Accumulation conditions and exploration potential of deep natural gas in the Qaidam Basin
-
摘要:
为明确柴达木盆地深层天然气勘探潜力, 基于地震、地质、地球化学、录井及钻井等多种资料分析了柴达木盆地深层天然气藏的富集条件, 并指出了有利勘探方向。结果表明: 柴达木盆地深层具备形成大型气田的成藏条件, 深层发育柴北缘侏罗系和柴西古近系两套优质气源, 演化程度高, 生气能力强; 柴北缘深层发育基岩和古近系碎屑岩储层, 柴西深层发育古近系湖相碳酸盐岩储集层, 多种类型储层平面上分布广泛, 纵向上组成多套储盖组合, 发育的原生孔、溶蚀孔及裂缝等多种孔隙类型被认为是深层气藏富集的储存空间; 持续活动的深大断裂是深层气源的优质通道; 同时深层构造的形成与天然气生成具有良好的匹配关系, 深层烃源岩具有早生烃、持续生烃特征, 早期生成的液态烃在后期深埋过程中高温裂解成气, 生气能力强, 深层资源潜力大; 盆地深层广泛发育的盐岩、泥质岩层及异常高压层有利于深层天然气保存。综合认为柴达木盆地深层气藏富集于断裂发育的生烃凹陷周围的圈闭中, 柴北缘山前古隆起基岩、腹部构造带古近系碎屑岩和柴西环英雄岭构造带碳酸盐岩是深层天然气勘探有利区。
Abstract:This paper examines the enrichment conditions of deep natural gas reservoirs in the Qaidam Basin and delineates the exploration potential utilizing seismic, geological, geochemical, well-logging, and drilling data. The findings indicate the presence of two high-quality gas source formations, namely the Jurassic and Paleogene formations, along the northern margin and the western part of the basin, respectively. The formations both exhibit advanced evolution and robust gas-generating capacity. The deep layers along the northern margin consist of bedrocks and Paleogene clastic reservoirs, while the western deep layers feature Paleogene lacustrine carbonate reservoirs. The reservoirs west of Qaidam Basin are widely distributed on the plane and vertically form multiple reservoir cap combinations. The primary pores, dissolution pores, fractures, and other pore types developed in the reservoirs are considered as the storage space for deep gas accumulation. The continuous active deep faults serve as high-quality channels for deep gas sources; furthermore, the formation of deep structures is well-matched with natural gas generation. The deep hydrocarbon source rocks in the western Qaidam Basin are characterized by early and continuous hydrocarbon generation. Early-generated liquid hydrocarbons undergo high-temperature cracking into gas during later burial, resulting in a robust gas-generating capacity and significant potential for deep resources. The widely developed salt rocks, argillaceous rock, and abnormally high-pressure layers in the deep Qaidam Basin contribute to preserving deep natural gas. In conclusion, it is believed that deep gas reservoirs in the Qaidam Basin are enriched in the traps around hydrocarbon-generating sags with developed faults. Key favorable areas for deep-seated natural gas exploration include the basement rocks of the ancient piedmont uplift in the northern margin of Qaidam, the Paleogene clastic rocks in the central structural belt, and the carbonate rocks along the Yingxiongling structural belt in the western part of the basin.
-
本期为李四光地质科学奖获奖者研究成果专辑(第三辑),共刊登了8篇论文,其中6篇是关于稀土、金、油气资源研究与勘查成果和相关基础地质研究成果;另外2篇是关于重要经济区带区域稳定性以及高山峡谷区重大滑坡灾害问题。
何宏平等的《风化壳型稀土矿床中稀土元素的活化与迁移》,以稀土元素的活化和迁移这两个关键过程为切入点,总结近年来取得的最新研究成果,并对未来的研究方向提出展望,以加深对风化壳型稀土矿床形成机制的认识和理解。文章明确指出,风化壳型稀土矿床中稀土元素的活化和迁移机制主要受化学风化和生物风化过程控制,是无机和有机共同作用的结果,但其对该类矿床形成的贡献尚待定量评估。
谢玉玲等的《中国伴生稀土元素资源类型及资源潜力》一文,对中国伴生REE矿床类型、资源潜力进行了深入分析和总结。中国伴生的REE资源巨大,加强伴生REE资源的评价和综合利用水平,充分利用生产矿山中伴生的REE资源,特别是磷矿床和铝土矿床,可以有效缓解中国HREE资源供应压力。
焦家式金矿类型的发现与勘探,对我国金矿找矿做出了重大贡献。周明岭等的《焦家式金矿勘查与研究》一文,总结了上世纪60年代在胶东西北部发现新的金矿类型以来,地质勘探部门通过多年勘探、研究和总结,建立了焦家式金矿类型,并对这个金矿类型的主要矿床地质特征进行了总结,以指导全国相同类型金矿的找矿勘探。
柳建新等的《湘东北白沙窝稀有金属矿床电性特征与找矿预测研究》一文涉及到目前矿产资源勘查的两个重要方面,即国家急需的战略性稀有金属矿产资源和深部矿产资源勘查问题。本文以湖南白沙窝伟晶岩型矿床为例,开展伟晶岩型矿床的深部电性结构特征调查,探讨稀有金属成矿模型及赋矿载体的空间分布,阐明矿脉就位关系,为稀有金属找矿预测提供依据。
支东明等的《准噶尔盆地东部二叠系富烃凹陷全油气系统勘探前景》一文,对二叠系烃源岩进行了系统评价,在沉积相、储层特征和油气成藏等方面进行综合研究,优选石树沟凹陷南斜坡、吉南凹陷芦草沟组作为准东地区未来探索的重要勘探区带。
朱锦旗等的《苏州—无锡—常州地区地面沉降及地裂缝防控研究》总结了苏锡常地区地面沉降以及因差异沉降诱发地裂缝灾害的勘查与监测预警体系建设工作。作者认为苏锡常地区地面沉降经历了发生、快速发展、趋缓、滞后、反弹5个阶段。成功实现了三维复杂地质环境条件下地层形变特征及地裂缝生成和扩展的力学机制模拟,为地面沉降、地裂缝易发区精准圈定与防控提供了解决路径。
张世殊等的《西部高山峡谷区重大滑坡成生规律及灾变演化机理研究进展》,分析总结了我国西部高山峡谷区滑坡类型以牵引式滑坡、推移式滑坡、复合式滑坡为主的堆积层滑坡以及以顺层岩质滑坡、溃屈型岩质滑坡、反倾岩质滑坡和座落式滑坡为主的岩质滑坡。研究成果将对西部高山峡谷区的滑坡识别、监测、预警以及防治具有一定的指导意义。
王秉璋等的《东昆仑印支晚期埃达克质花岗岩的成因和地质意义》一文报道了东昆仑小南川地区新发现的三叠纪埃达克质花岗岩。研究表明,东昆仑造山带在晚三叠世处于碰撞和碰撞后阶段,而碰撞后阶段的岩浆活动可以进一步划分为晚三叠世早期和晚三叠世晚期—早侏罗世初期2个阶段。
总之,本专辑展示出新一届李四光奖获得者们长期持续关注国家大宗战略性紧缺资源、稀有稀土资源以及重大环境工程等方面的需求,大部分文章都是作者团队几十年的研究、勘察积累,具有较高的理论水平与实际参考价值。
责任编辑: 范二平 -
图 2 柴达木盆地深层主力气源RO等值线分布图(据田继先等,2017;郭泽清等,2017修改)
Figure 2. Distribution of RO isoline of the deep main gas source in the Qaidam Basin (modified from Tian et al., 2017; Guo et al., 2017)
图 8 柴达木盆地烃源岩演化史图
a—柴北缘坳陷伊北凹陷侏罗系;b—柴西坳陷英雄岭地区古近系
Figure 8. Hydrocarbon generation history of the Qaidam basin
(a)Evolution history of the Jurassic source rocks in the Yibei Sag, northern margin of the Qaidam Depression; (b)Evolution history of the Paleogene source rocks in Yingxiongling area, western Qaidam Depression
-
CHEN J, SHI J A, LONG G H, et al., 2013. Sedimentary facies and models for the Palaeogene-Neogene deposits on the northern margin of the Qaidam Basin, Qinghai[J]. Sedimentary Geology and Tethyan Geology, 33(3): 16-26. (in Chinese with English abstract) FAN C Y, WANG Z L, WANG A G, et al., 2015. Mechanisms for overpressure generation and origin of overpressured gas and aquifer layers, Eboliang structure belt, northern Qaidam Basin[J]. Acta Petrolei Sinica, 36(6): 699-706, 714. (in Chinese with English abstract) doi: 10.1038/aps.2014.138 FENG D H, LIU C L, TIAN J X, et al., 2022. Erosion thickness recovery and its significance to hydrocarbon accumulation in northwestern Qaidam Basin[J]. Petroleum Experimental & Geology, 44(1): 188-198. (in Chinese with English abstract) FU S T, WANG L Q, XU Z Y, et al., 2009. Geological conditions of deep gas pools and their favorable prospects[J]. Natural Gas Geoscience, 20(6): 841-846. (in Chinese with English abstract) FU S T, ZHANG D W, XUE J Q, et al., 2013. Exploration potential and geological conditions of tight oil in the Qaidam basin[J]. Acta Sedimentologica Sinica, 31(4): 672-682. (in Chinese with English abstract) FU S T, MA D D, GUO Z J, et al., 2015. Strike-slip superimposed Qaidam Basin and its control on oil and gas accumulation, NW China[J]. Petroleum Exploration and Development, 42(6): 712-722. (in Chinese with English abstract) FU S T, MA D D, CHEN Y, et al., 2016. New advance of petroleum and gas exploration in Qaidam Basin[J]. Acta Petrolei Sinica, 37(S1): 1-10. (in Chinese with English abstract) GUO J J, SUN G Q, MEN H J, et al., 2018. Genetic analysis of anomalously high porosity zones in deeply buried reservoirs in the west part of northern edge of Qaidam Basin, NW China[J]. Acta Sedimentologica Sinica, 36(4): 777-786. (in Chinese with English abstract) GUO X S, HU D F, HUANG R C, et al., 2020. Deep and ultra-deep natural gas exploration in the Sichuan Basin: progress and prospect[J]. Natural Gas Industry, 40(5): 1-14. (in Chinese with English abstract) GUO Z Q, MA Y S, LIU W H, et al., 2017. Main factors controlling the formation of basement hydrocarbon reservoirs in the Qaidam Basin, western China[J]. Journal of Petroleum Science and Engineering, 149: 244-255. doi: 10.1016/j.petrol.2016.10.029 GUO Z Q, MA Y S, YI S W, et al., 2017. Simulation and exploration direction of Paleogene-Neogene gas system in the western Qaidam Basin[J]. Natural Gas Geoscience, 28(1): 82-92. (in Chinese with English abstract) HUANG C G, NI X L, MA X M, et al., 2017. Petroleum and gas enrichment pattern and major controlling factors of stable and high production of tight lacustrine carbonate rock reservoirs: a case of the Yingxi area in Qaidam Basin[J]. Journal of Northwest University (Natural Science Edition), 47(5): 724-738. (in Chinese with English abstract) LI J, SHE Y Q, GAO Y, et al., 2019. Onshore deep and ultra-deep natural gas exploration fields and potentials in China[J]. China Petroleum Exploration, 24(4): 403-417. (in Chinese with English abstract) LI P, LIU C L, FENG D H, et al., 2021. Characteristics and origin mechanism of formation overpressure in the saline lacustrine basin: a case study from the Oligocene in the west of Yingxiong ridge, Qaidam Basin[J]. Journal of China University of Mining & Technology, 50(5): 864-876. (in Chinese with English abstract) LIU Z, ZHU W Q, SUN Q, et al., 2012. Characteristics of geotemperature-geopressure systems in petroliferous basins of China[J]. Acta Petrolei Sinica, 33(1): 1-17. (in Chinese with English abstract) doi: 10.1038/aps.2011.197 MA F, LE X F, WANG P, et al., 2014. Accumulation conditions and exploration domain of coal-type gas in Qaidam Basin[J]. China Petroleum Exploration, 19(3): 87-94. (in Chinese with English abstract) SHI Y J, YANG S Y, GUO J J, et al., 2020. Petroleum accumulation conditions and favorable exploration plays of deeply buried strata in Qaidam Basin[J]. Journal of China University of Mining & Technology, 49(3): 506-522. (in Chinese with English abstract) SUN L D, ZOU C N, ZHU R K, et al., 2013. Formation, distribution and potential of deep hydrocarbon resources in China[J]. Petroleum Exploration and Development, 40(6): 641-649. (in Chinese with English abstract) TIAN G R, YAN C F, TUO J C, et al., 2011. Late hydrocarbon accumulation characteristic of coal related gas in northern Qaidam Basin[J]. Natural Gas Geoscience, 22(6): 1028-1032. (in Chinese with English abstract) TIAN J X, SUN P, ZHANG L, et al., 2014. Accumulation conditions of natural gas and exploration domains in Pingtai Area, piedmont zone of the North Qaidam[J]. Natural Gas Geoscience, 25(4): 526-531. (in Chinese with English abstract) TIAN J X, LI J, ZENG X, et al., 2017. Geochemical characteristics and petroleum geologic significance of natural gas in the north margin of the Qaidam Basin[J]. Oil & Gas Geology, 38(2): 355-362. (in Chinese with English abstract) TIAN J X, LI J, PAN C F, et al., 2018. Geochemical characteristics and factors controlling natural gas accumulation in the northern margin of the Qaidam Basin[J]. Journal of Petroleum Science and Engineering, 160: 219-228. doi: 10.1016/j.petrol.2017.10.065 TIAN J X, LI J, ZENG X, et al., 2019. Accumulation conditions and favorable plays for deep gas exploration at the northern margin of Qaidam Basin[J]. Oil & Gas Geology, 40(5): 1095-1105. (in Chinese with English abstract) TIAN J X, LI J, ZENG X, et al., 2020a. Discovery and accumulation model of oil cracking gas reservoirs in Dongping area, Qaidam Basin[J]. Acta Petrolei Sinica, 41(2): 154-162, 225. (in Chinese with English abstract) doi: 10.1038/s41401-019-0300-2 TIAN J X, ZHAO J, ZHANG J, et al., 2020b. Formation mechanism and distribution prediction of hydrogen sulfide in Yingxiongling area, Qaidam Basin[J]. Lithologic Reservoirs, 32(5): 84-92. (in Chinese with English abstract) TIAN J X, LI J, KONG H, et al., 2021. Genesis and accumulation process of deep natural gas in the Altun foreland on the northern margin of the Qaidam Basin[J]. Journal of Petroleum Science and Engineering, 200: 108147. doi: 10.1016/j.petrol.2020.108147 TIAN J X, JI B Q, ZENG X, et al., 2022. Development characteristics and main controlling factors of deep clastic reservoir of Xiaganchaigou Formation in the northern margin of Qaidam Basin[J]. Natural Gas Geoscience, 33(5): 720-730. (in Chinese with English abstract) WAN Y Z, LONG G H, YANG W, et al., 2023. Hydrocarbon accumulation and evolution characteristics of Paleogene in Yingxiongling area, Qaidam Basin[J]. Lithologic Reservoirs, 35(2): 94-102. (in Chinese with English abstract) WU X D, LIAO J, SUN W Z, et al., 2021. Natural gas distribution and reservoir-forming law of the Yinggehai Basin, China[J]. Journal of Geomechanics, 27(6): 963-974. (in Chinese with English abstract) WU Y X, XUE J Q, FENG Y F, et al., 2013. Neotectonic movement feature and its controlling effect on accumulation in western Qaidam Basin[J]. Petroleum Geology & Experiment, 35(3): 243-248. (in Chinese with English abstract) YANG H J, CHEN Y Q, TIAN J, et al., 2020. Great discovery and its significance of ultra-deep oil and gas exploration in well Luntan-1 of the Tarim Basin[J]. China Petroleum Exploration, 25(2): 62-72. (in Chinese with English abstract) ZENG X, TIAN J X, ZHANG G Q, et al., 2018. Main types and hydrocarbon exploration direction of the paleo-uplifts in the Qaidam Basin[J]. Journal of Geomechanics, 24(3): 381-390. (in Chinese with English abstract) ZHAI Z W, ZHANG Y S, YANG H M, et al., 2013. Characteristics of effective source rocks in the Jurassic and hydrocarbon accumulation patterns in the areas near the northern margin of the Qaidam Basin[J]. Natural Gas Industry, 33(9): 36-42. (in Chinese with English abstract) ZHANG B, HE Y Y, CHEN Y, et al., 2018. Formation mechanism of excellent saline lacustrine source rocks in western Qaidam Basin[J]. Acta Petrolei Sinica, 39(6): 674-685. (in Chinese with English abstract) ZHANG G Y, MA F, LIANG Y B, et al., 2015. Domain and theory-technology progress of global deep oil & gas exploration[J]. Acta Petrolei Sinica, 36(9): 1156-1166. (in Chinese with English abstract) ZHANG J M, FU Y W, TIAN C X, et al., 2021. Lithofacies paleogeography and genesis of salt rock in the late Eocene of western Qaidam Basin[J]. Journal of Stratigraphy, 45(4): 545-553. (in Chinese with English abstract) ZHANG X, LIU C L, GUO Z Q, et al., 2020. Hydrocarbon accumulation conditions of neogene lacustrine fine-grained sedimentary rocks in northwestern Qaidam Basin[J]. Journal of China Coal Society, 45(8): 2824-2837. (in Chinese with English abstract) ZHANG Y S, WU K Y, JIANG Y H, et al., 2018. Geological characteristics of deep carbonate hydrocarbon-bearing pool in the western Yingxiongling area in Qaidam Basin[J]. Natural Gas Geoscience, 29(3): 358-369. (in Chinese with English abstract) 陈吉, 史基安, 龙国徽, 等, 2013. 柴北缘古近系-新近系沉积相特征及沉积模式[J]. 沉积与特提斯地质, 33(3): 16-26. https://www.cnki.com.cn/Article/CJFDTOTAL-TTSD201303003.htm 范昌育, 王震亮, 王爱国, 等, 2015. 柴达木盆地北缘鄂博梁构造带超压形成机制与高压气、水层成因[J]. 石油学报, 36(6): 699-706, 714. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201506006.htm 冯德浩, 刘成林, 田继先, 等, 2022. 柴达木盆地西北区地层剥蚀厚度恢复及对油气成藏的启示[J]. 石油实验地质, 44(1): 188-198. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD202201020.htm 付锁堂, 汪立群, 徐子远, 等, 2009. 柴北缘深层气藏形成的地质条件及有利勘探区带[J]. 天然气地球科学, 20(6): 841-846. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX200906001.htm 付锁堂, 张道伟, 薛建勤, 等, 2013. 柴达木盆地致密油形成的地质条件及勘探潜力分析[J]. 沉积学报, 31(4): 672-682. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201304015.htm 付锁堂, 马达德, 郭召杰, 等, 2015. 柴达木走滑叠合盆地及其控油气作用[J]. 石油勘探与开发, 42(6): 712-722. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201506004.htm 付锁堂, 马达德, 陈琰, 等, 2016. 柴达木盆地油气勘探新进展[J]. 石油学报, 37(S1): 1-10. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB2016S1001.htm 郭佳佳, 孙国强, 门宏建, 等, 2018. 柴北缘腹部深层异常高孔—渗储层成因分析[J]. 沉积学报, 36(4): 777-786. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201804013.htm 郭旭升, 胡东风, 黄仁春, 等, 2020. 四川盆地深层—超深层天然气勘探进展与展望[J]. 天然气工业, 40(5): 1-14. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG202005002.htm 郭泽清, 马寅生, 易士威, 等, 2017. 柴西地区古近系—新近系含气系统模拟及勘探方向[J]. 天然气地球科学, 28(1): 82-92. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201701009.htm 黄成刚, 倪祥龙, 马新民, 等, 2017. 致密湖相碳酸盐岩油气富集模式及稳产、高产主控因素: 以柴达木盆地英西地区为例[J]. 西北大学学报(自然科学版), 47(5): 724-738. https://www.cnki.com.cn/Article/CJFDTOTAL-XBDZ201705017.htm 李剑, 佘源琦, 高阳, 等, 2019. 中国陆上深层—超深层天然气勘探领域及潜力[J]. 中国石油勘探, 24(4): 403-417. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY201904001.htm 李培, 刘成林, 冯德浩, 等, 2021. 咸化湖盆地层超压特征及成因机制: 以柴达木盆地英西地区渐新统为例[J]. 中国矿业大学学报, 50(5): 864-876. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD202105005.htm 刘震, 朱文奇, 孙强, 等, 2012. 中国含油气盆地地温-地压系统[J]. 石油学报, 33(1): 1-17. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201201000.htm 马峰, 乐幸福, 王朴, 等, 2014. 柴达木盆地煤型气成藏条件及勘探领域[J]. 中国石油勘探, 19(3): 87-94. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY201403012.htm 石亚军, 杨少勇, 郭佳佳, 等, 2020. 柴达木盆地深层油气成矿(藏)条件及有利区带[J]. 中国矿业大学学报, 49(3): 506-522. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD202003011.htm 孙龙德, 邹才能, 朱如凯, 等, 2013. 中国深层油气形成、分布与潜力分析[J]. 石油勘探与开发, 40(6): 641-649. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201306001.htm 田光荣, 阎存凤, 妥进才, 等, 2011. 柴达木盆地柴北缘煤成气晚期成藏特征[J]. 天然气地球科学, 22(6): 1028-1032. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201106015.htm 田继先, 孙平, 张林, 等, 2014. 柴达木盆地北缘山前带平台地区天然气成藏条件及勘探方向[J]. 天然气地球科学, 25(4): 526-531. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201404007.htm 田继先, 李剑, 曾旭, 等, 2017. 柴达木盆地北缘天然气地球化学特征及其石油地质意义[J]. 石油与天然气地质, 38(2): 355-362. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201702018.htm 田继先, 李剑, 曾旭, 等, 2019. 柴北缘深层天然气成藏条件及有利勘探方向[J]. 石油与天然气地质, 40(5): 1095-1105. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201905015.htm 田继先, 李剑, 曾旭, 等, 2020a. 柴达木盆地东坪地区原油裂解气的发现及成藏模式[J]. 石油学报, 41(2): 154-162, 225. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB202002004.htm 田继先, 赵健, 张静, 等, 2020b. 柴达木盆地英雄岭地区硫化氢形成机理及分布预测[J]. 岩性油气藏, 32(5): 84-92. https://www.cnki.com.cn/Article/CJFDTOTAL-YANX202005009.htm 田继先, 纪宝强, 曾旭, 等, 2022. 柴北缘下干柴沟组深部碎屑岩储层发育特征及主控因素[J]. 天然气地球科学, 33(5): 720-730. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX202205004.htm 完颜泽, 龙国徽, 杨巍, 等, 2023. 柴达木盆地英雄岭地区古近系油气成藏过程及其演化特征[J]. 岩性油气藏, 35(2): 94-102. https://www.cnki.com.cn/Article/CJFDTOTAL-YANX202302009.htm 吴迅达, 廖晋, 孙文钊, 等, 2021. 莺歌海盆地天然气运聚成藏条件与分布富集规律[J]. 地质力学学报, 27(6): 963-974. doi: 10.12090/j.issn.1006-6616.2021.27.06.078 吴颜雄, 薛建勤, 冯云发, 等, 2013. 柴西地区新构造运动特征及其对成藏影响[J]. 石油实验地质, 35(3): 243-248. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD201303005.htm 杨海军, 陈永权, 田军, 等, 2020. 塔里木盆地轮探1井超深层油气勘探重大发现与意义[J]. 中国石油勘探, 25(2): 62-72. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY202002007.htm 曾旭, 田继先, 张国卿, 等, 2018. 柴达木盆地古隆起主要类型及油气勘探方向[J]. 地质力学学报, 24(3): 381-390. doi: 10.12090/j.issn.1006-6616.2018.24.03.039 翟志伟, 张永庶, 杨红梅, 等, 2013. 柴达木盆地北缘侏罗系有效烃源岩特征及油气聚集规律[J]. 天然气工业, 33(9): 36-42. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201309009.htm 张斌, 何媛媛, 陈琰, 等, 2018. 柴达木盆地西部咸化湖相优质烃源岩形成机理[J]. 石油学报, 39(6): 674-685. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201806006.htm 张光亚, 马锋, 梁英波, 等, 2015. 全球深层油气勘探领域及理论技术进展[J]. 石油学报, 36(9): 1156-1166. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201509015.htm 张金明, 付彦文, 田成秀, 等, 2021. 柴达木盆地西部始新世晚期岩相古地理特征及盐岩成因[J]. 地层学杂志, 45(4): 545-553. https://www.cnki.com.cn/Article/CJFDTOTAL-DCXZ202104006.htm 张永庶, 伍坤宇, 姜营海, 等, 2018. 柴达木盆地英西深层碳酸盐岩油气藏地质特征[J]. 天然气地球科学, 29(3): 358-369. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201803007.htm -