留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种基于有限元的岩石圈长期变形数值计算方法

杨少华 李忠海

杨少华, 李忠海, 2018. 一种基于有限元的岩石圈长期变形数值计算方法. 地质力学学报, 24 (6): 768-775. DOI: 10.12090/j.issn.1006-6616.2018.24.06.079
引用本文: 杨少华, 李忠海, 2018. 一种基于有限元的岩石圈长期变形数值计算方法. 地质力学学报, 24 (6): 768-775. DOI: 10.12090/j.issn.1006-6616.2018.24.06.079
YANG Shaohua, LI Zhonghai, 2018. A NUMERICAL CALCULATION APPROACH BASED ON FEM FOR LONG-TERM DEFORMATION OF LITHOSPHERE. Journal of Geomechanics, 24 (6): 768-775. DOI: 10.12090/j.issn.1006-6616.2018.24.06.079
Citation: YANG Shaohua, LI Zhonghai, 2018. A NUMERICAL CALCULATION APPROACH BASED ON FEM FOR LONG-TERM DEFORMATION OF LITHOSPHERE. Journal of Geomechanics, 24 (6): 768-775. DOI: 10.12090/j.issn.1006-6616.2018.24.06.079

一种基于有限元的岩石圈长期变形数值计算方法

doi: 10.12090/j.issn.1006-6616.2018.24.06.079
基金项目: 

国家自然科学基金项目 41604080

国家自然科学基金项目 41622404

国家自然科学基金项目 41774108

国家自然科学基金项目 41590860

博士后面上基金项目 2016M601083

中石油前陆专项 2016B-0501

详细信息
    作者简介:

    杨少华(1987-), 男, 助理研究员, 主要从事计算地球动力学研究。E-mail:yangshaohua09@sina.com

    通讯作者:

    李忠海(1982-), 男, 教授, 主要从事计算地球动力学研究。E-mail:li.zhonghai@ucas.ac.cn

  • 中图分类号: P313

A NUMERICAL CALCULATION APPROACH BASED ON FEM FOR LONG-TERM DEFORMATION OF LITHOSPHERE

  • 摘要: 有限单元法以其灵活性和精确性,成为固体地球科学中广为使用的数值方法。从短周期的地震活动到长周期的岩石圈变形、地幔对流,甚至行星演化,有限单元法几乎在固体地球科学的各个领域都占据着十分重要的位置。随着研究的深入,某些特定的地学问题给有限元计算带来挑战,尤其是岩石圈尺度大变形的数值计算,比如俯冲带的演化、剪切带中塑性流变导致的应力集中。基于显式有限元,尝试考虑粘弹塑性岩石圈大变形过程的数值计算。应用Marker-In-Cell(MIC)方法处理物质迁移。在描述基本原理和流程的基础上,对粘弹性变形、弹塑性变形、大变形过程及热传递过程等核心模块分别做了基准测试,而这四个模块是模拟岩石圈长期变形的关键。由测试结果和其他学者的(解析或数值)研究结果比对情况来看,受测试的核心模块基本达到了测试要求。可以预见,现有的基本算法可以满足研究岩石圈大变形的需要,进一步的具体研究工作将探讨这类问题。从科学问题层面讲,逐渐复杂的科学问题有利于数值模型的成熟。已达到基准测试的数值方法对下一步开展一些具体的地球动力学数值模拟研究有实际意义。

     

  • 图  1  直角坐标中的三角形单元(e)的面积坐标

    Figure  1.  Triangle' s area-coordinates in cartesian coordinates

    图  2  马克斯韦尔体应力积累过程的边界条件和数值解与解析解的对比

    a—边界条件;b—数值解(线)与解析解(圈)的对比

    Figure  2.  Stress accumulation of a Maxwell body: boundary conditions and the comparison between numerical solutions (line) and analytical solutions (circle)

    图  3  弹塑性体应力积累过程的边界条件和数值解与解析解的对比

    a—边界条件;b—数值解(线)与解析解(圈)的对比

    Figure  3.  Stress accumulation of elastic-plastic body: boundary conditions and the comparison between numerical solutions (line) and analytical solutions (circle)

    图  4  不同作者对瑞利—泰勒不稳定性的测试结果对比

    a—文中结果;b—Thieulot结果[27];c—Van Keken结果[26]

    Figure  4.  Rayleigh-Taylor instability verifications

    图  5  岩石圈一维热传导过程中温度剖面数值解(线)和解析解(十字)的对比

    Figure  5.  1-D temperature profile comparisons between numerical solutions and analytical solutions of the lithosphere

  • [1] Hughes T J R. The finite element method:linear static and dynamic finite element analysis[M]. New York:Dover Publication, 2000.
    [2] Ismail-Zadeh A, Tackley P. Computational methods for geodynamics[M]. Cambridge:Cambridge University Press, 2010.
    [3] Tucker G E, Hancock G R. Modelling landscape evolution[J]. Earth Surface Processes and Landforms, 2010, 35(1):28~50. doi: 10.1002/esp.v35:1
    [4] Yang S H, Shi Y L. Three-dimensional numerical simulation of glacial trough forming process[J]. Science China Earth Sciences, 2015, 58(9):1656~1668. doi: 10.1007/s11430-015-5120-8
    [5] Beaumont C, Jamieson R A, Nguyen M H, et al. Himalayan tectonics explained by extrusion of a low-viscosity crustal channel coupled to focused surface denudation[J]. Nature, 2001, 414(6865):738~742. doi: 10.1038/414738a
    [6] Van Keken P E, Kiefer B, Peacock S M. High-resolution models of subduction zones:implications for mineral dehydration reactions and the transport of water into the deep mantle[J]. Geochemistry, Geophysics, Geosystems, 2002, 3(10):1~20. doi: 10.1029/2001GC000256/pdf
    [7] Leng W, Zhong S J. Viscous heating, adiabatic heating and energetic consistency in compressible mantle convection[J]. Geophysical Journal International, 2008, 173(2):693~702. doi: 10.1111/gji.2008.173.issue-2
    [8] 杨少华, 许志琴, 李忠海, 等.欧罗巴星陨石坑对冰层厚度的制约[J].地球物理学报, 2017, 60(3):935~940. http://www.cnki.com.cn/Article/CJFDTotal-DQWX201703009.htm

    YANG Shaohua, XU Zhiqin, LI Zhonghai, et al. Constraint of impact craters on ice thickness on the Europa[J]. Chinese Journal of Geophysics, 2017, 60(3):935~940(in Chinese with English abstract) http://www.cnki.com.cn/Article/CJFDTotal-DQWX201703009.htm
    [9] Zhang S Q, O'Neill C. The early geodynamic evolution of Mars-type planets[J]. Icarus, 2016, 265:187~208. doi: 10.1016/j.icarus.2015.10.019
    [10] He Y, Puckett E G, Billen M I. A discontinuous Galerkin method with a bound preserving limiter for the advection of non-diffusive fields in solid Earth geodynamics[J]. Physics of the Earth and Planetary Interiors, 2017, 263:23~37. doi: 10.1016/j.pepi.2016.12.001
    [11] Enright D, Losasso F, Fedkiw R. A fast and accurate semi-Lagrangian particle level set method[J]. Computers & Structures, 2005, 83(6~7):479~490. http://www.ams.org/mathscinet-getitem?mr=2143508
    [12] Weinberg R F, Schmeling H. Polydiapirs:multiwavelength gravity structures[J]. Journal of Structural Geology, 1992, 14(4):425~436. doi: 10.1016/0191-8141(92)90103-4
    [13] Gerya T V. Introduction to numerical geodynamic modelling[M]. Cambridge, UK:Cambridge University Press, 2010.
    [14] Ranalli G. Rheology of the Earth[M]. UK:Chapman and Hall, 1995.
    [15] Kronbichler M, Heister T, Bangerth W. High accuracy mantle convection simulation through modern numerical methods[J]. Geophysical Journal International, 2012, 191(1):12~29. doi: 10.1111/gji.2012.191.issue-1
    [16] Kaus B J P. Factors that control the angle of shear bands in geodynamic numerical models of brittle deformation[J]. Tectonophysics, 2010, 484(1~4):36~47. doi: 10.1016/j.tecto.2009.08.042
    [17] Moresi L, Dufour F, Mühlhaus H B. Mantle convection modeling with viscoelastic/brittle lithosphere:numerical methodology and plate tectonic modeling[J]. Pure and Applied Geophysics, 2002, 159(10):2335~2356. doi: 10.1007/s00024-002-8738-3
    [18] Kaus B J P, Popov A A, Baumann T S, et al. Forward and inverse modelling of lithospheric deformation on geological timescales[A]. NIC Symposium 2016[C]. NIC Series, 2016, 298~307.
    [19] Gerya T V, Yuen D A. Robust characteristics method for modelling multiphase visco-elasto-plastic thermo-mechanical problems[J]. Physics of the Earth and Planetary Interiors, 2007, 163(1~4):83~105. doi: 10.1016/j.pepi.2007.04.015
    [20] Jaeger J C, Cook N G W, Zimmerman R W. Fundamentals of rock mechanics[M]. Malden:Blackwell Publishingl, 2007.
    [21] 王勖成.有限单元法[M].北京:清华大学出版社, 2003.

    WANG Xucheng. Finite element method[M]. Beijng:Tsinghua University Press, 2003. (in Chinese)
    [22] 夏志皋.塑性力学[M].上海:同济大学出版社, 1991.

    XIA Zhigao, Plasticity mechnics[M]. Shanghai:Tongji University Press, 1991. (in Chinese)
    [23] Shewchuk J R. Delaunay refinement algorithms for triangular mesh generation[J]. Computational Geometry, 2002, 22(1~3):21~74. doi: 10.1016/S0925-7721(01)00047-5
    [24] Burden R L, Faires J D. Numerical analysis[M]. Boston:Brooks/Cole, 2011.
    [25] 李庆扬, 王能超, 易大义.数值分析[M]. 5版.北京:清华大学出版社, 2008.

    LI Qingyang, WANG Nengchao, YI Dayi. Numerical analysis[M]. 5th ed. Beijing:Tsinghua University Press, 2008. (in Chinese)
    [26] Van Keken P E, King S D, Schmeling H, et al. A comparison of methods for the modeling of thermochemical convection[J]. Journal of Geophysical Research:Solid Earth, 1997, 102(B10):22477~22495. doi: 10.1029/97JB01353
    [27] Thieulot C. ELEFANT:a user-friendly multipurpose geodynamics code[J]. Solid Earth Discussion, 2014, 6(2):1949~2096. doi: 10.5194/sed-6-1949-2014
    [28] Turcotte D L, Schubert G. Geodynamics[M]. Cambridge, UK:Cambridge University Press, 2002.
    [29] le Pourhiet L, May D A, Huile L, et al. A genetic link between transform and hyper-extended margins[J]. Earth and Planetary Science Letters, 2017, 465:184~192. doi: 10.1016/j.epsl.2017.02.043
    [30] Ruh J B, Gerya T, Burg J P. 3D effects of strain vs. velocity weakening on deformation patterns in accretionary wedges[J]. Tectonophysics, 2014, 615~616:122~141. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=a43bd9c299bbc09c6d683626a1ea36c3
  • 加载中
图(5)
计量
  • 文章访问数:  275
  • HTML全文浏览量:  105
  • PDF下载量:  24
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-08-13
  • 修回日期:  2018-08-31
  • 刊出日期:  2018-12-01

目录

    /

    返回文章
    返回