留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

广东河源断裂带地热成因及与构造关系初探

LisaTANNOCK 王亚 李景富 刘洁 张珂 徐力峰 KlausREGENAUER-LIEB

LisaTANNOCK, 王亚, 李景富, 等, 2019. 广东河源断裂带地热成因及与构造关系初探. 地质力学学报, 25 (3): 400-411. DOI: 10.12090/j.issn.1006-6616.2019.25.03.037
引用本文: LisaTANNOCK, 王亚, 李景富, 等, 2019. 广东河源断裂带地热成因及与构造关系初探. 地质力学学报, 25 (3): 400-411. DOI: 10.12090/j.issn.1006-6616.2019.25.03.037
Lisa TANNOCK, WANG Ya, LI Jingfu, et al., 2019. A PRELIMINARY STUDY ON THE MECHANICS AND TECTONIC RELATIONSHIP TO THE GEOTHERMAL FIELD OF THE HEYUAN FAULT ZONE IN GUANGDONG PROVINCE. Journal of Geomechanics, 25 (3): 400-411. DOI: 10.12090/j.issn.1006-6616.2019.25.03.037
Citation: Lisa TANNOCK, WANG Ya, LI Jingfu, et al., 2019. A PRELIMINARY STUDY ON THE MECHANICS AND TECTONIC RELATIONSHIP TO THE GEOTHERMAL FIELD OF THE HEYUAN FAULT ZONE IN GUANGDONG PROVINCE. Journal of Geomechanics, 25 (3): 400-411. DOI: 10.12090/j.issn.1006-6616.2019.25.03.037

广东河源断裂带地热成因及与构造关系初探

doi: 10.12090/j.issn.1006-6616.2019.25.03.037
基金项目: 

国家重点研发计划 2016YFC0600506

广东省财政厅项目 粤财工2015-632

详细信息
    作者简介:

    LisaTANNOCK:Lisa TANNOCK(1984-), 女, 在读博士, 主要从事石油地质学和地热综合分析研究。E-mail:tannock@student.unsw.edu.au

    通讯作者:

    刘洁(1967-), 女, 博士, 教授, 主要从事多尺度地球动力学研究。E-mail:liujie86@mail.sysu.edu.cn

  • 中图分类号: P314

A PRELIMINARY STUDY ON THE MECHANICS AND TECTONIC RELATIONSHIP TO THE GEOTHERMAL FIELD OF THE HEYUAN FAULT ZONE IN GUANGDONG PROVINCE

  • 摘要: 广东省河源断裂带位于中国东南沿海地热异常区,地热资源十分丰富,但其形成机制和利用前景尚不确定。为此文章开展了多学科综合分析,获得以下初步认识:温泉是断裂带内深循环地下水被地温加热而成,断裂剪切热和花岗岩浆残余热的贡献基本可以排除;沿断裂展布的厚层硅化带是古水热活动的产物;硅化带形成时期的挤压应力方向为北东-南西,与河源断裂及河源盆地晚白垩世以来的伸展活动对应,现代构造应力场为北西西-南东东方向挤压,与古应力场相比发生了明显变化;现今构造应力场使得北东向河源断裂呈右旋挤压运动,而北西向断裂则发生左旋张剪,导致地下水循环格局也发生相应改变;目前温泉沿河源断裂呈带分布,沿北西向断裂呈线性溢出,断裂交汇部位是热泉上升的主要通道。总体而言,河源地区拥有令人鼓舞的地热资源及应用前景,有可能达到建设地热发电厂的目标。建议继续深入开展地质学、地球物理、水文地质学和地热成因机理等多学科综合研究,从而更好地定量评价地热潜能与开发前景。

     

  • 图  1  河源地区地质构造简图和剖面示意图(据广东省地质局、广东省有色地质环境中心内部资料以及野外实测综合)

    1—第四系;2—古近系;3—白垩系;4—侏罗系;5—石炭—二叠系(局部少量三叠系);6—泥盆系;7—寒武奥陶系;8—晚元古界;9—侏罗纪花岗岩(局部白垩纪);10—三叠纪花岗岩;11—白垩纪末—古近纪初基性岩;12—地质界线;13—断层及其编号(粗细示断层规模,虚线代表隐伏断裂或线性构造);14—天然温泉;15—热水井;16—钻孔;17—水文取样点;18—取样编号;19—剖面位置;20—城镇
    F1—河源断裂,F2—人字石断裂,F3—大坪—岩前断裂,F4—石角—新港—白田断裂,F5—南山—坳头断裂;A-A′—表示剖面位置
    a—河源地区相关断裂、地层、主要花岗岩体、温泉和取样位置图;b—横切河源断裂带和河源盆地剖面示意图

    Figure  1.  Overview geological map of the Heyuan area and a cross-section schematic

    图  2  河源断裂带野外岩相变化示意图(位置见图 1b)

    a、b、c、d分别表示观测点照片及对应位置;露头照片显示断裂带不同岩相(从花岗岩到石英岩脉)脆性变形和石英成分均增加

    Figure  2.  Cross-section schematic of the Heyuan Fault, showing the relative position of the fault zone facies, based on field observations

    图  3  硅化带岩石多期次变形和裂缝愈合显微构造特征

    a—样品HY17-13,正交偏光5倍,显示石英颗粒被错断,石英细脉贯入;b—样品HY17-18b,正交偏光5倍,显示平行糜棱岩面理方向的石英脉

    Figure  3.  Two thin sections showing multiple phases of deformation and fracture healing

    图  4  流体循环概念模型

    Figure  4.  Conceptual diagram of fluid circulation

    图  5  三维断裂结构模型

    灰色为推测断层;断层标号对应的断裂名称见表 3

    Figure  5.  3D structure of faults

    表  1  研究区内沿河源断裂带分布的温泉温度和流量

    Table  1.   Measurements of hot springs along the Heyuan Fault Zone.

    点号 数据来源 样品点位 纬度 经度 描述 温度/℃ 流量/(L/s)
    L1 本次研究采集 Loc.5 23° 51′09″N 114° 47′31″E 自流井(废弃建筑旁) 55.7 4.8
    L2 本次研究采集 Loc.5 (距L1点20 m) 23° 51′07″N 114° 47′25″E 当地村民开采井 57.9 2.9
    L3 本次研究采集 Loc.6 24° 04′32″N 115° 08′57″E 水池 62.5 5.6
    M4 Mao等[21] DG-13 24°04′29.6″N 115°08′59.4″E 泉点(位置同L3) 63.2
    M5 Mao等[21] DG-14 23°51′11.2″N 114°47′29.4″E 泉点(位置同L1/L2) 56.7
    M6 Mao等[21] DG-15 23°26′49.6″N 115°06′26.9″E 泉点 78.6
    M7 Mao等[21] DG-16 23°12′10.5″N 114°21′31.3″E 泉点 59.8
    注:表中以Loc.命名的取样点位见图 2a;以DG命名的取样点见文献[21]
    下载: 导出CSV

    表  2  河源断裂带的浅层钻孔测量的地下水温度和流量

    Table  2.   Groundwater measurements obtained from shallow boreholes along a section of the Heyuan Fault in the Badengcheng area.

    井名 纬度 经度 深度/m 孔内最高温度/℃ 孔口温度/℃ 流量/(L/s)
    ZK1 23°37′35.43″N 114°37′7.33″E 150.81 30.1 27 6.48
    ZK2 23°37′43.85″N 114°37′32.11″E 323.25 39.5 34 1.37
    ZK3 23°38′8.52″N 114°37′47.01″E 350 43.3 37 0.75
    ZK4 23°37′47.60″N 114°37′39.44″E 358 51.8 45.2 5.00
    ZK6 23°37′48.00″N 114°37′38.81″E 375 52.0 45.2 13.31
    ZK7 23°37′48.41″N 114°37′38.29″E 381.12 64.6 61.0 16.20
    下载: 导出CSV

    表  3  地质模型中的断层及其参数

    Table  3.   Faults considered in the geomodel, the parameters used, and comparison with other sources.

    编号 断裂 走向 倾角及依据 切割深度
    F1 河源断裂 NE5°~80° 45°(据[9])35°~50°(据[11])35°~62°(据[12])37°~49°平均43°(据野外观测点测量) -10 km
    F2 人字石断裂 NE40°~60° 60°(据[9]) -10 km
    F3 大坪—岩前断裂 NE30~50° 70°(据[9]) -10 km
    F4 石角—新港—白田断裂 NE25°~50° 70°(据[9]) -10 km
    F5 南山—坳头断裂 N85°E 90°(据[9]) -15 km
    F6 未命名断裂 N52°W 80°(据野外观测点测量) -10 km
    F7 未命名断裂 N60°W 90° (典型的安德森型高倾角走滑断裂) -10 km
    F8 推测断裂 N52°W 90° (典型的安德森型高倾角走滑断裂) -10 km
    F9 推测断裂 N23°E 75° (据地质填图显示的小断裂及地表线性构造) -10 km
    F10 推测断裂 N14°E 70° (据地质填图显示的小断裂及地表线性构造) -10 km
    下载: 导出CSV
  • [1] LUND J W, BOYD T L. Direct utilization of geothermal energy 2015 worldwide review[C]//Proceedings World Geothermal Congress. Melbourne, Australia, 2015. https://www.sciencedirect.com/science/article/pii/S0375650511000344
    [2] BERTANI R. Geothermal power generation in the world 2010-2014 update report[J]. Geothermics, 2016, 60:31-43. doi: 10.1016/j.geothermics.2015.11.003
    [3] 陈墨香.中国地热资源的分布及其开发利用[J].自然资源, 1992, 7(3):40-46, 58. http://d.old.wanfangdata.com.cn/Conference/6896043

    CHEN Moxiang. Geothermal distribution and utilities in China[J]. Advances of Earth Sciences, 1992, 7(3):40-46, 58. (in Chinese) http://d.old.wanfangdata.com.cn/Conference/6896043
    [4] 汪集旸, 胡圣标, 庞忠和, 等.中国大陆干热岩地热资源潜力评估[J].科技导报, 2012, 30(32):25-31. doi: 10.3981/j.issn.1000-7857.2012.32.002

    WANG Jiyang, HU Shengbiao, PANG Zhonghe, et al. Estimate of geothermal resources potential for hot dry rock in the continental area of China[J]. Science & Technology Review, 2012, 30(32):25-31. (in Chinese with English abstract) doi: 10.3981/j.issn.1000-7857.2012.32.002
    [5] WAN T F. The tectonics of China:data, maps and evolution[M]. Berlin Heidelberg:Springer, 2012.
    [6] WANG A D, SUN Z X, HU B Q, et al. Guangdong, a potential province for developing hot dry rock geothermal resource[J]. Applied Mechanics and Materials, 2014, 492:583-585. doi: 10.4028/www.scientific.net/AMM.492
    [7] LIU R X, XIE G H, ZHOU X H, et al. Tectonic environments of cenozoic volcanic rocks in china and characteristics of the source regions in the mantle[J]. Chinese Journal of Geochemistry, 1995, 14(4):289-302. doi: 10.1007/BF02872628
    [8] 王霄飞, 余珊, 龚跃华, 等.华南北东向断裂在南海北部陆架的延伸[J].大地构造与成矿学, 2014, 38(03):557-570. http://d.old.wanfangdata.com.cn/Periodical/ddgzyckx201403006

    Wang Xiao Fei, Yu Shan, Gong Yue Hua, et al. Extension of NE-trending faults in south china to northern south china sea continental shelf[J]. Geotectonica et Metallogenia, 2014, 38(3):557-570(in Chinese with English abstract) http://d.old.wanfangdata.com.cn/Periodical/ddgzyckx201403006
    [9] CHENG H H, ZHANG H, ZHU B J, et al. Finite element investigation of the poroelastic effect on the Xinfengjiang reservoir-triggered earthquake[J]. Science China Earth Sciences, 2012, 55(12):1942-1952. doi: 10.1007/s11430-012-4470-8
    [10] CHEN L, TALWANI P. Reservoir-induced seismicity in China[J]. Pure and Applied Geophysics, 1998, 153(1):133-149. doi: 10.1007/s000240050188
    [11] QIU X, FENTON C. Factors controlling the occurrence of reservoir-induced seismicity[C]//Lollino G. Engineering Geology for Society and Territory. Cham: Springer, 2015, 6: 567-570. doi: 10.1007%2F978-3-319-09060-3_102
    [12] LEE C F, YE H, ZHOU Q. On the potential seismic hazard in Hong Kong[J]. Episodes, 1997, 20(2):89-94. http://cn.bing.com/academic/profile?id=8c2a56bd34fe1c1d813736b273b3158a&encoded=0&v=paper_preview&mkt=zh-cn
    [13] 刘大任.邵武-河源断裂带活动性及分段评价[J].地质力学学报, 1997, 3(2):54-60. http://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?flag=1&file_no=19970221&journal_id=dzlxxb

    LIU Daren. Segmentation of the Shaowu Heyuan fault zone and their activity assessment[J]. Journal of Geomechanics, 1997, 3(2):54-60. (in Chinese with English abstract) http://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?flag=1&file_no=19970221&journal_id=dzlxxb
    [14] 邹和平, 彭樊源, 苏章歆, 等.河源伸展剥离断层(博罗-龙川段)及其第四纪活动特征[J].华南地震, 2010, 30(S1):1-9. http://d.old.wanfangdata.com.cn/Periodical/hndz2010z1002

    ZOU Heping, PENG Fanyuan, SU Zhangxin, et al. Discussions on the Heyuan extensional detachment fault from Boluo to Longchuan and its quaternary activities[J]. South China Journal of Seismology, 2010, 30(S1):1-9. (in Chinese with English abstract) http://d.old.wanfangdata.com.cn/Periodical/hndz2010z1002
    [15] REGENAUER-LIEB K, VEVEAKIS M, POULET T, et al. Stimulating granites: from synchrotron microtomography to enhancing reservoirs[C]//Proceedings World Geothermal Congress 2015. Melbourne, Australia, 2015.
    [16] QIU X L, WANG Y, WANG Z Z, et al. Determining the origin, circulation path and residence time of geothermal groundwater using multiple isotopic techniques in the Heyuan Fault Zone of Southern China[J]. Journal of Hydrology, 2018, 567:339-350. doi: 10.1016/j.jhydrol.2018.10.010
    [17] HU S B, HE L J, WANG J Y. Heat flow in the continental area of China:A new data set[J]. Earth and Planetary Science Letters, 2000, 179(2):407-419. doi: 10.1016/S0012-821X(00)00126-6
    [18] WANG G, LI K, WEN D, et al. Assessment of geothermal resources in China[C]//Thirty-Eighth Workshop on Geothermal Reservoir Engineering. California: Stanford University, Stanford, 2013, 10.
    [19] 田春艳.广东省中高温地热资源勘查与开发利用建议[J].地下水, 2012, 34(4):61-63. http://d.old.wanfangdata.com.cn/Periodical/dixs201204023

    TIAN Chunyan. Suggestions on the exploration and development of high temperature geothermal resources in Guangdong province[J]. Groundwater, 2012, 34(4):61-63. (in Chinese with English abstract) http://d.old.wanfangdata.com.cn/Periodical/dixs201204023
    [20] XI Y, WANG Y, HU X, et al. Geothermal structure revealed by Curie isotherm surface in Guangdong province[C]//International Workshop and Gravity, Electrical & Magnetic Methods and their Applications. Chengdu, China, 2015: 189-192.
    [21] MAO X M, WANG Y X, ZHAN H B, et al. Geochemical and isotopic characteristics of geothermal springs hosted by deep-seated faults in Dongguan Basin, Southern China[J]. Journal of Geochemical Exploration, 2015, 158:112-121. doi: 10.1016/j.gexplo.2015.07.008
    [22] LACHENBRUCH A H, SASS J H. Heat flow and the thermal regime of the crust[C]//HEACOCK J G. The Earth's Crust, Its Nature and Physical Properties. Washington, D. C: American Geophysical Union, 1977: 626-675.
    [23] VIGNERESSE J L, CUNEY M. Are granites representative of heat flow provinces[A]//AČG ERMÁK V, RYBACH L. Terrestrial heat flow and the lithosphere structure[M]. Berlin: Springer, 1991.
    [24] SUN Z X, WANG A D, LIU J H, et al. Radiogenic heat production of granites and potential for hot dry rock geothermal resource in Guangdong province, Southern China[C]//Proceedings World Geothermal Congress 2015. Melbourne, Australia, 2015.
    [25] RYBACH L. Determination of heat production rate[C]//HÄNEL R, RYBACK L, STEGENA L. Handbook of Terrestrial Heat Flow Density Determination. Dordrecht: Kluwer, 1988, 125-142.
    [26] ZHANG Y, YANG J H, SUN J F, et al. Petrogenesis of Jurassic fractionated I-type granites in Southeast China:Constraints from whole-rock geochemical and zircon U-Pb and Hf-O isotopes[J]. Journal of Asian Earth Sciences, 111:268-283. doi: 10.1016/j.jseaes.2015.07.009
    [27] BIRCH F, ROY R F, DECKER E R. Heat flow and thermal history in New York and New England[C]//ZEN F A, WHITE W S, HADLEY J B, et al. Studies of Appalachian Geology: Northern and Maritime. New York: Interscience Jr, 1968: 437-451.
    [28] WEBB P C, LEE M K, BROWN G C. Heat flow-heat production relationships in the UK and the vertical distribution of heat production in granite batholiths[J]. Geophysical Research Letter, 1987, 14(3):279-282. doi: 10.1029/GL014i003p00279
    [29] 钟建强, 周蒂.华南沿海温泉分布与地震活动关系初探[J].华南地震, 1990, 10(4):22-29. http://www.cnki.com.cn/Article/CJFDTOTAL-HNDI199004004.htm

    ZHONG Jianqiang, ZHOU Di. A preliminary study of the relationship between the distribution of hot springs and the activity of earthquakes along south China coast[J]. South China Journal of Seismology, 1990, 10(4):22-29. (in Chinese with English abstract) http://www.cnki.com.cn/Article/CJFDTOTAL-HNDI199004004.htm
    [30] SIBSON R H. Fault rocks and fault mechanisms[J]. Journal of the Geological Society, 1977, 133(3):191-213. doi: 10.1144/gsjgs.133.3.0191
    [31] SIBSON R H. Continental fault structure and the shallow earthquake source[J]. Journal of the Geological Society, 1983, 140(5):741-767. doi: 10.1144/gsjgs.140.5.0741
    [32] ZHAO B, BAI Z M, XU T, et al. Lithological model of the South China crust based on integrated geophysical data[J]. Journal of Geophysics and Engineering, 2013, 10(2):25005. http://cn.bing.com/academic/profile?id=ece1d32a35e290b3acf364900bb119c5&encoded=0&v=paper_preview&mkt=zh-cn
    [33] 广东省地质矿产局.广东省区域地质志[M].北京:地质出版社, 1988.

    Geological Bureau of Guangdong Province. The geology of Guangdong Province[M]. Beijing:Geological Press, 1998. (in Chinese)
    [34] 饶春涛, 李平鲁.珠江口盆地热流研究[J].中国海上油气(地质), 1991, 5(6):7-18. http://d.old.wanfangdata.com.cn/Periodical/dxqy200504029

    RAO Chuntao, LI Pinglu. Study of heat flux in basins around the Pearl river delta[J]. China Offshore Oil and Gas (Geology), 1991, 5(6):7-18. (in Chinese with English abstract) http://d.old.wanfangdata.com.cn/Periodical/dxqy200504029
    [35] 王妙月, 杨懋源, 胡毓良, 等.新丰江水库地震的震源机制及其成因初步探讨[J].地球物理学报, 1976, 17(1):1-17. http://www.cnki.com.cn/Article/CJFDTOTAL-DQWX197601000.htm

    WANG Miaoyue, YANG Maoyuan, HU Yuliang, et al. Mechanism of the reservoir impounding earthquakes at Xinfengjiang and a preliminary endeavour to discuss their cause[J]. Acta Geophysica Sinica, 1976, 19(1):1-17. (in Chinese with English abstract) http://www.cnki.com.cn/Article/CJFDTOTAL-DQWX197601000.htm
    [36] 陈伟光.华南沿海沉积盆地的新构造运动及其与地震的关系[J].华南地震, 1995, 15(2):55-61. http://www.cnki.com.cn/Article/CJFDTOTAL-HNDI502.008.htm

    CHEN Weiguang. On the relation between earthquake and neotectonic movement of depositional basins in coastal area of south China[J]. South China Journal of Seismology, 1995, 15(2):55-61. (in Chinese with English abstract) http://www.cnki.com.cn/Article/CJFDTOTAL-HNDI502.008.htm
    [37] CHADWICK R A, LEONARD R B. Structural controls of hot-spring systems on southwestern Montana[M/OL]. USGS Open-File Report 79-1333. U.S. Geological Survey, 1979. https://pubs.usgs.gov/of/1979/1343/report.pdf.
    [38] CUREWITZ D, KARSON J A. Structural settings of hydrothermal outflow:Fracture permeability maintained by fault propagation and interaction[J]. Journal of Volcanology and Geothermal Research, 1997, 79(3-4):149-168. doi: 10.1016/S0377-0273(97)00027-9
    [39] PERSON M, HOFSTRA A, SWEETKIND D, et al. Analytical and numerical models of hydrothermal fluid flow at fault intersections[J]. Geofluids, 2012, 12(4):312-326. doi: 10.1111/gfl.2012.12.issue-4
    [40] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会.地热资源地质探勘规范: GB/T 11615-2010[S].北京: 中国标准出版社, 2011.

    General administration of quality supervision, inspection and quarantine of the People's Republic of China, Standardization administration. Code for geological exploration of geothermal Resources: GB/T 11615-2010[S]. Beijing: Standards Press of China, 2011. (in Chinese)
  • 加载中
图(5) / 表(3)
计量
  • 文章访问数:  805
  • HTML全文浏览量:  354
  • PDF下载量:  57
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-07-18
  • 修回日期:  2019-02-15
  • 刊出日期:  2019-06-01

目录

    /

    返回文章
    返回