters, 23(5):113-120. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTotal-ZRZH201405015.htm LIU C R, ZHAO S G, 2016. Experimental study on mechanism of large river blocking by debris flow[J]. Journal of Chongqing Jiaotong University (Natural Science), 35(1):90-95. (in Chinese with English abstract) http://cn.bing.com/academic/profile?id=10362ac26e146a43b95c269e425f9dce&encoded=0&v=paper_preview&mkt=zh-cn LIU J F, OU G Q, YOU Y, 2006. Experimental research on velocity and deposition mode of debris flow[J]. Research of Soil and Water Conservation, 13(1):120-121, 226. (in Chinese with English abstract) http://cn.bing.com/academic/profile?id=70d2188577137e766dddf047bd48932f&encoded=0&v=paper_preview&mkt=zh-cn LIU J J, 2013. The mechanism of debris-flow dam formation in Wenchuan-earthquake zone[D]. Beijing: University of Chinese Academy of Sciences. (in Chinese with English abstract) LIU J J, SUN Z C, CHENG Z L, 2015. Assessment of influence area and emergency plan for debris-flow dammed lake-A case study in Mozi Gully of Wenchuan, Sichuan[J]. South-to-North Water Transfers and Water Science & Technology, 13(5):935-940, 952. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-NSBD201505025.htm LIU J J, LI Y, 2016. A review of study on drag reduction of viscous debris-flow residual layer[J]. Journal of Sediment Research, (3):72-80. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-NSYJ201603011.htm LIU W R, ZHOU Z Y, 2015. Discussion on the type of debris flow blocking the river in Wenchuan[J]. Pearl River, 36(1):113-116. (in Chinese) LIU X L, 2000. Debris flow risk zonation in Zhaotong county of Yunnan province, China[J]. Journal of Geomechanics, 6(4):37-42. (in Chinese with English abstract) http://cn.bing.com/academic/profile?id=b51149359d2a98394fee3f3b157e8c4a&encoded=0&v=paper_preview&mkt=zh-cn LIU X L, CHEN Y J, 2010. Application of debris flow risk zonation:An example of west Sichuan[J]. Scientia Geographica Sinica, 30(4):558-565. (in Chinese with English abstract) http://cn.bing.com/academic/profile?id=e964221148c3074212dc864b6566e8ea&encoded=0&v=paper_preview&mkt=zh-cn MAJOR J J, 1997. Depositional processes in large-scale debris-flow experiments[J]. The Journal of Geology, 105(3):345-366. doi: 10.1086/515930 MARR J G, HARFF P A, SHANMUGAM G, et al., 2001. Experiments on subaqueous sandy gravity flows:The role of clay and water content in flow dynamics and depositional structures[J]. GSA Bulletin, 113(11):1377-1386. doi: 10.1130/0016-7606(2001)113<1377:EOSSGF>2.0.CO;2 MOHRIG D, ELLIS C, PARKER G, et al., 1998. Hydroplaning of subaqueous debris flows[J]. GSA Bulletin, 110(3):387-394. doi: 10.1130/0016-7606(1998)110<0387:HOSDF>2.3.CO;2 QIAN N, WANG Z Y, 1984. A preliminary study on the mechanism of debris flows[J]. Acta Geographica Sinica, 51(1):33-43. (in Chinese with English abstract) http://www.dpri.kyoto-u.ac.jp/nenpo/no54/ronbunB/a54b0p10.pdf QU Y P, TANG C, BU X H, et al., 2016. Survey and analysis of the "7·04" river-blocking debris flow of Xiongjia Gully in Shimian county, Sichuan province[J]. Journal of Hydraulic Engineering, 47(1):44-53. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=slxb201601006 ROTHMAN D H, GROTZINGER J P, FLEMINGS P, 1994. Scaling in turbidite deposition[J]. Journal of Sedimentary Research A, 64(1):59-67. http://cn.bing.com/academic/profile?id=a2c58f32c320533ee41d0daa22eb0bf5&encoded=0&v=paper_preview&mkt=zh-cn STANCANELLI L M, MUSUMECI R E, 2018. Geometrical characterization of sediment deposits at the confluence of mountain streams[J]. Water, 10(4):401. doi: 10.3390/w10040401 SU P C, WEI F Q, CHENG Z L, 2012. Debris flow activity of Mozi Gully after Wenchuan Earthquake on May 12[J]. Journal of Yangtze River Scientific Research Institute, 29(2):16-23. (in Chinese with English abstract) http://cn.bing.com/academic/profile?id=1110b08e11cacdcfe77fef2066f4301b&encoded=0&v=paper_preview&mkt=zh-cn TAKAHASHI T, 1991. Debris flow[J]. Annual review of fluid mechanics, 13(1):57-77. http://www.researchgate.net/publication/37407643_Debris_flow TANG C, ZHU J, DUAN J F, et al., 1991. Research on the deposition fans in Xiaojing Watershed, Yunnan Province[J]. Mountain Research, 9(3):179-184. (in Chinese with English abstract) TIAN L Q, WU J S, KANG Z C, et al., 1993. Debris flow erosion handling and accumulation[M]. Chengdu:Chengdu Map Press:2-26. (in Chinese) WANG C X, BAI S W, ESAKI T, et al., 2007. GIS-based two-dimensional numerical simulation of debris flow[J]. Rock and Soil Mechanics, 28(7):1359-1362. (in Chinese with English abstract) http://cn.bing.com/academic/profile?id=c24d3c412c3fc1ae37b7310e9e4a3696&encoded=0&v=paper_preview&mkt=zh-cn WANG G Q, NI J R, 1994. Debris flow dynamics basic equation[J]. Chinese Science Bulletin, 39(18):1700-1704. (in Chinese) doi: 10.1360/csb1994-39-18-1700 WANG Y Y, 1995. Experimental research on predicting deposit model of debris flow prevention in mountain[J]. The Chinese Journal of Geological Hazard and Control, 6(4):58-67. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZGDH504.008.htm WANG Y Y, ZOU R Y, YAN B Y, et al., 2000. Experimental research on prediction model of debris flow deposition[J]. Journal of Natural Disasters, 9(2):81-86. (in Chinese with English abstract) http://cn.bing.com/academic/profile?id=2aba351a04aa84ea36d10e56ed63b293&encoded=0&v=paper_preview&mkt=zh-cn WEI F Q, XIE H, ZHONG D L, et al., 2002. Debris flow and its disaster mitigation in the construction of mountain towns in western China[J]. The Chinese Journal of Geological Hazard and Control, 13(4):23-28. (in Chinese with English abstract) http://cn.bing.com/academic/profile?id=b0188190a3f94997589a8e1cec27ca19&encoded=0&v=paper_preview&mkt=zh-cn WU J S, CHENG Z L, GENG X Y, 2005. Formation of dam from debris flow in the southeast Tibet[J]. Journal of Mountain Science, 23(4):399-405. (in Chinese with English abstract) http://cn.bing.com/academic/profile?id=eea3e104c61a7323e5d5aeafdaed5240&encoded=0&v=paper_preview&mkt=zh-cn WU J S, KANG Z C, TIAN L Q, et al., 1990. Observation on debris flow in Jiangjia Gully, Yunnan[M] Beijing:Science Press:35-50. (in Chinese) WU Y H, LIU K F, CHEN Y C, 2013. Comparison between FLO-2D and Debris-2D on the application of assessment of granular debris flow hazards with case study[J]. Journal of Mountain Science, 10(2):293-304. doi: 10.1007/s11629-013-2511-1 YE J, CHEN J X, CHEN X Q, et al., 2016. Numerical simulation study on hazardous area for the confluence deposit of gully debris flow[J]. Scientia Geographica Sinica, 36(10):1588-1594. (in Chinese with English abstract) https://www.sciencedirect.com/science/article/pii/S0038080616300968 YOU Y, CHENG Z L, HU P H, et al., 1997. A study on model testing of debris flow in Guxiang Gully, Tibet[J]. Journal of Natural Disasters, 6(1):52-58. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZRZH701.008.htm ZHANG J J, LIU J K, GAO B, et al., 2018. Characteristics of material sources of Galongqu glacial debris flow and the influence to Zhamo Road[J]. Journal of Geomechanics, 24(1):106-115. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzlxxb201801012 ZHANG J S, SHEN X J, XIE H, 2007. Study on factors affecting the river-blocking due to debris-flow in the upper reaches of Minjiang river[J]. Journal of Catastrophology, 22(2):82-86. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTotal-ZHXU200702019.htm ZHANG J S, XIE H, 2008. Calculation of the possibility of river-blocking due to debris flow in the upper reaches of minjiang river[J]. Resources and environment of the Yangtze River Basin, (4):651-655.(in Chinese with English abstract) http://cn.bing.com/academic/profile?id=bbf1589e847312fc5c3caee19f74f0a6&encoded=0&v=paper_preview&mkt=zh-cn ZHOU G D, LI S, SONG D R, et al., 2019. Depositional mechanisms and morphology of debris flow:physical modelling[J]. Landslides, 16(2):315-332. doi: 10.1007/s10346-018-1095-9 ZHU P Y, CHENG Z L, YOU Y, 2000. Research on causes of river blocking by sediment delivery of Peilonggou Gully debris flow in the Sichuan-Xizang Highway[J]. Journal of Natural Disasters, 9(1):80-83. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZRZH200001014.htm 敖汝庄, 郭志学, 曹叔尤, 2004.泥石流入汇主河淤积规律的水槽试验研究[J].水土保持学报, 18(4):196-199. http://d.wanfangdata.com.cn/Periodical/trqsystbcxb200404050 陈春光, 姚令侃, 杨庆华, 2004a.泥石流与主河水流交汇的试验研究[J].西南交通大学学报, 39(1):10-14. http://www.cnki.com.cn/Article/CJFDTotal-XNJT200401003.htm 陈春光, 姚令侃, 杨庆华, 2004b.入汇主河的泥石流龙头运动机理研究[J].水利学报, 35(1):11-16. http://www.cnki.com.cn/Article/CJFDTotal-SLXB200401003.htm 陈春光, 姚令侃, 2006.泥石流与主河交汇区三维数值模拟[J].重庆交通学院学报, 25(2):61-65. http://www.cnki.com.cn/Article/CJFDTotal-CQJT200602017.htm 陈春光, 姚令侃, 刘翠容, 等, 2013.泥石流堵河条件的研究[J].水利学报, 44(6):648-656. http://www.cnki.com.cn/Article/CJFDTotal-SLXB201306007.htm 陈德明, 2000.泥石流与主河水流交汇机理及其河床响应特征[D].北京: 中国水利水电科学研究院. http://cdmd.cnki.com.cn/Article/CDMD-82301-2000004286.htm 陈日东, 刘兴年, 曹叔尤, 等, 2011.泥石流与主河汇流堆积的数值模拟[J].中国科学:技术科学, 41(10):1305-1314. http://www.cqvip.com/QK/98492A/201110/39388508.html 崔鹏, 何易平, 陈杰, 2006.泥石流输沙及其对山区河道的影响[J].山地学报, 24(5):539-549. http://www.cnki.com.cn/Article/CJFDTotal-SDYA200605005.htm 党超, 程尊兰, 刘晶晶, 2009.泥石流堵塞主河条件[J].山地学报, 27(5):557-563. http://www.cnki.com.cn/Article/CJFDTotal-SDYA200905011.htm 杜翠, 姚令侃, 杨运林, 等, 2012.基于动力学与物质条件的泥石流阻塞大河综合判据[J].水利学报, 43(S2):128-132. http://www.cnki.com.cn/Article/CJFDTotal-SLXB2012S2023.htm 樊赟赟, 王思敬, 王恩志, 2010.基于结构两相阻力分析的泥石流堆积形态研究[J].工程地质学报, 18(1):100-104. http://www.cnki.com.cn/Article/CJFDTotal-GCDZ201001018.htm 丰成君, 戚帮申, 张鹏, 等, 2018.汶川Ms8.0地震后龙门山断裂带地壳应力场及其构造意义[J].地质力学学报, 24(4):439-451. http://www.cnki.com.cn/Article/CJFDTotal-DZLX201804001.htm 高桥保, 1986.泥石流停止和堆积机理的研究(二):泥石流堆积扇的形成过程[J].地理译报, 5(2):39-44. http://www.cnki.com.cn/Article/CJFDTotal-DLKJ198602008.htm 郭志学, 2003.泥石流入汇交汇区水沙运动特性[D].成都: 四川大学. http://cdmd.cnki.com.cn/Article/CDMD-10610-2003107343.htm 郭志学, 曹叔尤, 刘兴年, 等, 2004a.泥石流堵江影响因素试验研究[J].水利学报, (11):39-45. http://www.cnki.com.cn/Article/CJFDTotal-SLXB200411007.htm 郭志学, 方铎, 曹叔尤, 等, 2004b.泥石流入汇条件下交汇区的流动特性[J].水科学进展, 15(4):467-471. http://www.cnki.com.cn/Article/CJFDTotal-SKXJ200404012.htm 何易平, 2003.泥石流对山区河流河床演变的影响[D].成都: 中国科学院成都山地灾害与环境研究所. http://www.irgrid.ac.cn/handle/1471x/773001 胡健, 2002.泥石流与主河的汇流机理及泥石流运动的数值模拟[D].北京: 中国水利水电科学研究院. http://cdmd.cnki.com.cn/Article/CDMD-82301-2003123533.htm 胡卸文, 刁仁辉, 梁敬轩, 等, 2016.基于CFX的江口沟泥石流危险区范围预测模拟[J].岩土力学, 37(6):1689-1696. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ytlx201606020 康志成, 李焯芬, 马蔼乃, 2004.中国泥石流研究[M].北京:科学出版社:24-39. http://www.irgrid.ac.cn/handle/1471x/773894 匡尚富, 1995.汇流部泥石流的特性和淤积过程的研究[J].泥沙研究, (1):1-15. http://www.cnki.com.cn/Article/CJFDTotal-NSYJ501.000.htm 李同春, 李杨杨, 章书成, 等, 2008.泥石流泛滥区域数值模拟[J].水利水电科技进展, 28(6):1-4. http://www.cnki.com.cn/Article/CJFDTotal-SLSD200806000.htm 李泳, 胡凯衡, 陈晓清, 2004.泥石流堆积的分布[J].山地学报, 22(3):332-336. http://www.cnki.com.cn/Article/CJFDTotal-SDYA200403013.htm 李泳, 姚寿福, 胡凯衡, 等, 2003.从蒋家沟泥石流阵流看泥石流堆积[J].山地学报, 21(6):712-715. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=sdxb200306012 梁鸿熙, 尚敏, 徐鑫, 2016.基于FLO-2D数值模拟的泥石流流动与堆积影响因素研究[J].工程地质学报, 24(2):228-234. http://www.cnki.com.cn/Article/CJFDTotal-GCDZ201602010.htm 刘翠容, 姚令侃, 陈春光, 等, 2014.基于异重流理论的潜坝堵河判别方法[J].自然灾害学报, 23(5):113-120. http://www.cnki.com.cn/Article/CJFDTotal-ZRZH201405015.htm 刘翠容, 赵世刚, 2016.泥石流阻塞大河机理试验研究[J].重庆交通大学学报(自然科学版), 35(1):90-95. http://www.cnki.com.cn/Article/CJFDTotal-CQJT201601018.htm 柳金峰, 欧国强, 游勇, 2006.泥石流流速与堆积模式之实验研究[J].水土保持研究, 13(1):120-121, 226. http://www.cqvip.com/Main/Detail.aspx?id=21398221 刘晶晶, 2013.汶川震区泥石流坝形成机理[D].北京: 中国科学院大学. http://d.wanfangdata.com.cn/Thesis/Y2333253 刘晶晶, 孙正超, 程尊兰, 2015.泥石流堰塞湖影响区域评估及其应急预案:以汶川县磨子沟为例[J].南水北调与水利科技, 13(5):935-940, 952. http://qikan.cqvip.com/Qikan/Article/Detail?id=666253800 刘晶晶, 李泳, 2016.黏性泥石流残留层的床面减阻研究综述[J].泥沙研究, (3):72-80. http://www.cqvip.com/QK/90721X/201603/669307789.html 刘文锐, 周志远, 2015.汶川震区泥石流堵河类型探讨[J].人民珠江, 36(1):113-116. http://www.cqvip.com/QK/90223X/201501/664006979.html 刘希林, 2000.泥石流风险区划研究[J].地质力学学报, 6(4):37-42. https://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?flag=1&file_no=20000406&journal_id=dzlxxb 刘希林, 陈宜娟, 2010.泥石流风险区划方法及其应用:以四川西部地区为例[J].地理科学, 30(4):558-565. http://qikan.cqvip.com/Qikan/Article/Detail?id=35208655 钱宁, 王兆印, 1984.泥石流运动机理的初步探讨[J].地理学报, 51(1):33-43. http://en.cnki.com.cn/Article_en/CJFDTOTAL-dlxb198401004.htm 屈永平, 唐川, 卜祥航, 等, 2016.石棉县熊家沟"7·04"泥石流堵江调查与分析[J].水利学报, 47(1):44-53. http://www.cqvip.com/QK/90347X/201601/667883329.html 苏鹏程, 韦方强, 程尊兰, 2012. 5·12汶川地震对磨子沟的影响及震后泥石流活动状况[J].长江科学院院报, 29(2):16-23. http://www.cnki.com.cn/Article/CJFDTotal-CJKB201202005.htm 唐川, 朱静, 段金凡, 等, 1991.云南小江流域泥石流堆积扇研究[J].山地研究, 9(3):179-184. http://www.cqvip.com/Main/Detail.aspx?id=583234 田连权, 吴积善, 康志成, 等, 1993.泥石流侵蚀搬运与堆积[M].成都:成都地图出版社:2-26. 王纯祥, 白世伟, 江崎哲郎, 等, 2007.基于GIS泥石流二维数值模拟[J].岩土力学, 28(7):1359-1362. http://www.cnki.com.cn/Article/CJFDTotal-YTLX200707013.htm 王光谦, 倪晋仁, 1994.泥石流动力学基本方程[J].科学通报, 39(18):1700-1704. http://www.cnki.com.cn/Article/CJFDTotal-KXTB199418017.htm 王裕宜, 1995.山区泥石流防治中堆积坡度预测模式的试验研究[J].中国地质灾害与防治学报, 6(4):58-67. http://www.cqvip.com/Main/Detail.aspx?id=1957722 王裕宜, 邹仁元, 严璧玉, 等, 2000.泥石流堆积模式的试验研究[J].自然灾害学报, 9(2):81-86. http://www.cqvip.com/Main/Detail.aspx?id=4160047 韦方强, 谢洪, 钟敦伦, 等, 2002.西部山区城镇建设中的泥石流问题与减灾对策[J].中国地质灾害与防治学报, 13(4):23-28. http://www.cqvip.com/qk/98314X/200204/7294572.html 吴积善, 程尊兰, 耿学勇, 2005.西藏东南部泥石流堵塞坝的形成机理[J].山地学报, 23(4):399-405. http://www.cqvip.com/Main/Detail.aspx?id=20239430 吴积善, 康志成, 田连权, 等, 1990.云南蒋家沟泥石流观测研究[M].北京:科学出版社:35-50. 叶健, 陈锦雄, 陈晓清, 等, 2016.泥石流沟道汇流对堆积危险范围影响的数值模拟研究[J].地理科学, 36(10):1588-1594. http://www.cqvip.com/QK/95809X/201610/670461058.html 游勇, 程尊兰, 胡平华, 等, 1997.西藏古乡沟泥石流模型试验研究[J].自然灾害学报, 6(1):52-58. http://www.cqvip.com/Main/Detail.aspx?id=2486467 张佳佳, 刘建康, 高波, 等, 2018.藏东南嘎龙曲冰川泥石流的物源特征及其对扎墨公路的影响[J].地质力学学报, 24(1):106-115. https://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?flag=1&file_no=20180112&journal_id=dzlxxb 张金山, 沈兴菊, 谢洪, 2007.泥石流堵河影响因素研究:以岷江上游为例[J].灾害学, 22(2):82-86. http://www.cnki.com.cn/Article/CJFDTotal-ZHXU200702019.htm 张金山, 谢洪, 2008.岷江上游泥石流堵河可能性的经验公式判别[J].长江流域资源与环境, (4):651-655. http://www.cqvip.com/QK/71135X/201107/27744267.html 朱平一, 程尊兰, 游勇, 2000.川藏公路培龙沟泥石流输砂堵江成因探讨[J].自然灾害学报, 9(1):80-83. http://www.cqvip.com/Main/Detail.aspx?id=4253412