留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

柱状危岩体崩塌产生涌浪的物理试验与数值模拟分析

赵海林 黄波林 张全 郑嘉豪 冯万里 陈小婷

赵海林, 黄波林, 张全, 等, 2020. 柱状危岩体崩塌产生涌浪的物理试验与数值模拟分析. 地质力学学报, 26 (4): 500-509. DOI: 10.12090/j.issn.1006-6616.2020.26.04.043
引用本文: 赵海林, 黄波林, 张全, 等, 2020. 柱状危岩体崩塌产生涌浪的物理试验与数值模拟分析. 地质力学学报, 26 (4): 500-509. DOI: 10.12090/j.issn.1006-6616.2020.26.04.043
ZHAO Hailin, HUANG Bolin, ZHANG Quan, et al., 2020. Physical experiment and numerical model analysis of surge caused by collapse of columnar dangerous rock mass. Journal of Geomechanics, 26 (4): 500-509. DOI: 10.12090/j.issn.1006-6616.2020.26.04.043
Citation: ZHAO Hailin, HUANG Bolin, ZHANG Quan, et al., 2020. Physical experiment and numerical model analysis of surge caused by collapse of columnar dangerous rock mass. Journal of Geomechanics, 26 (4): 500-509. DOI: 10.12090/j.issn.1006-6616.2020.26.04.043

柱状危岩体崩塌产生涌浪的物理试验与数值模拟分析

doi: 10.12090/j.issn.1006-6616.2020.26.04.043
基金项目: 

国家重点研发计划项目 2018YFC1504803

三峡后续工作地质灾害防治项目 001212018CC60008

中国地质调查局地质调查项目 DD20190637

三峡后续地质灾害防治规划专项资金 001212019CC60001

详细信息
    作者简介:

    赵海林(1997-), 男, 在读硕士, 主要从事地质灾害及涌浪灾害方面的研究。E-mail:1430671346@qq.com

    黄波林(1979-), 男, 博士, 研究员, 主要从事地质灾害及涌浪灾害方面的研究。E-mail:bolinhuang@aliyun.com

  • 中图分类号: P642.21

Physical experiment and numerical model analysis of surge caused by collapse of columnar dangerous rock mass

  • 摘要: 柱状危岩体是三峡库区常见的一种典型地质灾害隐患,其崩塌产生涌浪给库区航运、旅游、生产生活以及人员财产造成巨大威胁和损害。文章基于野外柱状危岩体的成生及运动边界条件,开展了颗粒柱体崩塌产生涌浪的物理试验和数值模拟。结果表明:该数值模型能较好地模拟崩塌涌浪的形成过程、矢量信息以及与水体的相互作用;速度曲线定量地展示了能量的传递;物理试验和数值模拟涌浪高度偏差约3~4 cm;数值模拟堆积区堆积角比物理试验大5%;比前缘运动距离小7%。为柱状危岩体崩塌产生涌浪灾害的预测和预警提供了重要依据。

     

  • 图  1  颗粒柱体物理试验装置

    Figure  1.  Physical experiment device for the granular column

    图  2  颗粒柱体崩塌数值模型

    Figure  2.  Numerical model of the granular column collapse

    图  3  颗粒运动过程的流固运动矢量场对比

    Figure  3.  Comparison of the fluid-solid motion vector fields in the granule movement

    图  4  ZX方向平均速度-时间变化曲线对比

    Figure  4.  Comparison of average velocity-time curves in Z and X directions

    图  5  颗粒柱体崩塌过程对比

    Figure  5.  Comparison of collapse processes of the granular column

    图  6  监测点水位过程线对比

    Figure  6.  Comparison chart of water level process lines at the monitoring points

    图  7  颗粒前缘运动距离对比

    Figure  7.  Comparison of movement distances of the granule leading edge

    图  8  崩塌过程堆积角变化对比

    Figure  8.  Comparison of deposition angle changes in the collapse process

    表  1  试验颗粒物理性质

    Table  1.   Physical properties of experimental granules

    颗粒密度/(g/cm3) 堆积密度/(g/cm3) 粒径大小/mm 休止角/(°) 与底面摩擦角/(°)
    2.86 1.46 13±1 30.8 22.9
    下载: 导出CSV
  • BAGNOLD R A.1954. Experiments on a gravity-free dispersion of large solid spheres in a Newtonian fluid under Shear[J]. Proceedings of the Royal Society A:Mathematical, Physical and Engineering Sciences, 225(1160):49-63. http://cn.bing.com/academic/profile?id=54a768d1c643a6790e85cfe5943b9b7b&encoded=0&v=paper_preview&mkt=zh-cn
    CHEN G D.2019. Study and application of numerical model of reservoir landslide surge[D]. Xi'an: Xi'an University of Technology. (in Chinese)
    DAI L.2018. Experimental research on impulse wave generated by subaerial landslide and related numerical simulation[D]. Tianjin: Tianjin University. (in Chinese with English abstract)
    DENG C J, DANG F L, CHEN X Z.2019. Study on the surge wave propagation in the reservoir area and its interaction mechanism with the dam[J]. Journal of Hydraulic Engineering, 50(7):815-823. (in Chinese with English abstract)
    GRIMSTAD E, NESDAL S.1991. The Loen rock slides:a historical review[J]. Norwegian Geotechnical Institute, 182:1-6.
    GUO J, SHEN W, LI T L, et al., 2019. Establishment of dynamic model of a flow-like landslide-induced surge[J]. Advances in Water Science, 30(2):273-281. (in Chinese with English abstract) https://www.researchgate.net/publication/333728572_Establishment_of_dynamic_model_of_a_flow-like_landslide-induced_surge
    HAN L F, WANG P Y, WANG M L.2019. Motion characteristics of cataclastic rockslides and change rules of impulse waves in near-field zone[J]. Journal of Zhejiang University (Engineering Science), 53(12):2325-2334. (in Chinese with English abstract)
    HAO J J, MEN Y Q, WANG P Y, et al., 2014. Experimental research on dangerous rock-type landslide surge primary wave height of the river:Channel type reservoir in mountainous area[J]. Journal of Wuhan University of Technology (Transportation Science and Engineering), 38(3):672-675. (in Chinese with English abstract) http://cn.bing.com/academic/profile?id=f0acd148bf2e323b7b1ac316f26935c0&encoded=0&v=paper_preview&mkt=zh-cn
    HE K, YIN Y P, LI B, et al., 2015. Video imaged based analysis of motion characteristic for tower rock collapse[J]. Journal of Engineering Geology, 23(1):86-95. (in Chinese with English abstract) http://cn.bing.com/academic/profile?id=1bf95bb0d3bee51741929e0bd8a90d95&encoded=0&v=paper_preview&mkt=zh-cn
    HU X B, FAN X Y, TANG J J.2019. Accumulation characteristics and energy conversion of high-speed and long-distance landslide on the basis of DEM:A case study of Sanxicun landslide[J]. Journal of Geomechanics, 25(4):527-535. (in Chinese with English abstract)
    HUANG B L, YIN Y P, LIU G N, et al., 2012. Analysis of waves generated by Gongjiafang landslide in Wu Gorge, Three Gorges Reservoir, on November 23.2008[J]. Landslides, 9(3):395-405. doi: 10.1007/s10346-012-0331-y
    HUANG B L, WANG S C, CHEN X T, et al., 2013. Prototype physical similarity experimental study of impulsive wave generated by cataclastic rockmass failure[J]. Chinese Journal of Rock Mechanics and Engineering, 32(7):1417-1425. (in Chinese with English abstract) http://cn.bing.com/academic/profile?id=12902e0caced7761e81467b304f7968a&encoded=0&v=paper_preview&mkt=zh-cn
    HUANG B L, YIN Y P, LIU G N, et al., 2014. Comparison study of physical prototype model test and numerical simulation of Gongjiafang landslide in Three Gorges Reservoir[J]. Chinese Journal of Rock Mechanics and Engineering, 33(S1):2677-2684. (in Chinese with English abstract) http://cn.bing.com/academic/profile?id=de44bb2521cee4b232cc0e6dec248ea2&encoded=0&v=paper_preview&mkt=zh-cn
    HUANG B L, YIN Y P, LI B, et al., 2020a. Rock mass deterioration and catastrophic effect of karst bank slope in Three Gorges reservoir area[J/OL].Hydrogeology and Engineering Geology:1-11[2020-05-24].https://doi.org/10.16030/j.cnki.issn.1000-3665.202003055. (in Chinese)
    HUANG B L, ZHANG Q, WANG J, et al., 2020b. Study on depositing range of granular columns with different particle gradation[J/OL]. Journal of Yangtze River Scientific Research Institute:1-8[2020-07-02].http://kns.cnki.net/kcms/detail/42.1171.TV.20191115.1727.006.html. (in Chinese with English abstract)
    HUANG B L, ZHANG Q, WANG J, et al., 2020. Experimental study on impulse waves generated by gravitational collapse of rectangular granular piles[J]. Physics of Fluids, 32:033301. doi: 10.1063/1.5138709
    HUO Z T, HUANG B L, ZHANG Q, et al., 2020. Analysis of surge induced by Heishiban Landslide in Three Gorges Reservoir Area[J]. Water Resources and Hydropower Engineering, 51(1):115-122. (in Chinese with English abstract)
    JING H X, CHEN G D, LI G D.2018. Numerical simulation of surge wave characteristics caused by underwater landslide[J]. Chinese Journal of Applied Mechanics, 35(3):503-509. (in Chinese with English abstract) doi: 10.1002/fld.1526/abstract
    LIU J.2016. Numerical simulation of landslide entry process based on fluent[J]. Water Conservancy Science and Technology and Economy, 22(6):5-6. (in Chinese)
    LIU W P.2017. Application of SPH method in numerical simulation of free surface flow[D]. Chongqing: Chongqing University. (in Chinese)
    LIU Y F, LIU G, CHEN X J, et al., 2019. Structural plane effect on the deformation and failure of the Heifangtai tableland slope[J]. China Earthquake Engineering Journal, 41(4):908-915. (in Chinese with English abstract)
    MIH W C.1999. High concentration granular shear flow[J]. Journal of Hydraulic Research, 37(2):229-248. doi: 10.1080/00221689909498308
    QIU X, XING A G, WANG G Z.2013. Numerical simulation analysis of water waves due to landslide based on FLUENT[J]. The Chinese Journal of Geological Hazard and Control, 24(3):26-31. (in Chinese with English abstract)
    ROBBE-SAULE M, MORIZE C, BERTHO Y, et al., 2017. Experimental study of wave generation by a granular collapse[J]. EPJ Web of Conferences, 140:14007. doi: 10.1051/epjconf/201714014007
    SUN Y F, HUANG B L, SONG Y P, et al., 2018. Granular flow coupling model for tsunami generated by submarine landslide[J]. Rock and Soil Mechanics, 39(9):3469-3476. (in Chinese with English abstract) http://jtp.cnki.net/bilingual/detail/html/YTLX201809044?view=2
    WANG J C, SUN J H.2019. Characteristics and stability analysis of rock collapse of low-angled red-bed slope in east Sichuan[J]. Journal of Geomechanics, 25(6):1091-1098. (in Chinese with English abstract)
    WANG J, HUANG B L, ZHANG Q, et al., 2020. Study on generalized model of collapse-deposit characteristics of cataclastic and columnar dangerous rock mass[J]. Water Resources and Hydropower Engineering, 51(2):136-143. (in Chinese with English abstract)
    WANG S C, HUANG B L, TAN J M, et al., 2018. Numerical simulations of impulse waves based on water wave dynamics model on Guanmuling Slope[J]. South China Geology and Mineral Resources, 34(4):323-330. (in Chinese with English abstract) https://www.sciencedirect.com/science/article/pii/S0309170816300860
    WANG Y, LIU J Z X, ZHANG Y, et al., 2018. Review of wave amplitude prediction generatedby landslide based on physical experiments[J]. Geology and Mineral Resources of South China, 34(4):279-288. (in Chinese with English abstract)
    XIE H Q, JIANG C B, DENG B, et al., 2017. Formation and propagation regulation of water waves caused by the landslides in narrow reservoir's river channel[J]. Journal of Transport Science and Engineering, 33(4):45-50, 76. (in Chinese with English abstract)
    XU B, JIANG C B, DENG B, et al., 2011. Three-dimensional numerical simulations of water waves generated by landslides and its propagation process[J]. Journal of Transport Science and Engineering, 27(2):39-45. (in Chinese with English abstract) http://cn.bing.com/academic/profile?id=d85491a4af040c9498b5b1d042ef4f13&encoded=0&v=paper_preview&mkt=zh-cn
    YANG Q F, WANG P Y, YU T, et al., 2014. Experimental research on dangerous rock-type landslide run-up of the river-channel type reservoir in mountainous area[J]. The Chinese Journal of Geological Hazard and Control, 25(3):43-48, 55. (in Chinese with English abstract) http://cn.bing.com/academic/profile?id=65caf32f24166251761c38507935c736&encoded=0&v=paper_preview&mkt=zh-cn
    ZHAO L H, HOU S C, MAO J.2016. Review of numerical simulation of landslides and surges in reservoir districts[J]. Advances in Science and Technology of Water Resources, 36(2):79-86. (in Chinese with English abstract)
    陈国鼎.2019.水库滑坡涌浪数值模型研究及应用[D].西安: 西安理工大学.
    戴磊.2018.滑坡涌浪试验研究及数值模拟[D].天津: 天津大学.
    邓成进, 党发宁, 陈兴周.2019.库区滑坡涌浪传播及其与大坝相互作用机理研究[J].水利学报, 50(7):815-823.
    郭剑, 沈伟, 李同录, 等.2019.一种流动性滑坡涌浪动力学模型[J].水科学进展, 30(2):273-281.
    韩林峰, 王平义, 王梅力.2019.碎裂岩体滑坡运动特征及近场涌浪变化规律[J].浙江大学学报(工学版), 53(12):2325-2334.
    郝建娟, 门永强, 王平义, 等.2014.山区河道型水库陡岩滑坡涌浪首浪试验研究[J].武汉理工大学学报(交通科学与工程版), 38(3):672-675. doi: 10.3963/j.issn.2095-3844.2014.03.046
    贺凯, 殷跃平, 李滨, 等.2015.塔柱状岩体崩塌运动特征分析[J].工程地质学报, 23(1):86-95. doi: 10.13544/j.cnki.jeg.2015.01.013
    胡晓波, 樊晓一, 唐俊杰.2019.基于离散元的高速远程滑坡运动堆积特征及能量转化研究:以三溪村滑坡为例[J].地质力学学报, 25(4):527-535.
    黄波林, 王世昌, 陈小婷, 等.2013.碎裂岩体失稳产生涌浪原型物理相似试验研究[J].岩石力学与工程学报, 32(7):1417-1425. doi: 10.3969/j.issn.1000-6915.2013.07.017
    黄波林, 殷跃平, 刘广宁, 等.2014.三峡库区龚家方崩滑体涌浪物理原型试验与数值模拟对比研究[J].岩石力学与工程学报, 33(S1):2677-2684.
    黄波林, 殷跃平, 李滨, 等.2020a.三峡工程库区岩溶岸坡岩体劣化及其灾变效应[J/OL].水文地质工程地质:1-11[2020-05-24]. https://doi.org/10.16030/j.cnki.issn.1000-3665.202003055.
    黄波林, 张全, 王健, 等.2020b.不同颗粒级配颗粒柱体堆积范围研究[J/OL].长江科学院院报:1-8[2020-07-02]. http://kns.cnki.net/kcms/detail/42.1171.TV.20191115.1727.006.html.
    霍志涛, 黄波林, 张全, 等.2020.三峡库区黑石板滑坡涌浪分析[J].水利水电技术, 51(1):115-122.
    荆海晓, 陈国鼎, 李国栋.2018.水下滑坡产生涌浪波特性的数值模拟研究[J].应用力学学报, 35(3):503-509.
    刘杰.2016.基于Fluent的滑坡入水过程数值模拟[J].水利科技与经济, 22(6):5-6.
    刘维平.2017. SPH方法在自由表面流动数值模拟中的应用[D].重庆: 重庆大学.
    刘亚峰, 刘高, 陈小军, 等.2019.黑方台台塬斜坡变形破坏的结构面效应研究[J].地震工程学报, 41(4):908-915.
    邱昕, 邢爱国, 王国章.2013.基于FLUENT数值模拟的滑坡涌浪分析[J].中国地质灾害与防治学报, 24(3):26-31.
    孙永福, 黄波林, 宋玉鹏, 等.2018.海底滑坡海啸的颗粒流耦合模型[J].岩土力学, 39(9):3469-3476. doi: 10.16285/j.rsm.2016.2612
    王军朝, 孙金辉.2019.川东红层缓倾角岩质崩塌特征与稳定性分析[J].地质力学学报, 25(6):1091-1098.
    王健, 黄波林, 张全, 等.2020.碎裂化柱状危岩体崩塌-堆积特征概化模型研究[J].水利水电技术, 51(2):136-143.
    王世昌, 黄波林, 谭建民, 等.2018.基于水波动力学模型的棺木岭危岩体涌浪数值分析[J].华南地质与矿产, 34(4):323-330.
    汪洋, 刘继芝娴, 张宇, 等.2018.基于物理模拟试验的滑坡涌浪波幅预测研究综述[J].华南地质与矿产, 34(4):279-288.
    谢海清, 蒋昌波, 邓斌, 等.2017.狭窄型库区河道滑坡涌浪的形成及其传播规律[J].交通科学与工程, 33(4):45-50, 76.
    徐波, 蒋昌波, 邓斌, 等.2011.三维滑坡涌浪的产生及其传播过程的数值研究[J].交通科学与工程, 27(2):39-45. doi: 10.3969/j.issn.1674-599X.2011.02.008
    杨渠锋, 王平义, 喻涛, 等.2014.三峡库区陡岩滑坡涌浪爬高试验分析[J].中国地质灾害与防治学报, 25(3):43-48, 55.
    赵兰浩, 侯世超, 毛佳.2016.库区滑坡涌浪数值模拟方法研究进展[J].水利水电科技进展, 36(2):79-86. doi: 10.3880/j.issn.1006-7647.2016.02.015
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  529
  • HTML全文浏览量:  84
  • PDF下载量:  21
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-06-15
  • 修回日期:  2020-07-01
  • 刊出日期:  2020-08-01

目录

    /

    返回文章
    返回