Research on multi-source heterogeneous data fusion algorithm of landslide monitoring based on BP neural network
-
摘要: 针对滑坡监测中的多源异构数据融合问题,论文提出了一种基于BP神经网络的多源异构监测数据融合算法。该算法将影响滑坡变形的温度、湿度、风力、云量、单日降水量和累计降水量等多环境因子变量作为输入变量,以滑坡位移变化量数据作为期望输出数据,并利用各环境因子变量和滑坡位移变化量的相关性及显著性进行环境因子变量筛选,以提高算法的预测精度。论文采用甘肃省永靖县黑方台党川滑坡的实测数据进行了试验,结果表明:反向传播(Back-Propagation,BP)神经网络数据融合算法适用于具有多源异构监测数据的滑坡变形预测;在进行环境变量因子筛选后,BP神经网络数据融合算法的决定系数达到0.985,均方根误差(RMSE)达到0.4787 mm,从而有效提高了变形预测结果的精度。Abstract: Aiming at the multi-source heterogeneous data fusion problem of landslide monitoring,a multi-source heterogeneous monitoring data fusion algorithm based on BP neural network is proposed in this paper. The temperature,humidity,wind power,cloudiness,precipitation and accumulated precipitation which affect the landslide deformation are taken as the input variables,and the landslide displacement changes data are taken as the expected output data in this algorithm. And the prediction accuracy of this algorithm can be effectively improved by filtering the environmental factor variables with calculating the correlation and significance of the environmental factor variables and the landslide displacement changes. This algorithm is verified by the monitoring data of the Dangchuan landslide in Heifangtai,Yongjing County,Gansu Province. The results show that the BP neural network data fusion algorithm can be used in the landslide displacement prediction with multi-source heterogeneous monitoring data. After the environmental factor variable filtering,the determination coefficient of the BP neural network data fusion algorithm can achieve 0.985 and the RMSE can achieve 0.4787 mm. Thus the accuracy of deformation prediction can be effectively improved.
-
Key words:
- landslide monitoring /
- multi-source heterogeneous data /
- data fusion /
- BP neural network /
- prediction
-
责任编辑:吴芳
-
表 1 多环境因子变量及GNSS位移量样本数据
Table 1. Sample data of multiple environmental factor variables and GNSS displacement
序号 温度/℃ 湿度/% 风力/级 云量/% 单日降水量/mm 累计降水量/mm 位移变化量/(mm/d) 1 -6 54.5 6 53 0.5 0.5 2.35 2 -7.5 72.5 6 89 17.7 18.2 3.15 3 -7 74.5 5 66 13.6 31.8 2.77 19 -2.5 83.5 5 71 3.9 54.3 4.13 20 -1.5 79.5 5 55 3.6 57.9 3.80 表 2 环境因子变量相关系数
Table 2. Correlation coefficients of environmental factor variables
相关系数 温度/℃ 湿度/% 风力/级 云量/% 单日降水量/mm 累计降水量/mm 温度/℃ 1 -0.197 -0.764 -0.468 -0.625 0.428 湿度/% -0.197 1 -0.081 0.818 0.508 0.521 风力/级 -0.764 -0.081 1 0.267 0.239 -0.466 云量/% -0.468 0.818 0.267 1 0.597 0.169 单日降水量/mm -0.625 0.508 0.239 0.597 1 -0.171 累计降水量/mm 0.428 0.521 -0.466 0.169 -0.171 1 表 3 各环境因子变量和滑坡位移变化量的相关性及显著性
Table 3. Correlation and significance of various environmental factor variables and landslide displacement changes
变量 温度/℃ 湿度/% 风力/级 云量/% 单日降水量/mm 累计降水量/mm 相关性 -0.190 0.598 0.063 0.465 0.206 0.475 显著性 0.423 0.005 0.792 0.039 0.383 0.034 表 4 两种方案下融合模型的预测位移变化量和实际位移变化量的对比
Table 4. Comparison of the predicted displacement change and the actual displacement change of the fusion model under two schemes
序号 预测位移变化量/mm 实际位移变化量/mm 方案一 方案二 16 2.09 2.53 2.69 17 2.50 2.74 3.03 18 2.20 2.89 3.15 19 3.07 3.35 4.13 20 2.80 3.20 3.80 MAE 0.8280 0.4180 / RMSE 0.8564 0.4787 / 表 5 两种方案下融合模型的决定系数与残差平方和
Table 5. The residual sum of squares and the determination coefficient of the fusion model under two schemes
R2 RSS 方案一 0.890 0.073 方案二 0.985 0.006 -
CHEN M J, OUYANG Z X, FAN G S, et al., 2007. On information extraction method based on data fusion for integrated landslide monitoring[J]. Journal of Geodesy and Geodynamics, 27(6):77-81. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-DKXB200706014.htm CHENG J, ZHANG W J, 2018. Analysis on the changes and correlation of precipitation and cloud in northwest china in the past 40 years[J]. Journal of Qinghai Meteorology, (3):1-5. (in Chinese) DING J X, SHANG Y J, YANG Z F, et al., 2004. New method of predicting rainfall-induced landslides[J]. Chinese Journal of Rock Mechanics and Engineering, 23(21):3738-3743. (in Chinese with English abstract) DONG W W, ZHU H H, SUN Y J, et al., 2016. Current status and new progress on slope deformation monitoring technologies[J]. Journal of Engineering Geology, 24(6):1088-1095. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-GCDZ201606007.htm DU G L, ZHANG Y S, GAO J C, et al., 2016. Landslide susceptibility assessment based on GIS in Bailongjiang watershed, Gansu Province[J]. Journal of Geomechanics, 22(1):1-11. (in Chinese with English abstract) http://www.en.cnki.com.cn/Article_en/CJFDTotal-DZLX201601001.htm FAN J Q, 2015. Research on multi-source heterogeneous sensor information fusion for landslide monitoring[D]. Wuhan: China University of Geosciences. (in Chinese with English abstract) FENG Z, LI B, ZHAO C Y, et al., 2016. Geological hazards monitoring and application in mountainous town of Three Gorges Reservoir[J]. Journal of Geomechanics, 22(3):685-694. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZLX201603022.htm GAO Y, LI B, FENG Z, et al., 2017. Global climate change and geological disaster response analysis[J]. Journal of Geomechanics, 23(1):65-77. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZLX201701002.htm GUMILAR I, FATTAH A, ABIDIN H Z, et al., 2017. Landslide monitoring using terrestrial laser scanner and robotic total station in Rancabali, West Java (Indonesia)[C]//American Institute of Physics Conference Series, 1857: 060001. http://www.researchgate.net/publication/318705997_Landslide_monitoring_using_terrestrial_laser_scanner_and_robotic_total_station_in_Rancabali_West_Java_Indonesia GUO K, PENG J B, XU Q, 2005. Realization of the extraction of comprehensive information of multi-station monitoring data of landslide with the technique of multisensor target tracking[J]. Progress in Geophysics, 20(3):808-813. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQWJ200503036.htm GUO K, PENG J B, XU Q, et al., 2006. Application of multi-sensor target tracking to multi-station monitoring data fusion in landslide[J]. Rock and Soil Mechanics, 27(3):479-481. (in Chinese with English abstract) HIBERT C, GRANDJEAN G, BITRI A, et al., 2012. Characterizing landslides through geophysical data fusion:Example of the La Valette landslide (France)[J]. Engineering Geology, 128:23-29. doi: 10.1016/j.enggeo.2011.05.001 JIANG H Q, LI Z X, LI X S, et al., 2006. Discussion on the prediction theory and method of landslide disaster caused by meteorological change[J]. Research of Soil and Water Conservation, 13(5):20-22. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTotal-STBY200605006.htm LIAO M S, ZHANG L, SHI X G, et al., 2017. Remote sensing monitoring method and practice of landslide deformation radar[M]. Beijing:Science Press. (in Chinese) LIU C Y, YIN X B, ZHANG B, 2015. Analysis and prediction of landslide deformations based on data fusion technology of Kalman-filter[J]. The Chinese Journal of Geological Hazard and Control, 26(4):30-35. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTotal-ZGDH201504007.htm LIU X H, YAO X, ZHOU Z K, et al., 2018. Study of the technique for landslide rapid recognition by InSAR[J]. Journal of Geomechanics, 24(2):229-237. (in Chinese with English abstract) http://www.en.cnki.com.cn/Article_en/CJFDTotal-DZLX201802067.htm MO Y S, DONG X M, WEN R H, 2010. Analysis of the influence of meteorological factors on the formation of landslide[J]. West-China Exploration Engineering, 22(6):51-52, 55. (in Chinese) NI X J, 2005. Application of wavelet theory to the denoising and the combinatorial predetermination for landslide[D]. Chengdu: Chengdu University of Technology. (in Chinese with English abstract) PENG H, HUANG B Z, YANG Y, 2012. Study on technical methods of landslide monitoring[J]. Resources Environment & Engineering, 26(1):45-50. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-HBDK201201010.htm PENG P, SHAN Z G, DONG Y F, et al., 2011. Application of multi-sensor valuation fusion theory to monitoring dynamic deformation of landslides[J]. Journal of Engineering Geology, 19(6):928-934. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTotal-GCDZ201106023.htm PRADHAN B, JEBUR M N, SHAFRI H Z M, et al., 2016. Data fusion technique using wavelet transform and Taguchi methods for automatic landslide detection from airborne laser scanning data and QuickBird satellite imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 54(3):1610-1622. doi: 10.1109/TGRS.2015.2484325 QI X, HUANG B L, LIU G N, et al., 2017. Landslide susceptibility assessment in the Three Gorges area, China, Zigui synclinal basin, using GIS technology and frequency ratio model[J]. Journal of Geomechanics, 23(1):97-104. (in Chinese with English abstract) QI X, XU Q, ZHAO K Y, et al., 2018. Analysis on law of response from irrigation to groundwater level at Heifangtai Tableland in Gansu Province[J]. Water Resources and Hydropower Engineering, 49(9):205-209. (in Chinese with English abstract) QIU D D, 2017. Landslide risk analysis based on multi-source data fusion[D]. Wuhan: China University of Geosciences. (in Chinese with English abstract) SUN B, 2012. Method research on comprehensive treatment and data fusion of multiple monitoring data[D]. Wuhan: China University of Geosciences. (in Chinese) SUN Y P, ZHANG S P, CHEN W K, et al., 2018. Risk assessment of landslides caused by Wenchuan Earthquakes:a case study in the Wudu District and Wenxian County, Gansu Province[J]. China Earthquake Engineering Journal, 40(5):1084-1091. (in Chinese with English abstract) VILLALPANDO F, TUXPAN J, RAMOS-LEAL J A, et al., 2020. New framework based on fusion information from multiple landslide data sources and 3D visualization[J]. Journal of Earth Science, 31(1):159-168. doi: 10.1007/s12583-019-1243-8 WANG J, 2013. 3D geological modeling of landslide mass based on QuantyView and multi-source data[D]. Wuhan: China University of Geosciences. (in Chinese with English abstract) WANG L, ZHANG Q, ZHAO C Y, et al., 2005. The application study of GPS multi-antenna monitoring technique in the monitoring of road slope disaster[J]. Journal of Highway and Transportation Research and Development, 22(6):163-166. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-GLJK2005S1042.htm WANG L, ZHANG Q, LI X C, et al., 2011. Dynamic and real time deformation monitoring of landslide with GPS-RTK technology[J]. Journal of Engineering Geology, 19(2):193-198. (in Chinese with English abstract) http://cn.bing.com/academic/profile?id=c717bdc0a7a24a19b42883c5496f8f78&encoded=0&v=paper_preview&mkt=zh-cn WANG Y M, FENG Q, LI Z X, 2014. Analysis of low cloud amount variations in the northwest China during 1960-2005[J]. Scientia Geographica Sinica, 34(5):635-640. (in Chinese with English abstract) http://cn.bing.com/academic/profile?id=09089b50bb335a6a0f0c0a0ee8f013eb&encoded=0&v=paper_preview&mkt=zh-cn WU W, WANG S G, DENG L T, et al., 2010. Four-season distribution of cloud and its correlation with precipitation in northern China[J]. Journal of Lanzhou University (Natural Sciences), 46(3):32-40. (in Chinese with English abstract) http://cn.bing.com/academic/profile?id=adf29f12b2346c2630ca9ea66d022dfb&encoded=0&v=paper_preview&mkt=zh-cn XU Q, FENG D L, QI X, et al., 2016. Dangchuan 2# landslide of April 29, 2015 in Heifangtai area of Gansu Province:characteristics and failure mechanism[J]. Journal of Engineering Geology, 24(2):167-180. (in Chinese with English abstract) YIN J X, HE Y Q, YAO Y S, et al., 2019. Research on deformation of plateau landslide based on meteorological conditions[J]. Urban Geotechnical Investigation & Surveying(1):184-188. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTotal-CSKC201901052.htm ZHANG W Q, 2019. Research on high-precision deformation monitoring and prediction methods for loess landslide[D]. Xi'an: Chang'an University. (in Chinese) ZHANG X Y, ZHANG C S, MENG H J, et al., 2018. Landslide susceptibility assessment of new Jing-Zhang high-speed railway based on GIS and information value model[J]. Journal of Geomechanics, 24(1):96-105. (in Chinese with English abstract) ZHANG Y J, 2006. Research on detection and recognition of underwater target based on network and data fusion[D]. Xi'an: Northwestern Polytechnical University. (in Chinese with English abstract) ZHANG Y Z, 2007. Study on the theory of structural damage identification based on neural network and data fusion[D]. Chengdu: Southwest Jiaotong University. (in Chinese) ZHAO C Y, LIU X J, ZHANG Q, et al., 2019. Research on loess landslide identification, monitoring and failure mode with InSAR technique in Heifangtai, Gansu[J]. Geomatics and Information Science of Wuhan University, 44(7):996-1007. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTotal-WHCH201907005.htm ZHAO S Q, ZHU S J, 2013. On forecasting typical landslides in the Three-Gorge Reservoir[J]. Journal of Safety and Environment, 13(6):259-264. (in Chinese with English abstract) ZHOU F, 2015. Study on the deformation characteristics of loess slope and mechanism of landslide in Heifangtai, Gansu Province[D]. Chengdu: Chengdu University of Technology. (in Chinese with English abstract) ZHU Z M, ZHOU K R, TAN C H, et al., 2013. Study on technology of slope/landslide stability analysis and early warning under heavy rainfall[J]. Journal of Geomechanics, 19(4):423-430. (in Chinese with English abstract) http://cn.bing.com/academic/profile?id=022cb0e78d567d546d7dc2f0dde56d44&encoded=0&v=paper_preview&mkt=zh-cn 陈明金, 欧阳祖熙, 范国胜, 2007.基于数据融合的滑坡综合监测信息提取方法[J].大地测量与地球动力学, 27(6):77-81. http://www.cqvip.com/Main/Detail.aspx?id=26071326 成静, 张文军, 2018.西北地区近40年降水量和云量的变化及其相互关系分析[J].青海气象(3):1-5. http://www.cnki.com.cn/Article/CJFDTotal-QHQX201803001.htm 丁继新, 尚彦军, 杨志法, 等, 2004.降雨型滑坡预报新方法[J].岩石力学与工程学报, 23(21):3738-3743. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yslxygcxb200421030 董文文, 朱鸿鹄, 孙义杰, 等, 2016.边坡变形监测技术现状及新进展[J].工程地质学报, 24(6):1088-1095. http://www.cnki.com.cn/Article/CJFDTotal-GCDZ201606007.htm 杜国梁, 张永双, 高金川, 等, 2016.基于GIS的白龙江流域甘肃段滑坡易发性评价[J].地质力学学报, 22(1):1-11. https://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?flag=1&file_no=20160101&journal_id=dzlxxb 樊俊青, 2015.面向滑坡监测的多源异构传感器信息融合方法研究[D].武汉: 中国地质大学. http://cdmd.cnki.com.cn/Article/CDMD-10491-1016061177.htm 冯振, 李滨, 赵超英, 等, 2016.三峡库区山区城镇重大地质灾害监测预警示范研究[J].地质力学学报, 22(3):685-694. https://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?flag=1&file_no=20160322&journal_id=dzlxxb 高杨, 李滨, 冯振, 等, 2017.全球气候变化与地质灾害响应分析[J].地质力学学报, 23(1):65-77. https://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?flag=1&file_no=20170102&journal_id=dzlxxb 郭科, 彭继兵, 许强, 2005.应用多传感器目标跟踪融合技术实现滑坡多点监测数据综合信息的提取[J].地球物理学进展, 20(3):808-813. http://www.cnki.com.cn/Article/CJFDTotal-DQWJ200503036.htm 郭科, 彭继兵, 许强, 等, 2006.滑坡多点数据融合中的多传感器目标跟踪技术应用[J].岩土力学, 27(3):479-481. http://www.cqvip.com/qk/94551X/200603/21629942.html 姜海泉, 黎祖贤, 李细生, 等, 2006.论气象类滑坡灾害的预报原理和方法[J].水土保持研究, 13(5):20-22. http://www.cqvip.com/Main/Detail.aspx?id=23089748 廖明生, 张路, 史绪国, 等, 2017.滑坡变形雷达遥感监测方法与实践[M].北京:科学出版社. 刘超云, 尹小波, 张彬, 2015.基于Kalman滤波数据融合技术的滑坡变形分析与预测[J].中国地质灾害与防治学报, 26(4):30-35. http://d.wanfangdata.com.cn/Periodical/zgdzzhyfzxb201504006 刘星洪, 姚鑫, 周振凯, 等, 2018.滑坡灾害InSAR应急排查技术方法研究[J].地质力学学报, 24(2):229-237. https://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?flag=1&file_no=20180209&journal_id=dzlxxb 莫运松, 董雪梅, 文日海, 2010.气象因素对滑坡形成的影响分析[J].西部探矿工程, 22(6):51-52, 55. http://d.wanfangdata.com.cn/Periodical/xbtkgc201006019 倪秀静, 2005.小波理论在滑坡降噪和组合预测中的应用[D].成都: 成都理工大学. http://d.wanfangdata.com.cn/Thesis/Y759169 彭欢, 黄帮芝, 杨永, 2012.滑坡监测技术方法研究[J].资源环境与工程, 26(1):45-50. http://www.cnki.com.cn/Article/CJFDTotal-HBDK201201010.htm 彭鹏, 单治钢, 董育烦, 等, 2011.多传感器估值融合理论在滑坡动态变形监测中的应用研究[J].工程地质学报, 19(6):928-934. http://www.cnki.com.cn/Article/CJFDTotal-GCDZ201106023.htm 齐信, 黄波林, 刘广宁, 等, 2017.基于GIS技术和频率比模型的三峡地区秭归向斜盆地滑坡敏感性评价[J].地质力学学报, 23(1):97-104. https://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?flag=1&file_no=20170105&journal_id=dzlxxb 亓星, 许强, 赵宽耀, 等, 2018.甘肃黑方台灌溉与地下水位响应规律分析[J].水利水电技术, 49(9):205-209. http://www.cnki.com.cn/Article/CJFDTotal-SJWJ201809028.htm 邱丹丹, 2017.基于多源数据融合的滑坡风险分析研究[D].武汉: 中国地质大学. http://cdmd.cnki.com.cn/Article/CDMD-10491-1018714830.htm 孙波, 2012.多传感器融合估计算法的研究及在滑坡中的应用[D].武汉: 中国地质大学. http://d.wanfangdata.com.cn/Thesis_Y2188880.aspx 孙艳萍, 张苏平, 陈文凯, 等, 2018.汶川地震滑坡危险性评价:以武都区和文县为例[J].地震工程学报, 40(5):1084-1091. http://kns.cnki.net/KCMS/detail/detail.aspx?dbcode=CJFD&filename=ZBDZ201805032 王静, 2013.基于QuantyView和多源数据的滑坡体三维地质建模技术研究[D].武汉: 中国地质大学. http://cdmd.cnki.com.cn/Article/CDMD-10491-1014164902.htm 王利, 张勤, 赵超英, 等, 2005. GPS一机多天线技术在公路边坡灾害监测中的应用研究[J].公路交通科技, 22(6):163-166. http://www.cqvip.com/QK/91479X/2005S1/4000368954.html 王利, 张勤, 李寻昌, 等, 2011. GPS RTK技术用于滑坡动态实时变形监测的研究[J].工程地质学报, 19(2):193-198. http://www.cnki.com.cn/Article/CJFDTotal-GCDZ201102008.htm 王亚敏, 冯起, 李宗省, 2014. 1960-2005年西北地区低云量的时空变化及成因分析[J].地理科学, 34(5):635-640. http://qikan.cqvip.com/Qikan/Article/Detail?id=663134564 吴伟, 王式功, 邓莲堂, 等, 2010.中国北方云量的四季分布与降水[J].兰州大学学报(自然科学版), 46(3):32-40. http://www.cqvip.com/Main/Detail.aspx?id=34377940 许强, 彭大雷, 亓星, 等, 2016. 2015年4.29甘肃黑方台党川2#滑坡基本特征与成因机理研究[J].工程地质学报, 24(2):167-180. http://www.cqvip.com/QK/98122X/201602/668435894.html 尹继鑫, 何永晴, 姚永顺, 等, 2019.高原滑坡变形与气象因素相关性研究[J].城市勘测(1):184-188. http://www.cnki.com.cn/Article/CJFDTotal-CSKC201901052.htm 张伟琪, 2019.黄土滑坡高精度变形监测及预测方法研究[D].西安: 长安大学. http://cdmd.cnki.com.cn/Article/CDMD-10710-1019674872.htm 张向营, 张春山, 孟华君, 等, 2018.基于GIS和信息量模型的京张高铁滑坡易发性评价[J].地质力学学报, 24(1):96-105. https://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?flag=1&file_no=20180111&journal_id=dzlxxb 张亚军, 2006.基于神经网络数据融合的水下目标检测识别研究[D].西安: 西北工业大学. http://d.wanfangdata.com.cn/Thesis/Y930415 张育智, 2007.基于神经网络与数据融合的结构损伤识别理论研究[D].成都: 西南交通大学. http://d.wanfangdata.com.cn/Thesis/Y1237418 赵超英, 刘晓杰, 张勤, 等, 2019.甘肃黑方台黄土滑坡InSAR识别、监测与失稳模式研究[J].武汉大学学报(信息科学版), 44(7):996-1007. http://www.cnki.com.cn/Article/CJFDTotal-WHCH201907005.htm 赵松琴, 朱思军, 2013.三峡库区典型滑坡预测预报研究[J].安全与环境学报, 13(6):259-264. http://www.cqvip.com/QK/83738X/201306/48277161.html 周飞, 2015.甘肃省黑方台黄土斜坡变形特征与滑坡机理研究[D].成都: 成都理工大学. http://cdmd.cnki.com.cn/Article/CDMD-10616-1015312387.htm 朱志铭, 周凯睿, 谭春洪, 等, 2013.强降雨作用下边(滑)坡稳定性分析及预警技术研究[J].地质力学学报, 19(4):423-430. http://d.wanfangdata.com.cn/Periodical_csjsllyj201408874.aspx 期刊类型引用(38)
1. 张宗堂,肖天祥,高文华,杨洋,衣利伟. 交通荷载下煤矸石路基填料累积变形PSO-BP神经网络预测模型. 水利水电科技进展. 2024(02): 87-91 . 百度学术
2. 胡传新,聂豪,钱帮虎,管文松,李功文,赵林. 基于多源数据融合方法的龙卷风切向速度预测. 力学季刊. 2024(02): 338-349 . 百度学术
3. 王晓琪,陈颖聪,谢敏敏,张嘉慧,蔡上. 多传感器的BPNN和SVM多源异构数据融合算法. 计算技术与自动化. 2024(02): 70-76 . 百度学术
4. 李荟,韩晓飞,朱万成,宋清蔚,周文龙. 基于多源信息融合的矿山边坡滑坡灾害研究现状与展望. 工矿自动化. 2024(06): 6-15 . 百度学术
5. 蔡伟佳,聂闻,霍蔚然. 改进粒子群优化算法在滑坡监测数据融合中的应用. 水力发电. 2024(08): 16-21 . 百度学术
6. 张紫杉,李建光,刘欣,王鹤,张馨方,介玉新. 基于O-K算法的边坡位移时空演化规律研究. 水利与建筑工程学报. 2023(01): 97-103 . 百度学术
7. 李丽敏,夏梦凡,魏雄伟. 基于混合高斯隐马尔科夫模型的滑坡发生时间预报. 防灾减灾工程学报. 2023(02): 301-307+333 . 百度学术
8. 南骁聪,刘俊峰,张永选,王育奎. 基于多源时间序列的滑坡位移动态预测. 人民珠江. 2023(04): 54-62 . 百度学术
9. 陈征,高明亮,蒋卫国,李志涛. 面向污染场地智能化管控多源异构数据融合方法综述. 黑龙江科学. 2023(08): 1-6+12 . 百度学术
10. 李成林,刘严松,赖思翰,王地,何星慧,刘琦,何博宇. 基于BP神经网络模型的滑坡易发性评价方法. 科学技术与工程. 2023(13): 5481-5492 . 百度学术
11. 王利,张懿恺,舒宝,许豪,魏拓,雷体俊. 基于特征优选和逐步回归的黄土滑坡监测数据融合改进方法. 地球科学与环境学报. 2023(03): 511-521 . 百度学术
12. 潘燕. 改进多维关联规则算法在多源异构数据挖掘中的应用. 内蒙古民族大学学报(自然科学版). 2023(03): 214-219 . 百度学术
13. 王志彪,赵丽华. 遗传算法与粒子群优化的Elman神经网络模型预测黄土滑坡变形. 大地测量与地球动力学. 2023(07): 679-684 . 百度学术
14. 付君宜,陈发达,沈志平,尹林莉,王祥. 岩溶山区城市地下隧道工程地质灾害风险分析. 中国地质灾害与防治学报. 2023(03): 100-108 . 百度学术
15. 陈方之,廖华,钟文明,申晓杰,陆飞. 基于BN算法的电力调度多源故障数据融合研究. 电子设计工程. 2023(16): 191-195 . 百度学术
16. 张紫杉,李建光,刘欣,张馨方,介玉新. 基于自动化监测系统的滑坡多源数据综合分析. 工程勘察. 2023(10): 1-6+27 . 百度学术
17. 任瑛,王思源,夏必胜. 基于BP神经网络的延安市冬季PM_(2.5)浓度预测. 延安大学学报(自然科学版). 2023(03): 73-77 . 百度学术
18. 白宇,孙郡庆,刘明明,李卫鹏. 基于位移观测序列聚类的边坡潜在滑移区早期辨识方法研究. 中国煤炭. 2023(09): 28-36 . 百度学术
19. 徐春,刘迪,沈琪. 基于机器学习的高精度无人机影像滑坡自动识别研究. 云南电力技术. 2023(05): 46-50+60 . 百度学术
20. 陈曦,高雅萍,涂锐. 基于EMD-TAR组合模型的滑坡位移预测研究. 人民珠江. 2022(03): 96-101+108 . 百度学术
21. 刘刚,叶立新,陈麒玉,陈根深,范文遥. 基于多传感器信息融合的城市边坡监测数据异常事件检测. 地质科技通报. 2022(02): 13-25 . 百度学术
22. 罗志会,林泽坤,向昊,杨雄波,叶永. 基于LoRa的滑坡远程监测系统设计. 三峡大学学报(自然科学版). 2022(03): 34-38 . 百度学术
23. 任远林,沐娟. 基于ZigBee技术的建筑环境多源监测数据融合研究. 宁夏师范学院学报. 2022(04): 78-86 . 百度学术
24. 聂庆科,孙广,郝永攀,赫英超,任宗尉,袁维. 多源异构监测数据融合方法及应用. 科学技术与工程. 2022(13): 5348-5357 . 百度学术
25. 张艳,张柯,郭靖. 矿区岩土施工安全监测系统设计及应用. 能源与环保. 2022(07): 36-42 . 百度学术
26. 吕仲琪,董卓达,刘晓丽,芦惠娟. 多源异构数据特征的智能结构化方法仿真. 计算机仿真. 2022(07): 451-455+501 . 百度学术
27. 马坤,张永谋,吴红刚,张少龙. 基于多传感器数据融合分析的路堑滑坡模型试验研究. 防灾减灾工程学报. 2022(04): 653-663 . 百度学术
28. 胥如迅,马军惠,孟建军,李德仓,陈晓强. 高速列车运行场景监测数据融合算法研究. 兰州交通大学学报. 2022(04): 76-81 . 百度学术
29. 杨磊. 基于BP神经网络的重力异常分离. 工程地球物理学报. 2021(01): 90-97 . 百度学术
30. 司源,董飞,廉秋月,彭文启,杜霞,黄爱平,王伟杰,陈学凯. 基于多源监测与数据融合的水质动态评价方法. 人民黄河. 2021(02): 88-94 . 百度学术
31. 万胜,邱振东,甘建军,万迪文,刘成奕,袁志辉,蔡志伟. 某水利枢纽滑坡综合监测成果分析. 南昌大学学报(工科版). 2021(01): 30-35 . 百度学术
32. 邓军,战明国,周伟金,伍松乐,黄宁,张润秋,谢淑云. 基于模糊证据权法的广西典型金矿矿产定量预测. 地质力学学报. 2021(03): 374-390 . 本站查看
33. 王建华,左玲,李志忠,穆华一,周萍,杨佳佳,赵英俊,秦凯. 基于高光谱技术的黑土地微量金属元素探测方法及地学意义. 地质力学学报. 2021(03): 418-429 . 本站查看
34. 王宾宾. 卡尔曼滤波算法在隧道结构沉降分析降噪中的应用. 北京建筑大学学报. 2021(03): 64-69 . 百度学术
35. 王利,许豪,舒宝,义琛,田云青. 利用互信息和IPSO-LSTM进行滑坡监测多源数据融合. 武汉大学学报(信息科学版). 2021(10): 1478-1488 . 百度学术
36. 李文彬,范宣梅,黄发明,武雪玲,殷坤龙,常志璐. 不同环境因子联接和预测模型的滑坡易发性建模不确定性. 地球科学. 2021(10): 3777-3795 . 百度学术
37. 周天伦,曾超,范晨,毕鸿基,龚恩慧,刘晓. 基于快速聚类-信息量模型的汶川及周边两县滑坡易发性评价. 中国地质灾害与防治学报. 2021(05): 137-150 . 百度学术
38. 李枫林,陈华民,童仁园,李青. TOPSIS结合优化的BP-DS模型在滑坡预警中的应用. 中国计量大学学报. 2021(04): 489-496 . 百度学术
其他类型引用(35)
-