Research on rock mechanics parameters of the Jurassic-Cretaceous reservoir in the Sikeshu sag, Junggar Basin, China
-
摘要: 随着准南前陆中生界油气勘探持续突破,构造解析与储层评价越来越重要,与二者密切相关的岩石力学参数研究却鲜有涉及。针对准南前陆四棵树凹陷侏罗系—白垩系岩芯、测井、地震资料现状,结合三轴岩石力学实验和三维岩石力学反演方法,明确研究区岩石力学参数特征。结果表明:研究区储层动、静态杨氏模量和泊松比均呈正相关线性关系,岩石力学参数受岩性变化控制,白垩系清水河组下部与侏罗系头屯河组、西山窑组、八道湾组杨氏模量较高、泊松比较低,白垩系清水河组上部、侏罗系三工河组杨氏模量较低、泊松比较高;随着杨氏模量增加、泊松比降低,岩石抗压强度增加。基于高泉地区岩石力学参数反演结果表明,杨氏模量越大、泊松比越小,裂缝发育指数越高,越容易形成裂缝。白垩系清水河组上部、侏罗系三工河组裂缝发育指数小于0.4,裂缝不发育、油气显示差;白垩系清水河组下部、侏罗系西山窑组与头屯河组裂缝发育指数大于0.4,裂缝发育、油气显示好,因此此研究成果对研究区深层油气勘探具有重要指导意义。Abstract: Structural analysis and reservoir evaluation has become increasingly important as petroleum exploration keeps making breakthroughs in the foreland of the southern Junggar Basin. However, the research on rock mechanical parameters which is closely related to them is rare. Based on the drilling core data, logging and seismic data of the Jurassic-Cretaceous in the Sikeshu sag, using the rock mechanics experiment and three-dimensional rock mechanics inversion, we defined the rock mechanics parameters in this study. The dynamic and static Young′s modulus shows a positively correlated linear relationship with the Poisson′s ratio. The rock mechanical parameters are controlled by the lithological variation. The lower K1q and J2t, J2x, J1b Formations have a higher Young′s modulus and a lower Poisson′s ratio, while the upper K1q and J1s Formations have a lower Young′s modulus and a higher Poisson′s ratio. When the Young′s modulus increases and the Poisson′s ratio decreases, the rock compressive strength increases. The inversion results of rock mechanical parameters in the Gaoquan area show that the higher the Young′s modulus and the lower the Poisson′s ratio, the higher the fracture index. The fracture index of the upper K1q and J1s Formations is lower than 0.4, indicating poor fracture development and petroleum display; while the fracture index of the lower K1q and J2t, J2x, J1b Formations is higher than 0.4, suggesting good fracture development and petroleum display. Therefore, the research results are instructive for the deep petroleum exploration in the study area.
-
Key words:
- rock mechanical parameters /
- fractures /
- Jurassic /
- Cretaceous /
- Junggar Basin /
- North Tianshan
-
表 1 四棵树凹陷侏罗系—白垩系致密砂岩储层动静态岩石力学数据
Table 1. Experimental data of dynamic and static rock mechanics of the Jurassic-Cretaceous tight sandstone reservoir in the Sikeshu sag
序号 井号 层位 样品编号 动态杨氏性模量/GPa 静态杨氏模量/GPa 动态泊松比 静态泊松比 1 高101 K1q 101-1 63.51 29.52 0.25 0.20 2 高101 J2t 101-2 47.86 22.56 0.20 0.20 3 高101 J2t 101-3 44.37 22.78 0.23 0.20 4 高101 J2t 101-4 43.37 21.51 0.23 0.20 5 高101 J2t 101-5 55.52 24.17 0.21 0.21 6 高101 J2t 101-6 53.64 25.52 0.26 0.22 7 高101 J1s 101-7 66.35 27.76 0.24 0.20 8 高101 J1s 101-8 55.56 27.18 0.24 0.21 9 高102 J2t 102-1 50.49 25.33 0.22 0.21 10 高102 J2t 102-2 57.18 25.41 0.23 0.21 11 高102 J2t 102-3 55.78 23.41 0.23 0.21 12 高泉5 J2t 5-1 29.70 10.98 0.23 0.22 13 高泉5 J2t 5-2 40.98 12.55 0.23 0.22 14 高泉5 K1q 5-3 59.38 29.55 0.21 0.19 15 高泉5 K1q 5-4 51.22 25.11 0.24 0.20 16 高泉5 K1q 5-5 50.50 28.19 0.25 0.24 17 高泉5 K1q 5-6 60.89 18.64 0.21 0.21 18 高泉5 J2t 5-7 42.65 20.16 0.21 0.19 19 高泉5 J2t 5-8 49.78 21.76 0.17 0.21 20 独山1 J3q 1-1 45.96 15.35 0.19 0.21 21 独山1 J3q 1-2 34.32 11.33 0.21 0.19 22 独山1 J3q 1-3 44.09 15.45 0.20 0.22 23 独山1 J3q 1-4 50.49 17.16 0.21 0.20 24 独山1 J3q 1-5 50.99 15.14 0.25 0.22 25 独山1 J3q 1-6 34.79 12.89 0.21 0.23 26 独山1 J3q 1-7 40.07 24.52 0.17 0.19 27 独山1 J3q 1-8 43.85 23.39 0.19 0.19 28 独山1 J3q 1-9 48.17 21.25 0.22 0.23 表 2 四棵树凹陷侏罗系—白垩系致密砂岩储层静态岩石力学实验数据
Table 2. Experimental data of static rock mechanics of the Jurassic-Cretaceous tight sandstone reservoir in the Sikeshu sag
序号 井号 井深/m 层位 长度/mm 直径/mm 重量/g 密度/(g/cm3) 围压/MPa 抗压强度/MPa 静态杨氏模量/GPa 静态泊松比 1 艾2 3520 J2x 50.47 25.08 64.72 2.60 49.30 282.21 0.228 2 卡8 3955 J2t 50.18 25.08 58.04 2.34 55.40 245.14 21.98 0.228 3 卡002 3992 J2t 49.58 25.03 56.68 2.32 55.90 228.14 21.18 4 卡002 3999 J2t 49.85 24.98 55.46 2.27 56.00 195.59 19.49 0.236 5 卡8 4074 J2t 49.95 25.06 64.06 2.60 57.0 309.96 29.58 6 卡002 4080 J2t 49.75 24.96 56.26 2.31 57.10 246.96 22.86 0.243 7 卡002 4126 J2x 50.45 25.08 58.40 2.34 57.80 273.06 22.96 0.246 8 卡7 4176 K1q 46.46 25.06 53.49 2.34 58.60 307.13 24.02 9 卡8 4228 J1b 50.11 25.13 63.72 2.57 59.20 410.56 34.21 10 独山1 6017 J2t 50.43 25.05 61.19 2.46 65.00 390.58 34.13 0.207 11 独山1 6413 J2t 45.39 25.03 57.23 2.56 65.00 320.64 0.221 12 独山1 6415 J2t 50.12 25.08 61.06 2.47 65.00 378.38 32.46 0.203 -
BOWERS G L, 1995. Pore pressure estimation from velocity data: accounting for overpressure mechanisms besides undercompaction[J]. SPE Drilling & Completion, 10(2): 89-95. DING W L, FAN T L, HUANG X B, et al., 2010. Paleo-structural stress field simulation for middle-lower Ordovician in Tazhong area and favorable area prediction of fractured reservoirs[J]. Journal of China University of Petroleum, 34(5): 1-6. (in Chinese with English abstract) DU J H, ZHI D M, LI J Z, et al., 2019. Major breakthrough of Well Gaotan 1 and exploration prospects of lower assemblage in southern margin of Junggar basin, NW China[J]. Petroleum Exploration and Development, 46(2): 205-215. (in Chinese with English abstract) doi: 10.1016/S1876-3804(19)60002-9 DUMITRESCU C C, 2019. Brittleness and geomechanical properties estimation using wireline and seismic data in the Duvernay Shale Basin, Canada[C]//Unconventional resources technology conference. Houston, Texas: SEG: 478-493. FANG S H, JIA C Z, SONG Y, et al., 2007. Mesocenozoic tectonic events and structural constraints in the southern Junggar Basin: evidence from detrital compositions[J]. Chinese Journal of Geology, 42(4): 753-765. (in Chinese with English abstract) GAO Z Y, FENG J R, CUI J G, et al., 2020. Comparative analysis on sedimentary and reservoir characteristics of Jurassic to cretaceous between Foreland Basins in southern and northern Tianshan Mountains[J]. Xinjiang Petroleum Geology, 41(1): 80-92. (in Chinese with English abstract) GUAN S W, HE D F, LEI Y L, et al., 2013. Kinematic classification, structural modeling and prospective fields of the foreland thrust belts in Midwest China[J]. Petroleum Exploration and Development, 40(1): 66-78. (in Chinese with English abstract) GUAN X T, WU C D, WU J, et al., 2020. Sedimentary sequence and depositional environment evolution of Upper Jurassic-Lower cretaceous strata in the southern Margin of Junggar Basin[J]. Xinjiang Petroleum Geology, 41(1): 67-79. (in Chinese with English abstract) GUI R, WAN Y P, 2012. Rock mechanics parameter calculation based on conventional logging data: a case study of Upper Paleozoic in Ordos Basin[J]. Journal of Geomechanics, 18(4): 418-424. (in Chinese with English abstract) HAN D H, NUR A, MORGAN D, 1986. Effects of porosity and clay content on wave velocities in sandstones[J]. Geophysics, 51(11): 2093-2107. doi: 10.1190/1.1442062 HAN Y G, ZHAO G C, 2018. Final amalgamation of the Tianshan and Junggar orogenic collage in the southwestern central Asian Orogenic belt: constraints on the closure of the Paleo-Asian ocean[J]. Earth-Science Reviews, 186: 129-152. doi: 10.1016/j.earscirev.2017.09.012 HE H Q, ZHI D M, LEI D W, et al., 2019. Strategic breakthrough in Gaoquan anticline and exploration assessment on lower assemblage in the southern margin of Junggar Basin[J]. China Petroleum Exploration, 24(2): 137-146. (in Chinese with English abstract) HUANG S J, SHAN Y M, LIU W G, et al., 1999. The relationship between mechanical parameters of rock and formation conditions of reservoir sandstone[J]. Chinese Journal of Rock Mechanics and Engineering, 18(4): 454-459. (in Chinese with English abstract) JIN J, WANG F Y, REN J L, et al., 2019. Genesis of High-Yield oil and gas in well Gaotan-1 and characteristics of source rocks in Sikeshu Sag, Junggar Basin[J]. Xinjiang Petroleum Geology, 40(2): 145-151. (in Chinese with English abstract) KUANG J, QI X F, 2006. The structural characteristics and Oil-Gas explorative direction in Junggar Foreland Basin[J]. Xinjiang Petroleum Geology, 27(1): 5-9. (in Chinese with English abstract) LEI D W, TANG Y, CHANG Q S, 2008. The deep and relatively high-quality clastic reservoir bodies and favorable exploration areas in southern margin of Junggar Basin[J]. Xinjiang Petroleum Geology, 29(4): 435-438. (in Chinese with English abstract) LI Z M, ZHANG J Z, 1997. In-situ stress and petroleum exploration & development[M]. Beijing: Petroleum Industry Press. (in Chinese) LIANG Z L, PANG Z C, JI D S, et al., 2020. Discovery of Ultra-Deep rift basin and its petroleum exploration significance in Sikeshu Sag, Junggar Basin[J]. Xinjiang Petroleum Geology, 41(1): 18-24. (in Chinese with English abstract) LIU H M, WANG X J, DU Z J, et al, 2020. Study on pore structure characteristics of tight sandstone in Block 4 of the central Junggar Basin[J]. Journal of Geomechanics, 26(1): 96-105. (in Chinese with English abstract) LIU J H, WU C, TAO X H, 2020. Three-dimensional modeling method for drilling rock mechanics and its field application[J]. Drilling & Production Technology, 43(1): 13-16. (in Chinese with English abstract) LIU J G, LI J, SU Y L, et al, 2020. Tectonic stress field research on the Ordovician reservoirs in the Tahe Oilfield[J]. Journal of Geomechanics, 26(1): 48-54. (in Chinese with English abstract) MENG Y K, SHI F J, WANG X W, 2012. Analysis of the structure and deformation of Sikeshu sag in the southern part of Junggar basin[J]. Journal of Ningbo University (Natural Science & Engineering Edition), 25(2): 116-120. (in Chinese with English abstract) RICKMAN R, MULLEN M, PETRE J, et al., 2008. A practical use of shale petrophysics for stimulation design optimization: all shale plays are not clones of the Barnett Shale[C]//SPE annual technical conference and exhibition. Denver: SPE. SHAO Y, WANG R F, ZHANG Y Q, et al., 2011. Strike-slip structures and oil-gas exploration in the NW margin of the Junggar Basin, China[J]. Acta Petrolei Sinica, 32(6): 976-984. (in Chinese with English abstract) SUN J M, HAN Z L, QIN R B, et al., 2015. Log evaluation method of fracturing performance in tight gas reservoir[J]. Acta Petrolei Sinica, 36(1): 74-80. (in Chinese with English abstract) WANG K, DAI J S, FENG J W, et al., 2014. Research on reservoir rock mechanical parameters of Keshen foreland thrust belt in Tarim Basin[J]. Journal of China University of Petroleum, 38(5): 25-33. (in Chinese with English abstract) WARD C D, COGHILL K, BROUSSARD M D, 1994. The application of petrophysical data to improve pore and fracture pressure determination in North sea central graben HPHT wells[C]//SPE annual technical conference and exhibition. New Orleans: SPE. WU L, ZHU M, FENG X Q, et al., 2022. Interpretation on tectonic stress and deformation of Sikeshu sag in Junggar Basin[J]. Acta Petrolei Sinica, 43(4): 494-506. (in Chinese with English abstract) XIAO L X, LEI D W, WEI L Y, et al., 2012. Structural types and features in the west of south margin in the Junggar Basin[J]. Natural Gas Industry, 32(11): 36-39. (in Chinese with English abstract) XU X N, LI Y J, RUAN B, et al., 2020. Integrated Formation pressure testing by logging and genesis of abnormal high pressure in Gaoquan Anticline[J]. Xinjiang Petroleum Geology, 41(3): 365-371. (in Chinese with English abstract) YANG D S, XIAO L X, YAN G H, et al., 2019. Structural characteristics and petroleum exploration in Sikeshu sag, southern margin of Junggar Basin[J]. Xinjiang Petroleum Geology, 40(2): 138-144. (in Chinese with English abstract) ZHAO G P, 2003. Overpressure and its relation to petroleum accumulation in southern edge of Junggar Basin[J]. Oil & Gas Geology, 24(4): 327-331. (in Chinese with English abstract) ZHOU H W, XIE H P, ZUO J P, et al., 2010. Experimental study of the effect of depth on mechanical parameters of rock[J]. Chinese Science Bulletin, 55(34): 3276-3284. (in Chinese with English abstract) doi: 10.1360/972010-786 ZHOU W, GAO Y Q, SHAN Y M, et al., 2008. Lithomechanical property of tight sand reservoirs in the second member of Shaximiao Formation in Xinchang gas field, West Sichuan Basin[J]. Natural Gas Industry, 28(2): 34-37. (in Chinese with English abstract) ZHU M, WANG X, XIAO L X, 2020. Structural characteristics and evolution in the southern Margin of Junggar Basin[J]. Xinjiang Petroleum Geology, 41(1): 9-17. (in Chinese with English abstract) ZHU W, WU C D, WANG J L, et al., 2017. Triassic provenance and its tectonic significance in Sikeshu sag, Junggar Basin[J]. Xinjiang Petroleum Geology, 38(5): 512-518. (in Chinese with English abstract) 丁文龙, 樊太亮, 黄晓波, 等, 2010. 塔中地区中-下奥陶统古构造应力场模拟与裂缝储层有利区预测[J]. 中国石油大学学报(自然科学版), 34(5): 1-6. https://www.cnki.com.cn/Article/CJFDTOTAL-SYDX201005003.htm 杜金虎, 支东明, 李建忠, 等, 2019. 准噶尔盆地南缘高探1井重大发现及下组合勘探前景展望[J]. 石油勘探与开发, 46(2): 205-215. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201902003.htm 方世虎, 贾承造, 宋岩, 等, 2007. 准噶尔盆地南缘中-新生界碎屑成份特征与构造期次[J]. 地质科学, 42(4): 753-765. doi: 10.3321/j.issn:0563-5020.2007.04.010 高志勇, 冯佳睿, 崔京钢, 等, 2020. 天山南北前陆盆地侏罗系: 白垩系沉积及储集层特征对比[J]. 新疆石油地质, 41(1): 80-92. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD202001015.htm 管树巍, 何登发, 雷永良, 等, 2013. 中国中西部前陆冲断带运动学分类、模型与勘探领域[J]. 石油勘探与开发, 40(1): 66-78. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201301010.htm 关旭同, 吴朝东, 吴鉴, 等, 2020. 准噶尔盆地南缘上侏罗统: 下白垩统沉积序列及沉积环境演化[J]. 新疆石油地质, 41(1): 67-79. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD202001014.htm 归榕, 万永平, 2012. 基于常规测井数据计算储层岩石力学参数: 以鄂尔多斯盆地上古生界为例[J]. 地质力学学报, 18(4): 418-424. https://journal.geomech.ac.cn/article/id/57df7687-f21e-4e59-98cc-4b16bd80ad71 何海清, 支东明, 雷德文, 等, 2019. 准噶尔盆地南缘高泉背斜战略突破与下组合勘探领域评价[J]. 中国石油勘探, 24(3): 137-146. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY201902001.htm 黄思静, 单钰铭, 刘维国, 等, 1999. 储层砂岩岩石力学性质与地层条件的关系研究[J]. 岩石力学与工程学报, 18(4): 454-459. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX904.021.htm 靳军, 王飞宇, 任江玲, 等, 2019. 四棵树凹陷高探1井高产油气成因与烃源岩特征[J]. 新疆石油地质, 40(2): 145-151. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD201902003.htm 况军, 齐雪峰, 2006. 准噶尔前陆盆地构造特征与油气勘探方向[J]. 新疆石油地质, 27(1): 5-9. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD200601002.htm 雷德文, 唐勇, 常秋生, 2008. 准噶尔盆地南缘深部优质储集层及有利勘探领域[J]. 新疆石油地质, 29(4): 435-438. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD200804010.htm 李志明, 张金珠, 1997. 地应力与油气勘探开发[M]. 北京: 石油工业出版社. 梁则亮, 庞志超, 冀冬生, 等, 2020. 四棵树凹陷超深层裂谷盆地的厘定及油气勘探意义[J]. 新疆石油地质, 41(1): 18-24. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD202001008.htm 刘惠民, 王学军, 杜振京, 等, 2020. 准中4区块致密砂岩孔隙结构特征研究[J]. 地质力学学报, 26(1): 96-105. doi: 10.12090/j.issn.1006-6616.2020.26.01.010 刘建华, 吴超, 陶兴华, 2020. 钻井岩石力学参数三维建模方法及其现场应用[J]. 钻采工艺, 43(1): 13-16. https://www.cnki.com.cn/Article/CJFDTOTAL-ZCGY202001005.htm 刘佳庚, 李静, 苏玉亮, 等, 2020. 塔河油田奥陶系储层构造应力场研究[J]. 地质力学学报, 26(1): 48-54. doi: 10.12090/j.issn.1006-6616.2020.26.01.005 孟元库, 施发剑, 汪新文, 2012. 准噶尔盆地南缘四棵树凹陷构造变形特征分析[J]. 宁波大学学报(理工版), 25(2): 116-120. https://www.cnki.com.cn/Article/CJFDTOTAL-NBDZ201202026.htm 邵雨, 汪仁富, 张越迁, 等, 2011. 准噶尔盆地西北缘走滑构造与油气勘探[J]. 石油学报, 32(6): 976-984. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201106008.htm 孙建孟, 韩志磊, 秦瑞宝, 等, 2015. 致密气储层可压裂性测井评价方法[J]. 石油学报, 36(1): 74-80. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201501009.htm 王珂, 戴俊生, 冯建伟, 等, 2014. 塔里木盆地克深前陆冲断带储层岩石力学参数研究[J]. 中国石油大学学报(自然科学版), 38(5): 25-33. https://www.cnki.com.cn/Article/CJFDTOTAL-SYDX201405005.htm 吴林, 朱明, 冯兴强, 等, 2022. 准噶尔盆地四棵树凹陷构造应力场与构造变形解析[J]. 石油学报, 43(4): 494-506. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB202204004.htm 肖立新, 雷德文, 魏凌云, 等, 2012. 准南西段构造样式及逆冲推覆构造特征[J]. 天然气工业, 32(11): 36-39. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201211011.htm 徐新纽, 李俞静, 阮彪, 等, 2020. 高泉背斜地层压力测井多参数综合解释与异常高压成因[J]. 新疆石油地质, 41(3): 365-371. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD202003018.htm 杨迪生, 肖立新, 阎桂华, 等, 2019. 准噶尔盆地南缘四棵树凹陷构造特征与油气勘探[J]. 新疆石油地质, 40(2): 138-144. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD201902002.htm 赵桂萍, 2003. 准噶尔盆地南缘异常高压及其与油气成藏的关系[J]. 石油与天然气地质, 24(4): 327-331. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT200304003.htm 周宏伟, 谢和平, 左建平, 等, 2010. 赋存深度对岩石力学参数影响的实验研究[J]. 科学通报, 55(34): 3276-3284. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201034004.htm 周文, 高雅琴, 单钰铭, 等, 2008. 川西新场气田沙二段致密砂岩储层岩石力学性质[J]. 天然气工业, 28(2): 34-37. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG200802012.htm 朱明, 汪新, 肖立新, 2020. 准噶尔盆地南缘构造特征与演化[J]. 新疆石油地质, 41(1): 9-17. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD202001007.htm 朱文, 吴朝东, 王家林, 等, 2017. 准噶尔盆地四棵树凹陷三叠系物源及其构造意义[J]. 新疆石油地质, 38(5): 512-518. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD201705003.htm