The Early Cretaceous extensional deformation in the southeastern Beishan Range, central Asia: Constrains from 2D seismic reflection profile interpretation and apatite fission track thermochronology
-
摘要: 为深入认识中亚造山带南缘晚中生代陆内变形过程及其动力学机制,通过野外地质观察、二维反射地震剖面解释及磷灰石裂变径迹测年,对北山东南部早白垩世伸展构造及早期挤压构造进行了详细解析。结果表明,一系列逆冲断层与褶皱构造造成下—中侏罗统发生强烈的挤压变形。地震剖面揭示出2条早白垩世伸展正断层,其中梭梭井断层为南东倾向的低角度铲式正断层,五道明断层为北西倾向的高角度正断层,二者共同切割了早期形成的褶皱−冲断系统,指示挤压−伸展构造的转换;梭梭井断层与五道明断层分别限定了早白垩世总口子盆地的北西和南东边界,使得其具有 “地堑”样式,盆地内沉积的下白垩统生长地层发育,表明伸展正断层的活动时间为早白垩世晚期。磷灰石裂变径迹热史模拟结果显示,梭梭井断层下盘于132~110 Ma经历了快速冷却和剥露事件,该事件与其持续的正断层活动密切相关,进一步证实北山东南部晚中生代挤压−伸展构造的转换很可能发生在早白垩世晚期(133~129 Ma)。增厚地壳的重力垮塌与局部地幔上涌共同导致了中亚造山带南缘早白垩世的区域伸展作用。Abstract:
Objective The Beishan Range occupies a key position in Central Asia. This study aims to deepen the understanding of the timing, intracontinental deformation processes, and their dynamic mechanisms in the Late Mesozoic on the southern margin of the Central Asian Orogenic Belt (CAOB). Methods We conducted detailed analyses of the Early Cretaceous extensional and earlier compressional structures in the southeastern Beishan Range through field geological observations, interpretation of 2D reflection seismic profiles, and apatite fission track thermochronology. Conclusion Field observations show that Lower–Middle Jurassic strata have been strongly deformed by numerous thrusts and folds. 2D seismic reflection profiles reveal two NE- to NEE-striking normal faults. The Suosuojing fault is a SE-dipping low-angle listric normal fault, while the Wudaoming fault is a NW-dipping high-angle normal fault. These normal faults cut through the early-formed fold-thrust system, indicating a transition from contraction to extension. The Suosuojing and Wudaoming faults, respectively, define the northwestern and southeastern boundaries of the Early Cretaceous Zongkouzi basin. The Zongkouzi basin exhibits a graben geometry, with Lower Cretaceous strata displaying typical growth-strata relationships, suggesting that the normal faults were active during the late Early Cretaceous. Thermal history modeling results from apatite fission track data indicate that the footwall of the Suosuojing fault experienced rapid cooling between 132 and 110 Ma. This rapid cooling phase was closely related to the footwall exhumation during the normal slip of the Suosuojing fault. We argue that the Late Mesozoic intracontinental contraction–extension transition in the southeastern Beishan Range likely occurred between ~133 Ma and ~129 Ma in the late Early Cretaceous. The collapse of the thickened crust and coupled mantle upwelling triggered the Early Cretaceous extensional deformation in the southern CAOB. -
图 1 亚洲大地构造简图与北山地区及其周缘区域地质图(任纪舜等,2013;徐学义等,2015;陈宣华等,2019;Liu et al.,2023)
a—亚洲大地构造简图;b—北山地区及周缘区域地质图
Figure 1. Sketched tectonic map of Asia and regional geologic map of the Beishan Range and its surrounding belts, central Asia (modified from Ren et al., 2013; Xu et al., 2015, Chen et al., 2019; Liu et al., 2023)
(a) Sketched tectonic map of Asia; (b) Regional geologic map of the Beishan Range and its surrounding belts ZKB–Zongkouzi Basin; MCC–metamorphic core complex
图 2 北山东南部红柳大泉地区地质图(底图据甘肃省地质局和第二区域地质调查队,1971;靳拥护等,2020修改)
a—红柳大泉地区地质图;b—北西—南东走向AA'剖面图
Figure 2. Geologic map of the Hongliudaquan area, southeastern Beishan Range (base map modified from BGGP, 1971; Jin et al., 2020; Apatite (U–Th)/He ages according to Liu et al., 2023)
(a) Geological map of the Hongliudaquan area; (b) NW–SE trending section AA'HFTS–Hongliudaquan Fold–Thrust System; HQT–Hongqishan Thrust Fault
图 3 北山东南部红柳大泉地区构造解译图与野外照片(Liu et al.,2023)
a—谷歌地球卫星影像的构造解译图; b—发育于下—中侏罗统内部的挤压构造变形的野外照片; c—下白垩统的野外照片
Figure 3. Google Earth satellite image and field photos showing the structural deformation of the J1-2Ln and K1Ch groups in the Hongliudaquan area, southeastern Beishan Range (Liu et al., 2023)
(a) Google Earth satellite image showing the structural deformation; (b) Field photo of the J1-2Ln group; (c) Field photo of the K1Ch group
图 7 北山东南部磷灰石裂变径迹年龄的雷达分布图(采用 RadialPlotter软件绘制;Vermeesch,2009)
a—HLK-1样品磷灰石裂变径迹年龄雷达图; b—HLK-2样品磷灰石裂变径迹年龄雷达图; c—HLK-4样品磷灰石裂变径迹年龄雷达图$\mathrm{P}\left(\chi^2\right) $—检验所有单颗粒年龄正态分布置信度的最值;Dpar—与结晶C轴平行、与抛光面相交的裂变径迹蚀刻象的最大直径;n=32—样品测试的磷灰石颗粒数
Figure 7. Radial plots of apatite fission track ages (plotted from RadialPlotter by Vermeesch, 2009) in the southeastern Beishan Range
图 8 北山东南部磷灰石裂变径迹长度分布图、热史模拟结果及径迹长度实测与模拟结果对比图(热史模拟采用HeFTy软件)
Figure 8. Length distribution of apatite fission tracks, thermal history simulation results, and comparison of measured and simulated track lengths in the southeastern Beishan Range (thermal history simulation results using HeFTy software)
Solid black lines represent the optimal thermal history paths, solid purple lines represent "good" thermal history paths (GOF>0.8), and solid green lines represent "acceptable" thermal history paths (0.8>GOF>0.05).
图 9 北山东南部早白垩世构造−热演化模式图
a—北山东南部早白垩世晚期伸展构造变形模式图;b—磷灰石裂变径迹热史模拟图
Figure 9. The Early Cretaceous tectonic–thermal evolution of the southeastern Beishan Range
(a) Late Early Cretaceous extensional structural deformation pattern in the southeastern Beishan Range; (b) Simulation map of apatite fission track thermal history
图 10 北山地区及周缘早白垩世伸展构造变形模式图(Webb et al.,1999;Meng et al.,2003;Hui et al.,2021;Zuo et al.,2020)
Figure 10. Tectonic model of the Early Cretaceous extensional deformation in the Beishan Range and its surrounding regions (modified from Webb et al.,1999; Meng et al., 2003; Hui et al., 2021; Zuo et al., 2020)
图 11 早白垩世中亚和东亚地区伸展构造变形(包括变质核杂岩和地堑/半地堑盆地等)与亚洲陆缘多板块汇聚体系的关系图(Meng,2003;Meng et al.,2003,Wang et al.,2011,2015;任纪瞬等,2013;Lin and Wei,2018;Ma and Xu,2021)
Figure 11. Distribution of Early Cretaceous extensional structures in the central and eastern Asian continent, including metamorphic core complexes and graben/half-graben basins (modified from Meng, 2003; Meng et al., 2003; Wang et al., 2011,2015; Ren et al., 2013; Lin et al., 2018; Ma and Xu, 2021)
表 1 北山东南部红柳大泉地区磷灰石裂变径迹测试结果
Table 1. Apatite fission track results in the Hongliudaquan area, southeastern Beishan Range
样品编号 采样位置/
高程Nc ρd/×106
cm−2(Nd)ρs/×106
cm−2(Ns)ρi/×106
cm−2(Ni)U/
×106P(χ2)/
%平均径迹长度/
(μm±1SD)(Nj/条)平均 Dpar/
μm年龄/Ma HLK-1 40°56′20″N, 98°31′11″E/1473 m 32 1.173 (4274) 1.6434 (3983) 2.8465 (6899) 29.14 29.5 12.72±1.39 (127) 1.5 118.4±7.3 HLK-2 40°55′17″N, 98°30′28″E/1481 m 32 1.186 (4321) 1.4263 (1765) 2.5536 (3160) 25.68 82.7 12.96±0.25 (105) 1.6 115.9±7.6 HLK-4 40°53′34″N, 98°28′41″E/1517 m 32 1.18 (4297) 2.4206 (3555) 4.4873 (6737) 45.16 50.5 13.01±1.46 (111) 1.57 109±6.8 注:Nc—样品测试的磷灰石颗粒数;ρd—用SRM612计量剂计算的白云母外探测器的诱发径迹密度;Nd—诱发径迹总数;ρs—自发径迹密度;Ns—自发径迹总数;ρi—用晶体分析计算的白云母外探测器的诱发径迹密度;Ni—诱发径迹总数;P(χ2)—检验所有单颗粒年龄正态分布置信度的最值(Galbraith,1981);Dpar—与结晶c轴平行、与抛光面相交的裂变径迹蚀刻象的最大直径;Nj—统计的封闭径迹的条数 -
[1] AO S J, XIAO W J, HAN C M, et al, 2012. Cambrian to early Silurian ophiolite and accretionary processes in the Beishan collage, NW China: implications for the architecture of the Southern Altaids[J]. Geological Magazine, 149(4): 606-625. doi: 10.1017/S0016756811000884 [2] Bureau of Geology of Gansu Province (BGGP), Second Regional Geological Survey, 1971. Geologic Map of Hongliudaquan Region, scale 1: 200, 000. Beijing, China: Ministry of Geology of China. (in Chinese) [3] CHEN B L, DANG G M, CUI W, et al, 2003. Advances in study of crustal stability in Hexi corridor, Northwestern China[J]. Journal of Geomechanics, 9(1): 14-20. (in Chinese with English abstract [4] CHEN X H, YIN A, GEHRELS G E, et al, 2003. Two phases of Mesozoic north-south extension in the eastern Altyn Tagh range, northern Tibetan Plateau[J]. Tectonics, 22(5): 1053. [5] CHEN X H, DANG Y Q, YIN A, et al , 2010. Basin-mountain coupling and tectonic evolution of Qaidam basin and its adjacent orogenic belts[M]. Beijing: Geology Press. (in Chinese) [6] CHEN X H, SHAO Z G, XIONG X S, et al, 2019. Fault system, deep structure and tectonic evolution of the Qilian Orogenic Belt, Northwest China[J]. Geology in China, 46(5): 995-1020. (in Chinese with English abstract [7] CHEN X H, DONG S W, SHI W, et al, 2022. Construction of the continental Asia in Phanerozoic: A review[J]. Acta Geologica Sinica-English Edition, 96(1): 26-51. doi: 10.1111/1755-6724.14867 [8] CHEN Z P, REN Z L, QI K, et al, 2019. Zircon U-Pb chronology and geochemistry of volcanic rocks of Early Cretaceous Bayingebi formation in Suhongtu depression of the Ying'e Basin, and their tectonic implications[J]. Acta Geologica Sinica, 93(2): 353-367. (in Chinese with English abstract [9] CHENG F, GARZIONE C, JOLIVET M, et al, 2019. Provenance analysis of the Yumen Basin and northern Qilian Shan: Implications for the pre-collisional paleogeography in the NE Tibetan plateau and eastern termination of Altyn Tagh fault[J]. Gondwana Research, 65: 156-171. doi: 10.1016/j.gr.2018.08.009 [10] CLEVEN N R, LIN S, XIAO W, et al, 2018. Successive arc accretion in the southern Central Asian orogenic belt, NW China: Evidence from two Paleozoic arcs with offset magmatic periods[J]. Geological Society of America Bulletin, 130(3-4): 537-557. doi: 10.1130/B31434.1 [11] CUNNINGHAM D, 2005. Active intracontinental transpressional mountain building in the Mongolian Altai: Defining a new class of orogen[J]. Earth and Planetary Science Letters, 240(2): 436-444. doi: 10.1016/j.jpgl.2005.09.013 [12] CUNNINGHAM D, DAVIES S, MCLEAN D, 2009. Exhumation of a Cretaceous rift complex within a Late Cenozoic restraining bend, southern Mongolia: Implications for the crustal evolution of the Gobi Altai region[J]. Journal of the Geological Society, 166(2): 321-333. doi: 10.1144/0016-76492008-082 [13] CUNNINGHAM D, 2013. Mountain building processes in intracontinental oblique deformation belts: Lessons from the Gobi Corridor, Central Asia[J]. Journal of Structural Geology, 46: 255-282. doi: 10.1016/j.jsg.2012.08.010 [14] DARBY B J, RITTS B D, 2002. Mesozoic contractional deformation in the middle of the Asian tectonic collage: the intraplate Western Ordos fold-thrust belt, China[J]. Earth and Planetary Science Letters, 205(1-2): 13-24. doi: 10.1016/S0012-821X(02)01026-9 [15] DAVIS G A, ZHENG Y D, CONG W, et al , 2001. Mesozoic tectonic evolution of the Yanshan fold and thrust belt, with emphasis on Hebei and Liaoning provinces, northern China[M]//HENDRIX M S, DAVIS G A. Paleozoic and mesozoic tectonic evolution of central and eastern Asia: from continental assembly to intracontinental deformation. Boulder: Geological Society of America Memoir: 171-197. [16] DAVIS G A, DARBY B J, ZHENG Y D, et al, 2002. Geometric and temporal evolution of an extensional detachment fault, Hohhot metamorphic core complex, Inner Mongolia, China[J]. Geology, 30(11): 1003-1006. doi: 10.1130/0091-7613(2002)030<1003:GATEOA>2.0.CO;2 [17] DAVIS G A, DARBY B J, 2010. Early Cretaceous overprinting of the Mesozoic Daqing Shan fold-and-thrust belt by the Hohhot metamorphic core complex, Inner Mongolia, China[J]. Geoscience Frontiers, 1(1): 1-20. doi: 10.1016/j.gsf.2010.08.001 [18] DONG S W, ZHANG Y Q, ZHANG F Q, et al, 2015. Late Jurassic-Early Cretaceous continental convergence and intracontinental orogenesis in East Asia: A synthesis of the Yanshan Revolution[J]. Journal of Asian Earth Sciences, 114: 750-770. doi: 10.1016/j.jseaes.2015.08.011 [19] DONG S W, ZHANG Y Q, LI H L, et al, 2018. The Yanshan orogeny and late Mesozoic multi-plate convergence in East Asia-Commemorating 90th years of the “Yanshan Orogeny”[J]. Science China Earth Sciences, 61(12): 1888-1909. doi: 10.1007/s11430-017-9297-y [20] DUMITRU T A & HENDRIX M. S. 2001. Fission-track constraints on Jurassic folding and thrusting in southern Mongolia and their relationship to the Beishan thrust belt of northern China[J]. Memoir of the Geological Society of America, 194, 215-229. [21] FAN J J, LI C, XIE C M, et al, 2015. Petrology and U-Pb zircon geochronology of bimodal volcanic rocks from the Maierze Group, northern Tibet: Constraints on the timing of closure of the Banggong-Nujiang Ocean[J]. Lithos, 227: 148-160. doi: 10.1016/j.lithos.2015.03.021 [22] FAN J J, LI C, WANG M, et al, 2018. Reconstructing in space and time the closure of the middle and western segments of the Bangong–Nujiang Tethyan Ocean in the Tibetan Plateau[J]. International Journal of Earth Sciences, 107(1): 231-249. doi: 10.1007/s00531-017-1487-4 [23] FENG L M, LIN S F, DAVIS D W, et al, 2018. Dunhuang Tectonic Belt in northwestern China as a part of the Central Asian Orogenic Belt: Structural and U-Pb geochronological evidence[J]. Tectonophysics, 747-748: 281-297. doi: 10.1016/j.tecto.2018.09.008 [24] GALBRAITH R F, 1981. On statistical models for fission track counts[J]. Journal of the International Association for Mathematical Geology, 13(6): 471-478. doi: 10.1007/BF01034498 [25] GRAHAM S A, HENDRIX M S, JOHNSON C L, et al, 2001. Sedimentary record and tectonic implications of Mesozoic rifting in southeast Mongolia[J]. GSA Bulletin, 113(12): 1560-1579. doi: 10.1130/0016-7606(2001)113<1560:SRATIO>2.0.CO;2 [26] GREEN P F, DUDDY I R, LASLETT G M, et al, 1989. Thermal annealing of fission tracks in apatite 4. Quantitative modelling techniques and extension to geological timescales[J]. Chemical Geology: Isotope Geoscience Section, 79(2): 155-182. doi: 10.1016/0168-9622(89)90018-3 [27] GUYNN J H, KAPP P, PULLEN A, et al, 2006. Tibetan basement rocks near Amdo reveal “missing” Mesozoic tectonism along the Bangong suture, central Tibet[J]. Geology, 34(6): 505-508. doi: 10.1130/G22453.1 [28] HE X Y, FANG T H, BO H T, et al, 2022. Petrogenesis and tectonic significance of Late Permian-Middle Triassic granitoids in Guobaoshan, eastern section of the eastern Tianshan mountains: Constraints from geochronology and geochemistry[J]. Journal of Geomechanics, 28(1): 126-142. (in Chinese with English abstract [29] HE Z Y, KLEMD R, YAN L L, et al, 2018. The origin and crustal evolution of microcontinents in the Beishan orogen of the southern Central Asian Orogenic Belt[J]. Earth-Science Reviews, 185: 1-14. doi: 10.1016/j.earscirev.2018.05.012 [30] HUI J, CHENG H Y, ZHANG J, et al, 2021. Early Cretaceous continent basalts in the Alxa Block, NW China: geochronology, geochemistry, and tectonic implications[J]. International Geology Review, 63(7): 882-899. doi: 10.1080/00206814.2020.1734974 [31] HURFORD A J, GREEN P F, 1983. The zeta age calibration of fission-track dating[J]. Chemical Geology, 41: 285-317. doi: 10.1016/S0009-2541(83)80026-6 [32] JIN Y H, CHANG L, JI G, et al, 2020. Chemical characteristics and metallogenic indications of intrusive rocks in Hongliudaquan area of Beishan[J]. Mineral Exploration, 11(1): 10-20. (in Chinese with English abstract [33] JOHNSON C L, WEBB L E, GRAHAM S A, et al , 2001. Sedimentary and structural records of late Mesozoic high-strain extension and strain partitioning, East Gobi basin, southern Mongolia[M]//HENDRIX M S, DAVIS G A. Paleozoic and mesozoic tectonic evolution of central and eastern Asia: from continental assembly to intracontinental deformation. Boulder: Geological Society of America Memoir: 413-433. [34] JOLIVET M. , BRUNEL M. , SEWARD Z X, et al 2001. Mesozoic and Cenozoic tectonics of the northern edge of the Tibetan plateau: fission-track constraints[J]. Tectonophysics, 343(1-2): 0-134. [35] JOLIVET M, DOMINGUEZ S, CHARREAU J, et al, 2010. Mesozoic and Cenozoic tectonic history of the Central Chinese Tian Shan: Reactivated tectonic structures and active deformation[J]. Tectonics, 29(6): TC6019. [36] KETCHAM R A, CARTER A, DONELICK R A, et al, 2007. Improved modeling of fission-track annealing in apatite[J]. American Mineralogist, 92(5-6): 799-810. doi: 10.2138/am.2007.2281 [37] KETCHAM R A, DONELICK R A, BALESTRIERI M L, et al, 2009. Reproducibility of apatite fission-track length data and thermal history reconstruction[J]. Earth and Planetary Science Letters, 284(3-4): 504-515. doi: 10.1016/j.jpgl.2009.05.015 [38] LI D Q, PENG C, YOU H L, et al, 2007. A large Therizinosauroid (dinosauria: Theropoda) from the Early Cretaceous of northwestern China[J]. Acta Geologica Sinica-English Edition, 81(4): 539-549. doi: 10.1111/j.1755-6724.2007.tb00977.x [39] LI J, WU C, CHEN X H, et al, 2023. Tectonic evolution of the Beishan orogen in central Asia: Subduction, accretion, and continent-continent collision during the closure of the Paleo-Asian Ocean[J]. GSA Bulletin, 135(3-4): 819-851. doi: 10.1130/B36451.1 [40] LI X H, XU W L, LIU W H, et al, 2013. Climatic and environmental indications of carbon and oxygen isotopes from the Lower Cretaceous calcrete and lacustrine carbonates in Southeast and Northwest China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 385: 171-189. doi: 10.1016/j.palaeo.2013.03.011 [41] LIN C F, LIU S F, SHI X F, et al, 2019. Late Jurassic-Early Cretaceous deformation in the western Yanshan fold‐thrust belt: Insights from syntectonic sedimentation in the Chicheng Basin, North China[J]. Tectonics, 38(7): 2449-2476. doi: 10.1029/2018TC005402 [42] LIN W, CHARLES N, CHEN Y, et al, 2013. Late Mesozoic compressional to extensional tectonics in the Yiwulüshan massif, NE China and their bearing on the Yinshan-Yanshan orogenic belt: Part II: Anisotropy of magnetic susceptibility and gravity modeling[J]. Gondwana Research, 23(1): 78-94. doi: 10.1016/j.gr.2012.02.012 [43] LIN W , WEI W. 2018. Late Mesozoic extensional tectonics in the North China Craton and its adjacent regions: a review and synthesis[J]. International Geology Review, 62(7-8): 811-839. [44] LIN W, LI J Y, 2021. Cretaceous two stage extensional tectonic in eastern Eurasia continent and its geodynamics[J]. Acta Petrologica Sinica, 37(8): 2303-2323. (in Chinese with English abstract doi: 10.18654/1000-0569/2021.08.04 [45] LIN Y, ZHANG C H, LI C M, et al, 2020. From dextral contraction to sinistral extension of intracontinental transform structures in the Yanshan and northern Taihang Mountain belts during Early Cretaceous: Implications to the destruction of the North China Craton[J]. Journal of Asian Earth Sciences, 189: 104139. doi: 10.1016/j.jseaes.2019.104139 [46] LIU K, CHEN X H, ZUZA A V, et al, 2023. The late Mesozoic intracontinental contraction–extension transition in the Beishan fold-thrust belt, central Asia: Constraints from structural analysis and apatite (U-Th)/He thermochronology[J]. Tectonics, 42(7): e2022TC007532. doi: 10.1029/2022TC007532 [47] LIU S F, LIN C F, LIU X B, et al, 2018. Syn-tectonic sedimentation and its linkage to fold‐thrusting in the region of Zhangjiakou, North Hebei, China[J]. Science China Earth Sciences, 61(6): 681-710. doi: 10.1007/s11430-017-9175-3 [48] MA A L, HU X M, GARZANTI E D, et al, 2017. Sedimentary and tectonic evolution of the southern Qiangtang basin: Implications for the Lhasa-Qiangtang collision timing[J]. Journal of Geophysical Research: Solid Earth, 122(7): 4790-4813. doi: 10.1002/2017JB014211 [49] MA Q, XU Y G, 2021. Magmatic perspective on subduction of Paleo-Pacific plate and initiation of big mantle wedge in East Asia[J]. Earth-Science Reviews, 213: 103473. doi: 10.1016/j.earscirev.2020.103473 [50] MENG Q R, 2003. What drove late Mesozoic extension of the northern China-Mongolia tract?[J]. Tectonophysics, 369(3-4): 155-174. doi: 10.1016/S0040-1951(03)00195-1 [51] MENG Q R, HU J M, JIN J Q, et al, 2003. Tectonics of the late Mesozoic wide extensional basin system in the China-Mongolia border region[J]. Basin Research, 15(3): 397-415. doi: 10.1046/j.1365-2117.2003.00209.x [52] NIU H Q, HAN X F, WU J, et al, 2021. Age attribution of coal bearing strata in Beishan Basin Group, Ganmeng area[J]. Bulletin of Geological Science and Technology, 40(6): 32-42. (in Chinese with English abstract [53] PENG N, LIU Y Q, KUANG H W, et al, 2013. The provenance of Lower Cretaceous basin in the Qilian Mountain‒Beishan area: Evidence from paleocurrents, gravels, sandstone compositions and detrital zircon geochronology[J]. Geological Bulletin of China, 32(2-3): 456-475. (in Chinese with English abstract [54] PENG Y B, YU S Y, LI S Z, et al, 2020. The odyssey of Tibetan Plateau accretion prior to Cenozoic India-Asia collision: Probing the Mesozoic tectonic evolution of the Bangong-Nujiang Suture[J]. Earth-Science Reviews, 211: 103376. doi: 10.1016/j.earscirev.2020.103376 [55] RAIMONDO T, HAND M, COLLINS W J, 2014. Compressional intracontinental orogens: Ancient and modern perspectives[J]. Earth-Science Reviews, 130: 128-153. doi: 10.1016/j.earscirev.2013.11.009 [56] REN J S, NIU B G, WANG J, et al , 2013. International geological map of Asia 1: 5000000[M]. Beijing: Geological Publishing House. (in Chinese) [57] REN W X, HU B, TANG D L, et al , 2022. Palynological assemblage and its significance of the Lower Cretaceous Chijinbao Formation in the Zhongkouzi Basin, Beishan area[J/OL]. Earth Science, 1-29. http://kns.cnki.net/kcms/detail/42.1874.P.20220708.1633.008.html. (in Chinese with English abstract [58] SONG D F, XIAO W J, HAN C M, et al, 2013. Progressive accretionary tectonics of the Beishan orogenic collage, southern Altaids: Insights from zircon U-Pb and Hf isotopic data of high-grade complexes[J]. Precambrian Research, 227: 368-388. doi: 10.1016/j.precamres.2012.06.011 [59] TANG W D, HE J L, LIU T H, et al, 2023. Geochemical characteristics of the garnets from the Laodonggou gold deposit, Beishan, Inner Mongolia[J]. Journal of Geomechanics, 29(1): 60-75. (in Chinese with English abstract [60] VAN DER VOO R, VAN HINSBERGEN D J J, DOMEIER M, et al , 2015. Latest Jurassic-earliest Cretaceous closure of the Mongol-Okhotsk Ocean: A paleomagnetic and seismological-tomographic analysis[M]//ANDERSON T H, DIDENKO A N, JOHNSON C L, et al Late Jurassic margin of Laurasia-a record of faulting accommodating plate rotation. Boulder: The Geological Society of America: 589-606. [61] VERMEESCH P, 2009. RadialPlotter: a Java application for fission track, luminescence and other radial plots[J]. Radiation Measurements, 44(4): 409-410. doi: 10.1016/j.radmeas.2009.05.003 [62] WANG T, ZHENG Y D, ZHANG J J, et al, 2011. Pattern and kinematic polarity of late Mesozoic extension in continental NE Asia: Perspectives from metamorphic core complexes[J]. Tectonics, 30(6): TC6007. [63] WANG T, GUO L, ZHANG L, et al, 2015. Timing and evolution of Jurassic-Cretaceous granitoid magmatisms in the Mongol-Okhotsk belt and adjacent areas, NE Asia: Implications for transition from contractional crustal thickening to extensional thinning and geodynamic settings[J]. Journal of Asian Earth Sciences, 97: 365-392. doi: 10.1016/j.jseaes.2014.10.005 [64] WANG Y, SUN G H, LI J Y, 2010. U-Pb (SHRIMP) and 40Ar/39Ar geochronological constraints on the evolution of the Xingxingxia shear zone, NW China: A Triassic segment of the Altyn Tagh fault system[J]. GSA Bulletin, 122(3-4): 487-505. doi: 10.1130/B26347.1 [65] WANG Y, CHEN X H, ZHANG Y Y, et al, 2022. Superposition of Cretaceous and Cenozoic deformation in northern Tibet: A far-field response to the tectonic evolution of the Tethyan orogenic system[J]. GSA Bulletin, 134(1-2): 501-525. doi: 10.1130/B35944.1 [66] WANG Y C, DONG S W, CHEN X H, et al, 2018. Yanshanian deformation along the northern margin of the North China Craton: Constraints from growth strata in the Shiguai Basin, Inner Mongolia, China[J]. Basin Research, 30(6): 1155-1179. doi: 10.1111/bre.12298 [67] WEBB L E, GRAHAM S A, JOHNSON C L, et al, 1999. Occurrence, age, and implications of the Yagan-Onch Hayrhan metamorphic core complex, southern Mongolia[J]. Geology, 27(2): 143-146. doi: 10.1130/0091-7613(1999)027<0143:OAAIOT>2.3.CO;2 [68] XIAO W J, MAO Q G, WINDLEY B F, et al, 2010. Paleozoic multiple accretionary and collisional processes of the Beishan orogenic collage[J]. American Journal of Science, 310(10): 1553-1594. doi: 10.2475/10.2010.12 [69] XU X Y, LI R S, WANG H L, et al , 2015. Geological map of northwest China, scale 1: 1000 000. Xi’an, China, Xi’an Center, China Geological Survery. [70] YANG B, LI S C, WEI N Y, et al, 2020. The discovery of ostracods assemblages from Early Cretaceous Chijinpu formation in Tiancang area, Jiuquan, Gansu province, and its geological significance[J]. Geological Bulletin of China, 39(4): 433-441. (in Chinese with English abstract [71] YANG J H, WU F Y, SHAO J A, et al, 2006. In-Situ U-Pb Dating and Hf isotopic analyses of zircons from volcanic rocks of the Houcheng and Zhangjiakou formations in the Zhang-Xuan area, northeast China[J]. Earth Science, 31(1): 71-80. (in Chinese with English abstract [72] YIN A, NIE S, CRAIG P, et al, 1998. Late Cenozoic tectonic evolution of the southern Chinese Tian Shan[J]. Tectonics, 17(1): 1-27. doi: 10.1029/97TC03140 [73] YUN L, ZHANG J, WANG J, et al, 2021. Discovery of active faults in the southern Beishan area, NW China: Implications for regional tectonics[J]. Journal of Geomechanics, 27(2): 195-207. (in Chinese with English abstract [74] ZHANG B L, ZHU G, JIANG D Z, et al, 2012. Evolution of the Yiwulushan metamorphic core complex from distributed to localized deformation and its tectonic implications[J]. Tectonics, 31(4): TC4018. [75] ZHANG C H, LI C M, DENG H L, et al, 2011. Mesozoic contraction deformation in the Yanshan and northern Taihang mountains and its implications to the destruction of the North China Craton[J]. Science China Earth Sciences, 54(6): 798-822. doi: 10.1007/s11430-011-4180-7 [76] ZHANG J, CUNNINGHAM D, 2012. Kilometer-scale refolded folds caused by strike-slip reversal and intraplate shortening in the Beishan region, China[J]. Tectonics, 31(3): TC3009. [77] ZHANG J, WANG Y N, QU J F, et al, 2021a. Mesozoic intracontinental deformation of the Alxa Block in the middle part of Central Asian Orogenic Belt: A review[J]. International Geology Review, 63(12): 1490-1520. doi: 10.1080/00206814.2020.1783583 [78] ZHANG J, WANG Y N, ZHANG B H, et al, 2021b. Tectonothermal events in the central North China Craton since the Mesozoic and their tectonic implications: Constraints from low-temperature thermochronology[J]. Tectonophysics, 804: 228769. doi: 10.1016/j.tecto.2021.228769 [79] ZHANG J, CUNNINGHAM D, QU J F, et al, 2022. Poly-phase structural evolution of the northeastern Alxa Block, China: Constraining the Paleozoic-Recent history of the southern central Asian Orogenic belt[J]. Gondwana Research, 105: 25-50. doi: 10.1016/j.gr.2021.12.007 [80] ZHANG J J, HUANG T L, 2019. An overview on continental extensional tectonics[J]. Earth Science, 44(5): 1705-1715. (in Chinese with English abstract [81] ZHANG J L, CHEN C, ZHANG G F, et al , 2017. Sedimentary characteristics and age of the Early Cretaceous Chijinbao formation in the Sandaomingshui of Beishan area, Inner Mongolia[J]. Geological Survey and Research, 40(1): 29-34, 80. (in Chinese with English abstract [82] ZHANG Q N, YOU H L, LI D Q, 2015. Dinosaurs from late early cretaceous in the Mazongshan area, Gansu province[J]. Geological Bulletin of China, 34(5): 890-897. (in Chinese with English abstract [83] ZHANG Y, DONG S W, SHI W, 2024. Hohhot thermal upwelling-extensional structure: Recognition of “metamorphic core complexes” in North China[J]. Chinese Science Bulletin, 68(7): 939-949. (in Chinese with English abstract [84] ZHANG Y Q, DONG S W, 2019. East Asia multi-plate convergence in Late Mesozoic and the development of continental tectonic systems[J]. Journal of Geomechanics, 25(5): 613-641. (in Chinese with English abstract [85] ZHENG Y, ZHANG Q, WANG Y, et al, 1996. Great Jurassic thrust sheets in Beishan (North Mountains)-Gobi areas of China and southern Mongolia[J]. Journal of Structural Geology, 18(9): 1111-1126. doi: 10.1016/0191-8141(96)00038-7 [86] ZHU G, CHEN Y, JIANG D Z, et al, 2015. Rapid change from compression to extension in the North China Craton during the Early Cretaceous: Evidence from the Yunmengshan metamorphic core complex[J]. Tectonophysics, 656: 91-110. doi: 10.1016/j.tecto.2015.06.009 [87] ZHU R X, PAN Y X, HE H Y, et al, 2008. Palaeomagnetism and 40Ar/39Ar age from a Cretaceous volcanic sequence, Inner Mongolia, China: Implications for the field variation during the Cretaceous normal superchron[J]. Physics of the Earth and Planetary Interiors, 169(1-4): 59-75. doi: 10.1016/j.pepi.2008.07.025 [88] ZHU R X, CHEN L, WU F Y, et al, 2011. Timing, scale and mechanism of the destruction of the North China Craton[J]. Science China Earth Sciences, 54(6): 789-797. doi: 10.1007/s11430-011-4203-4 [89] ZHU R X, XU Y G, ZHU G, et al, 2012. Destruction of the North China Craton[J]. Science China Earth Sciences, 55(10): 1565-1587. doi: 10.1007/s11430-012-4516-y [90] ZHU R X, 2018. Review of the achievement of major research plan on “Destruction of North China Craton”[J]. Bulletin of National Natural Science Foundation of China, 32(3): 282-290. (in Chinese with English abstract [91] ZUO G C, ZHANG S L, HE G Q, et al, 1991. Plate tectonic characteristics during the early Paleozoic in Beishan near the Sino-Mongolian border region, China[J]. Tectonophysics, 188(3-4): 385-392. doi: 10.1016/0040-1951(91)90466-6 [92] ZUO G C, FENG Y Z, LIU C Y, et al , 1992. A new discovery of early Yanshanian strike-slip compressional nappe zones on middle‒southern segment of Beishan mts, Gansu[J]. Chinese Journal of Geology(4): 309-316. (in Chinese with English abstract [93] ZUO Y H, JIANG S, WU S H, et al, 2020. Terrestrial heat flow and lithospheric thermal structure in the Chagan depression of the Yingen‐Ejinaqi basin, North Central China[J]. Basin Research, 32(6): 1328-1346. doi: 10.1111/bre.12430 [94] ZUZA A V, WU C, REITH R C, et al, 2018. Tectonic evolution of the Qilian Shan: An early Paleozoic orogen reactivated in the Cenozoic[J]. GSA Bulletin, 130(5-6): 881-925. doi: 10.1130/B31721.1 [95] 陈柏林,党光明,崔巍,等,2003. 河西走廊地壳稳定性研究进展[J]. 地质力学学报,9(1):14-20. [96] 陈宣华,党玉琪,尹安,等,2010. 柴达木盆地及其周缘山系盆山耦合与构造演化[M]. 北京:地质出版社. [97] 陈宣华,邵兆刚,熊小松,等,2019. 祁连造山带断裂构造体系、深部结构与构造演化[J]. 中国地质,46(5):995-1020. [98] 陈志鹏,任战利,祁凯,等,2019. 银额盆地苏红图坳陷早白垩世巴音戈壁组火山岩锆石U-Pb年代学、地球化学特征及构造意义[J]. 地质学报,93(2):353-367. [99] 董树文,张岳桥,李海龙,等,2019. "燕山运动"与东亚大陆晚中生代多板块汇聚构造:纪念"燕山运动"90周年[J]. 中国科学:地球科学,49(6):913-938. [100] 甘肃省地质局,第二区域地质调查队,1971. 1:20万红柳大泉幅. 中国地质矿产局. [101] 贺昕宇,方同辉,薄贺天,等,2022. 东天山东段国宝山晚二叠世—中三叠世花岗质岩石成因与构造意义:年代学和地球化学约束[J]. 地质力学学报,28(1):126-142. [102] 靳拥护,常磊,姬果,等,2020. 北山红柳大泉地区侵入岩岩石化学特征及成矿指示意义[J]. 矿产勘查,11(1):10-20. [103] 林伟,李金雁,2021. 欧亚大陆东部白垩纪两期伸展穹隆构造及其动力学机制探讨[J]. 岩石学报,37(8):2303-2323. [104] 刘少峰,林成发,刘晓波,等,2018. 冀北张家口地区同构造沉积过程及其与褶皱-逆冲作用耦合[J]. 中国科学:地球科学,48(6):705-731. [105] 牛海青,韩小锋,吴俊,等,2021. 甘蒙地区北山盆地群含煤系地层时代归属[J]. 地质科技通报,40(6):32-42. [106] 彭楠,柳永清,旷红伟,等,2013. 北祁连—北山地区早白垩世盆地物源分析:来自古水流、砾石组分、砂岩组分和碎屑锆石年龄的证据[J]. 地质通报,32(2-3):456-475. [107] 任纪舜,牛宝贵,王军,等,2013. 国际亚洲地质图(1:5000000)[M]. 北京:地质出版社. [108] 任文秀,胡斌,唐德亮,等,2022. 北山地区中口子盆地下白垩统赤金堡组孢粉组合及其意义[J/OL]. 地球科学,1-29. http://kns.cnki.net/kcms/detail/42.1874.P.20220708.1633.008.html. [109] 唐卫东,何佳乐,刘天航,等,2023. 内蒙古北山老硐沟金矿石榴子石地球化学特征[J]. 地质力学学报,29(1):60-75. [110] 徐学义,李荣社,王洪亮,等,2015. 中国西北地区地质图(1:100万). 中国地质调查局西安地质调查中心. [111] 杨兵,李树才,魏乃颐,等,2020. 甘肃酒泉市天仓地区早白垩世介形类的发现及其地质意义[J]. 地质通报,39(4):433-441. [112] 杨进辉,吴福元,邵济安,等,2006. 冀北张-宣地区后城组、张家口组火山岩锆石U-Pb年龄和Hf同位素[J]. 地球科学,31(1):71-80. [113] 云龙,张进,王驹,等,2021. 甘肃北山南部活动断裂的发现及其区域构造意义[J]. 地质力学学报,27(2):195-207. [114] 张长厚,李程明,邓洪菱,等,2011. 燕山-太行山北段中生代收缩变形与华北克拉通破坏[J]. 中国科学:地球科学,41(5):593-617. [115] 张进江,黄天立,2019. 大陆伸展构造综述[J]. 地球科学,44(5):1705-1715. [116] 张金龙,陈超,张桂凤,等,2017. 内蒙古北山地区三道明水一带早白垩世赤金堡组沉积特征及时代厘定[J]. 地质调查与研究,40(1):29-34,80. [117] 张茜楠,尤海鲁,李大庆,2015. 甘肃马鬃山地区早白垩世晚期恐龙化石[J]. 地质通报,34(5):890-897. [118] 张宇,董树文,施炜,2024. 呼和浩特热隆伸展构造:华北“变质核杂岩”再认识[J]. 科学通报,68(7):939-949. [119] 张岳桥,董树文,2019. 晚中生代东亚多板块汇聚与大陆构造体系的发展[J]. 地质力学学报,25(5):613-641. [120] 朱日祥,陈凌,吴福元,等,2011. 华北克拉通破坏的时间、范围与机制[J]. 中国科学:地球科学,41(5):583-592. [121] 朱日祥,徐义刚,朱光,等,2012. 华北克拉通破坏[J]. 中国科学:地球科学,42(8):1135-1159. [122] 朱日祥,2018. “华北克拉通破坏”重大研究计划结题综述[J]. 中国科学基金,32(3):282-290. [123] 左国朝,冯永忠,刘春燕,等,1992. 甘蒙北山中南带新发现燕山早期走滑挤压推覆构造带[J]. 地质科学(4):309-316.