留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

青藏高原东北缘弧形构造带新生代地层沉积序列及年代学研究进展

董晓朋 李振宏 井向辉 崔加伟 黄婷 寇琳琳

董晓朋,李振宏,井向辉,等,2023. 青藏高原东北缘弧形构造带新生代地层沉积序列及年代学研究进展[J]. 地质力学学报,29(4):465−484 doi: 10.12090/j.issn.1006-6616.2023048
引用本文: 董晓朋,李振宏,井向辉,等,2023. 青藏高原东北缘弧形构造带新生代地层沉积序列及年代学研究进展[J]. 地质力学学报,29(4):465−484 doi: 10.12090/j.issn.1006-6616.2023048
DONG X P,LI Z H,JING X H,et al.,2023. Stratigraphic sequence characteristics and geochronology research progress of the Cenozoic in the arcuate tectonic belt on the northeastern margin of the Tibet Plateau[J]. Journal of Geomechanics,29(4):465−484 doi: 10.12090/j.issn.1006-6616.2023048
Citation: DONG X P,LI Z H,JING X H,et al.,2023. Stratigraphic sequence characteristics and geochronology research progress of the Cenozoic in the arcuate tectonic belt on the northeastern margin of the Tibet Plateau[J]. Journal of Geomechanics,29(4):465−484 doi: 10.12090/j.issn.1006-6616.2023048

青藏高原东北缘弧形构造带新生代地层沉积序列及年代学研究进展

doi: 10.12090/j.issn.1006-6616.2023048
基金项目: 国家自然科学基金项目(U2244220,41972119);中国地质调查局地质调查项目(DD20230002,DD20221644);中国地质科学院院所长基金(DZLXJK202104)
详细信息
    作者简介:

    董晓朋(1989—),男,博士,副研究员,主要从事沉积盆地与大地构造演化方面的研究工作。E-mail:dongxiaopeng_geo@163.com

    通讯作者:

    李振宏(1973—),男,博士,研究员,主要从事沉积盆地分析、石油地质综合研究、区域地质调查等方面的研究工作。E-mail:lizhennhong@126.com

  • 中图分类号: P535;P534.6

Stratigraphic sequence characteristics and geochronology research progress of the Cenozoic in the arcuate tectonic belt on the northeastern margin of the Tibet Plateau

Funds: This research is financially supported by the National Natural Science Foundation of China (Grants U2244220 and 41972119), the Geological Investigation Project of the China Geological Survey (Grants DD20230002 and DD20221644), and the Fund of the Chinese Academy of Geological Sciences (Grant DZLXJK202104).
  • 摘要:

    青藏高原东北缘弧形构造带新生代的构造变形和沉积充填过程既受到了太平洋板块俯冲的远程效应影响,也受到了青藏高原北东向扩展的控制。确定新生代地层的沉积时代是深入理解青藏高原东北缘弧形构造带内构造变形和沉积充填过程的重要前提,但是目前弧形构造带内新生代地层序列和沉积时代仍存在诸多争议。文章系统研究了弧形构造带内古近纪至新近纪沉积序列和地层时代,结果显示弧形构造带内寺口子组、清水营组、彰恩堡组和干河沟组的沉积时代分别为中晚渐新世、晚渐新世—早中新世、中中新世—晚中新世和晚中新世—上新世。综合分析了古近纪至新近纪不整合界面的形成时代,重新厘定了古近纪—新近纪两期不整合及其大地构造意义,第一期不整合发育在清水营组与彰恩堡组之间,时代为早中新世,指示了青藏高原的北东向扩展到达弧形构造带;第二期不整合发育在彰恩堡组与干河沟组之间,时代为晚中新世,指示了青藏高原北东向扩展对弧形构造带的改造达到高峰。讨论了弧形构造带沉积充填过程与构造演化的耦合关系,新生代盆地的沉积演化过程主要经历了三个阶段:自中渐新世至早中新世,弧形构造带主要受控于早期的滨太平洋伸展构造体系域,处于伸展构造背景;早中新世至晚中新世,构造变形和盆地演化开始受到青藏高原北东向扩展的影响,处于挤压构造背景;晚中新世至上新世,弧形构造带持续快速隆升,并且走滑断裂体系的发育分割了新生代盆地。

     

  • 青藏高原东北缘弧形构造带位于青藏高原、鄂尔多斯地块及阿拉善地块交汇部位,介于海原断裂带与罗山−牛首山断裂带之间(图1),是高原北东向扩展的前锋部位(Burchfiel et al., 1991张进等, 20052006张培震等, 2006Zheng et al., 2006Lin et al.,2009,2010Wang et al.,20112013Liu et al.,2019Liang et al., 2021Dong et al., 2022Kou et al., 2022)。新生代以来,受太平洋板块向西俯冲于亚欧板块之下的远程效应影响,弧形构造带经历了北西—南东向的构造伸展和地壳沉降过程(Wang et al.,2013Fan et al.,2019Liu et al.,2019Shi et al.,2020),又在青藏高原北东向扩展增生的控制下,发育北东—南西向构造挤压和北西西—南东东至北北西—南南东向走滑剪切变形(Zhang et al.,1990Burchfiel et al.,1991Ding et al.,2004张珂和蔡剑波,2006林秀斌等,2009施炜等,2013王伟涛等,2014Li et al.,20152016姚文倩,2019)。弧形构造带内新生代沉积序列连续,完整地记录了构造带的构造活动特征、气候演变过程和盆地对青藏高原东北缘新生代构造隆升的沉积学响应(王伟涛等,201020112013Wang et al.,20132016)。

    图  1  青藏高原东北缘弧形构造带大地构造背景及周缘盆地分布图
    Figure  1.  Tectonic background of the arcuate tectonic belt on the northeastern margin of the Tibet Plateau and the surrounding basins

    因此,确定新生代沉积地层的时代是深入理解青藏高原东北缘弧形构造带内构造变形和沉积充填过程与太平洋板块向西俯冲于亚欧板块之下、青藏高原北东向扩展过程之间耦合关系的重要前提。目前,针对弧形构造带内古近纪—新近纪地层的年代学研究,已经在磁性地层(申旭辉等,2001程彧,2005张广良,2006李立立,2007Jiang et al.,2007韩鹏,2008Wang et al.,2011Liang et al.,2021)、红黏土(施炜等,2006)、古脊椎动物化石组合(张云翔和弓虎军,2003侯连海等,2005)和碎屑锆石U-Pb测年(寇琳琳等,2021)等方面开展了大量的工作。但是,不仅在地层沉积时代的认识上仍存在诸多分歧,而且不同的研究者在同一条剖面测得的磁性地层学年龄结果也相差甚多,这就制约了对青藏高原东北缘的构造变形特征和隆升历史的认识。

    此次研究在已有年代学研究的基础上,对弧形构造带内古近纪至新近纪沉积序列和地层时代进行了系统梳理,综合分析古近纪至新近纪不整合界面的形成时代,在此基础上讨论沉积充填过程与构造演化的耦合关系。

    青藏高原东北缘弧形构造带主要由海原断裂带、香山−天景山断裂带、烟筒山断裂带和罗山−牛首山断裂带,以及夹持在断裂带之间的兴仁堡盆地、同心盆地、清水河盆地和红寺堡盆地等新生代盆地组成(雷启云等,20162017Liu et al.,2019图2),是青藏高原北东向扩展的前锋地带,记录了青藏高原隆升和北东向扩展过程(Zhang et al.,1991Zheng et al.,2006Lin et al.,2009,2010王伟涛等,201020112013Wang et al.,20112013Dong et al.,2022Kou et al.,2022)。

    图  2  青藏高原东北缘弧形构造带区域地质简图(据马兆颖等,2020修改)
    Figure  2.  Simplified geologic map of the arcuate tectonic belt on the northeastern margin of the Tibet Plateau (modified from Ma et al., 2020)

    青藏高原东北缘弧形构造带自晚渐新世至中新世处于伸展构造背景,海原断裂带、香山−天景山断裂带和烟筒山断裂带主要表现为正断层(施炜等,2013王伟涛,2014雷启云等,2016)。区域内断陷盆地发育,沉积环境由冲积扇相、辫状河相转变为滨湖相、湖相,沉积序列呈现为显著的湖进序列(Wang et al.,20112013)。中新世末开始,受青藏高原东北向推挤、扩展和隆升影响,海原断裂带、香山−天景山断裂带和烟筒山断裂带逐渐转变为以北东向逆冲推覆为主(王伟涛,2011施炜等,2013雷启云等,2016),处于逆冲断裂上盘的六盘山、西华山和南华山等快速隆升。该时期盆地性质由整体凹陷转变为挠曲盆地,沉积中心也随之由北部的香山—天景山和烟筒山地区迁移至南部的六盘山地区(Zhang et al.,1990宋友桂等,2001Zheng et al.,2006施炜等,2006Wang et al.,2013王伟涛等,2013)。随着青藏高原东北缘弧形构造带内地壳缩短和抬升,盆地逐渐消亡,至上新世沉积环境以河流相和冲积扇相为主(张进等,20052006Wang et al.,2013)。上新世末至第四纪,海原断裂带、香山−天景山断裂带和烟筒山断裂带的逆冲推覆兼具左行走滑性质(Zhang et al.,2010王伟涛等,2013Shi et al.,20152020),牛首山断裂带的逆冲推覆兼具右行走滑性质(陈虹等,2013),这些断裂带分割了古近纪—新近纪广泛发育的沉积盆地,形成现今褶皱变形带与压陷盆地相隔的盆山地貌格局。第四纪以来,受昆黄运动和共和运动影响,青藏高原东北缘弧形构造带快速抬升,断裂带构造活动频繁,物源区剥蚀作用强烈(李吉均等,2001鹿化煜等,2004张会平等,2012Fang et al.,2013方小敏,2017马兆颖等,2020蒋锋云等,2021李艺豪等,2022)。

    在青藏高原东北缘弧形构造带内普遍缺失古新世地层,而古近纪—新近纪地层则广泛发育,自下而上划分为古近系寺口子组和清水营组,新近系彰恩堡组和干河沟组(图3)。早期的填图工作一般将其岩石地层单元自下而上划分为古近系固原群和新近系甘肃群两大部分(甘肃省地质矿产局,1989宁夏回族自治区地质矿产局,1990),其中固原群包括寺口子组和清水营组,甘肃群包括彰恩堡组以及干河沟组。随着区域地质调查和沉积学研究工作的进展,甘肃群和固原群被取消,将地层划分为寺口子组、清水营组、红柳沟组和干河沟组。宁夏地调院在2017年出版的《中国区域地质志宁夏志》中,将“红柳沟组”改为“彰恩堡组”。

    图  3  青藏高原东北缘弧形构造带新生代沉积序列
    Figure  3.  Cenozoic stratigraphic sequence in the arcuate tectonic belt on the northeastern margin of the Tibet Plateau

    寺口子组在弧形构造带西南部和东北部出露,分布相对局限,厚度较小,一般为几百米,主要岩性组合为冲积扇和扇三角洲沉积体系的紫红色中厚层粗砂岩、砾岩(图4a—4c)。在弧形构造带西南部隆德至固原地区古近系寺口子组与下白垩统乃家河组呈平行不整合接触(图4d—4f),在弧形构造带东北部同心地区则与下白垩统庙山湖组呈角度不整合接触(图4g),同时与上覆清水营组为整合接触。

    图  4  古近系寺口子组沉积特征
    a—观音店剖面中寺口子组中的透镜状含砾粗砂岩;b—观音店剖面中的古近系寺口子组底部的砾岩;c—丁家二沟剖面中寺口子组一段砾岩,含粗砂岩夹层;d—隆德地区观音店剖面中下白垩统乃家河组与古近系寺口子组呈平行不整合接触;e、f—固原地区寺口子剖面中下白垩统乃家河组与古近系寺口子组呈平行不整合接触;g—同心地区丁家二沟剖面下白垩统庙山湖组与古近系寺口子组呈角度不整合接触;h—寺口子剖面中寺口子组底部大型斜层理
    Figure  4.  Sedimentary characteristics of the Eogene Sikouzi Formation
    (a) Lenticular gravelly coarse sandstone of the Eogene Sikouzi Formation in the Guanyindian section; (b) Conglomerates at the bottom of the Eogene Sikouzi Formation in the Guanyindian section; (c) Conglomerates with coarse sandstone interlayers in the first part of the Sikouzi Formation in the Dingjiaergou section; (d) Parallel unconformity between the Early Cretaceous Naijiahe Formation and the Eogene Sikouzi Formation in the Guanyindian section of the Longde area; (e and f) Parallel unconformity between the Early Cretaceous Naijiahe Formation and Eogene Sikouzi Formation in the Sikouzi section of the Guyuan area; (g) Angular unconformity between the Early Cretaceous Miaoshanhu Formation and the Eogene Sikouzi Formation in the Dingjiaergou section of the Tongxin area; (h) Large cross beddings at the bottom of the Eogene Sikouzi Formation in the Sikouzi section

    在弧形构造带西南部的隆德剖面中,寺口子组总体上发育一套紫红色砾岩、含砾砂岩及砂岩,向上粒度逐渐变细,沉积环境由冲积扇向河流相逐步过渡。砾岩成分以紫红色花岗岩、灰白色花岗岩、紫红色或灰绿色石英砂岩为主,夹有少量砾岩砾石,但无下白垩统乃家河组(泥灰岩为主)砾石成分(图4b)。砾石呈次棱角—次圆状,分选差,成分成熟度低,局部可见砾石叠瓦状定向排列。其中,砾石最大扁平面倾向一般为240°~270°,说明物源来自西南至西方向。在寺口子剖面中寺口子组总体上为一套紫红色厚层块状岩屑长石石英粗砂岩局部夹薄层岩屑长石石英砂岩,在厚层块状岩屑石英砂岩中发育大型斜层理(图4h),层理倾角多为30°左右,层系厚度较大,介于数米至数十米之间,而薄层岩屑长石石英砂岩层系厚度较小,多为几十厘米,以发育平行层理为主。寺口子组中石英颗粒表面同时发育 V形撞击坑、水下磨光面等水成沉积特征和碟形撞击坑、新月形撞击坑等高能风成沉积特征(李孝泽等,2012杨帆和李孝泽,2017),说明寺口子组同时具备风成和水成沉积特征。

    在弧形构造带东北部同心地区的丁家二沟剖面中,寺口子组主要岩性为一套冲积扇和扇三角洲沉积体系的紫红色中厚层砾岩、含砾砂岩、粗砂岩,紫红色厚层砂岩中发育大型交错层理、斜层理。按照岩性组合特征,自下而上被划分为三段:一段与下伏早白垩世庙山湖组呈角度不整合接触(图4g),岩性主要为紫红色厚层砾岩夹砂岩,为冲积扇相扇端亚相沉积(图4c);二段砂岩含量明显增多,主要表现为紫红色厚层砾岩夹薄层砂岩,为扇三角洲平原亚相沉积;三段发育紫红色厚层砂岩,偶夹砾岩透镜体,砂岩中发育大型交错层理,为扇三角洲前缘亚相沉积。其中,寺口子组一段中砾石成分以紫红色砂岩、灰白色砂岩为主,夹有少量的石英砾及辉绿岩砾石。砾石呈棱角—次棱角状,分选差,局部可见叠瓦状定向排列。砾石最大扁平面倾向一般30°~50°,说明其物源主要来源于北东方向。二段中发育斜层理,砾石成分相较一段变化小,古水流方向总体保持一致。

    清水营组在青藏高原东北缘弧形构造带内分布广泛,以富含石膏为主要特征,可能为咸水湖沉积(张进等,20052006),分布广,厚度介于800~1000 m。张进等(2006)认为固原寺口子剖面中寺口子组顶部发育风化壳,与清水营组为不整合接触,房建军(2009)则认为寺口子组顶部的风化壳分布相当局限,并不足以证明寺口子组与清水营组之间存在沉积间断。

    在弧形构造带西南部隆德地区的观音店剖面和固原地区的寺口子剖面中,根据石膏层厚度变化,大致将清水营组分为两段:下段岩性为蓝灰(含石膏)、紫红色泥岩、粉砂质泥岩与灰白、浅灰、砖红色中—厚层(含泥)石膏岩不等厚互层(图5a、5b),夹石膏质砂岩、粉砂岩、细砂岩、含细砾中粒长石石英砂岩(图5c);上段为紫红色泥岩、粉砂质泥岩夹少量黄绿、蓝灰色含膏泥岩、中层泥质石膏岩、中薄层粉砂岩和细砂岩及白色条带(图5d)。清水营组与下伏寺口子组呈整合接触,与上覆彰恩堡组呈平行不整合接触。在清水营组顶部发育大量软沉积物变形,以泄水构造为主(图5d、5e)。

    图  5  古近系清水营组沉积特征
    a—隆德观音店剖面中古近系清水营组上段砂质泥岩、泥岩与含石膏砂岩互层;b—固原寺口子剖面中古近系寺口子组与清水营组整合接触;c—观音店剖面中古近系清水营组下段石英砂岩与砂质泥岩互层;d—固原寺口子剖面中清水营组顶部砂质泥岩,夹含石膏砂岩层,其中在砂质泥岩顶部发育大量泄水构造;e—寺口子剖面中清水营组顶部砂质泥岩顶部泄水构造;f—同心丁家二沟剖面中古近系清水营组一段石英砂岩与砂质泥岩互层;g—丁家二沟剖面中古近系清水营组二段深灰色石膏层;h—丁家二沟剖面中古近系清水营组三段泥岩和网状石膏脉
    Figure  5.  Seimentary characteristics of the Eogene Qingshuiying Formation
    (a) The interbedded silty mudstone, mudstone and gypseous sandstone in the upper part of the Eogene Qingshuiying Formation in the Guanyindian section of the Longde area; (b) Conformity between the Eogene Sikouzi Formation and the Qingshuiying Formation in the Sikouzi section of the Guyuan area; (c) The interbedded quartz sandstone and silty mudstone in the lower part of the Eogene Qingshuiying Formation in the Guanyindian section; (d) Silty mudstone with gypseous sandstone interlayers at the top of the Eogene Qingshuiying Formation in the Sikouzi section of the Guyuan area, and some water escape structures developed at the top of silty mudstone; (e) Water escape structure developed at the top of silty mudstone of the Eogene Qingshuiying in the Sikouzi section; (f) Interbedded sandstone and silty mudstone in the first part of the Eogene Qingshuiying Formation in the Dingjiaergou section of the Tongxin area; (g) Dark grey gypsum layers in the second part of the Eogene Qingshuiying Formation in the Dingjiaergou section; (h) Mudstone and cancellate gypsum veins in the third part of the Eogene Qingshuiying Formation in the Dingjiaergou section

    在弧形构造带东北部同心地区的丁家二沟剖面中,清水营组按照岩性组合特征自下而上可以划分为四段:一段以一套紫红色泥岩、泥质粉砂岩为主,局部见泥灰岩条带,偶见砾岩透镜体,与下伏寺口子组三段之间为整合接触(图5f);二段为一套深灰色泥质石膏层,横向发育比较稳定(图5g);三段为一套紫红色网状泥质石膏层,该套地层横向发育不稳定,地层厚度变化大,网状石膏层仅在层间发育(图5h);四段与清水营组二段岩性一致,同为一套深灰色泥质石膏层,水平层理发育。

    彰恩堡组为典型的深湖相沉积,岩性主要为浅红、桔红、桔黄色泥岩,向上泥质砂岩逐渐增多,含石膏(图6a、6b)。其岩石松散,固结程度差,其宏观色调较下伏的清水营组和寺口子组浅。

    图  6  新近系彰恩堡组沉积特征
    a—观音店剖面中新近系彰恩堡组粉砂质泥岩与粉砂岩互层;b—寺口子剖面中彰恩堡组泥质粉砂岩夹薄层粉砂岩;c—隆德观音店剖面中古近系清水营组与新近系彰恩堡组角度不整合接触;d—寺口子剖面中新近系彰恩堡组与干河沟组平行不整合接触;e—固原寺口子剖面中彰恩堡组泥质粉砂岩与粉砂质泥岩互层;f—同心丁家二沟剖面中新近系彰恩堡组与干河沟组平行不整合接触;g—丁家二沟剖面中彰恩堡组泥质粉砂岩,夹少量薄层泥岩
    Figure  6.  Seimentary characteristics of the Neogene Zhang'enbao Formation
    (a) Interbedded silty mudstone and siltstone in the Zhang'enbao Formation in the Guanyindian section; (b) Argillaceous siltstone with thin siltstone interlayers in the Zhang'enbao Formation in the Sikouzi section; (c) Parallel unconformity between Eogene Qingshuiying Formation and Neogene Zhang'enbao Formation in the Guanyindian section of the Longde area; (d) Parallel unconformity between the Neogene Zhang'enbao Formation and the Ganhegou Formation in the Sikouzi section; (e) Interbedded argillaceous siltstone and silty mudstone in the Zhang'enbao Formation in the Sikouzi section of the Guyuan area; (f) Parallel unconformity between the Neogene Zhang'enbao Formation and the Ganhegou Formation in the Dingjiaergou section of the Tongxin area; (g) Argillaceous siltstone with a few thin mudstone interlayers in the Zhang'enbao Formation in the Dingjiaergou section

    在弧形构造带西南部的隆德剖面和寺口子剖面中,彰恩堡组地层主要为橙红色块状粉砂质泥岩、泥质粉砂岩、粉砂岩、泥岩夹中薄层含砾粗砂岩和中砂岩、石膏质砂岩、砂砾岩及蓝灰色泥岩条带,具有总体向上变细的层序特征(图6a、6b)。地层中发育平行层理、板状斜层理,槽状交错层理,泥岩呈砖红、褐红色,偶夹蓝灰色条带(图6b)。在六盘山西侧的隆德剖面中,彰恩堡组与下伏清水营组呈角度不整合接触(图6c),而在六盘山东侧的寺口子剖面中,二者为整合接触(Wang et al.,2013),与上覆干河沟组呈平行不整合接触(图6d),与第四系冲洪积沉积层呈角度不整合接触(图6e)。

    在弧形构造带东北部同心地区的丁家二沟剖面中,彰恩堡组岩性以厚层橘红色泥质粉砂岩、粉砂质泥岩为主,与下伏清水营组整合接触,与上覆干河沟之间为平行不整合(图6f)。按照岩性组合可以划分为上、下两部分:下段岩性以一套厚层粉砂质泥岩夹薄层石膏层为主,局部含有泥灰岩团块,水平层理发育;上段泥质含量明显减少,砂质含量明显增加,以橘红色泥质粉砂岩为主(图6g),局部可以看到三角洲水下分流河道砾岩透镜体。

    在弧形构造带西南部,干河沟组分布十分局限,仅在六盘山山前有少量出露。干河沟组与下伏彰恩堡组呈平行不整合接触(图6d),上部未见顶。在寺口子剖面,出露干河沟组底部块状含砾砂岩、砂砾岩、砾岩(图7a、7b)。其中,干河沟组底部砾石成分以乃家河组泥灰岩和马东山组灰岩、泥岩为主,磨圆以棱角−次棱角状为主,分选极差,成分成熟度低(图7c),具有典型的近源堆积特征,干河沟组上部砾石成分则以花岗岩、石英岩、石英砂岩等为主,磨圆以次棱角—次圆状为主,分选差,成分成熟度低(图7d),呈典型的河流相沉积特征。砾石最大扁平面定向排列特征明显,倾向范围230°~290°,指示古水流来自南西—西方向。

    图  7  新近系干河沟组沉积特征
    a—固原寺口子剖面中干河沟组下部砾岩与粗砂岩互层;b—寺口子剖面中干河沟组上部砾岩与含砾粗砂岩互层;c—寺口子剖面中干河沟组下部砾岩,砾石以泥灰岩砾石为主;d—寺口子剖面中干河沟组上部砾岩,砾石以花岗岩和砂岩砾石为主;e—干河沟组下部砂岩中的斜层理;f—干河沟组底部砂岩中的彰恩堡组泥岩团块;g、h—同心丁家二沟剖面中新近系彰恩堡组与干河沟组平行不整合接触,干河沟组底部发育砂岩
    Figure  7.  Sedimentary characteristics of the Ganhegou Formation
    (a) Interbedded conglomerate and coarse sandstone in the lower part of the Neogene Ganhegou Formation in the Sikouzi section of the Guyuan area; (b) Interbedded conglomerate and pebbly coarse sandstone in the upper part of the Ganhegou Formation in the Sikouzi section; (c) Conglomerate in the lower part of the Ganhegou Formation in the Sikouzi section and the lithology of gravels is mainly marlite; (d) Conglomerate in the upper part of the Ganhegou Formation in the Sikouzi section and the lithology of gravels is mainly granite and sandstone; (e) Cross beddings in the sandstone in the lower part of the Ganhegou Formation; (f) Fragments of the Neogene Zhang'enbao Formation in the sandstone at the bottom of the Ganhegou Formation; (g and h) Parallel unconformity between the Neogene Zhang'enbao Formation and Ganhegou Formation in the Dingjiaergou section of the Tongxin area, and sandstone developed at the bottom of the Ganhegou Formaiton

    在弧形构造带东北部同心地区的丁家二沟剖面中,干河沟组以河流相的灰白色砂砾岩、砂岩、土黄色泥岩为主,砂岩岩层松散,固结程度差(图7e、7f)。干河沟组出露局限,横向上厚度变化比较大,在纵向上可以划分为明显的三个旋回,并且每个旋回的底部是以灰白色砂岩为主的河道沉积(图7g、7h),向上逐渐过渡为以河漫滩沉积为主的土黄色泥岩。干河沟组底部灰白色砂岩,岩性比较疏松,发育大型交错层理(图7e),并且含大量彰恩堡组泥岩碎块(图7f)。交错层理大多倾向北—北东,指示古水流来自南—南西方向。

    从已有报道可知,目前关于青藏高原东北缘弧形构造带内古近纪—新近纪地层沉积时代的认识仍存在较多分歧。除泾源剖面和隆德剖面的研究时代较为相同外(程彧,2005李立立,2007),其余不同剖面各组地层年代,甚至于同一剖面同组地层年代结果都存在明显分歧,如寺口子组就有很多不同年龄(图8):32.47~30.20 Ma(程彧,2005)、18.02~16.43 Ma(张广良,2006)、47.90~29.40 Ma(韩鹏,2008)和38.00 Ma(申旭辉等,2001)。

    图  8  青藏高原东北缘弧形构造带新生代地层磁性地层年龄对比图(据刘晓波,2019修改)
    A—泾源剖面;B—隆德剖面;C—寺口子剖面;D—贺家口子剖面;E—白马新田剖面
    Figure  8.  Comparsion of the magnetostratigraphic results of the Cenozoic in the arcuate tectonic belt on the northeastern margin of the Tibet Plateau (modified from Liu, 2019)
    A–Jingyuan section; B–Longde section; C–Sikouzi section; D–Hejiakouzi section; E–Baimaxintian section

    通过综合分析古生物组合、磁性地层和碎屑锆石U-Pb年代学研究成果,对弧形构造带内古近纪—新近纪地层沉积时代进行了重新梳理。

    (1)寺口子组

    宁夏回族自治区地质矿产局(1990)基于在固原寺口子剖面清水营组中发现的始新世—渐新世孢粉组合,推断寺口子组沉积时代为始新世。通过磁性地层学研究,韩鹏(2008)认为固原寺口子剖面中寺口子组的沉积时代为47.90~29.40 Ma,李立立(2007)得出隆德剖面中寺口子组的沉积时代为>32.175~30.291 Ma,程彧(2005)则将六盘山两侧寺口子组沉积时代限定在32.47~30.21 Ma。另外,申旭辉等(2001)认为同心贺家口子剖面中清水营组沉积时代为38.50~23.50Ma,因此寺口子组至少沉积于38.5 Ma之前(图8)。但是,在固原寺口子剖面最新开展的磁性地层学研究结果显示寺口子组的沉积时代为29.00~23.80 Ma,为渐新世中晚期(Wang et al.,2011图8)。由于该磁性地层结果有古脊椎生物化石(Plesiaceratheriumsp.,时代为18~16 Ma)约束(Wang et al.,2011),因此该磁性地层结果(29.00~23.80 Ma)相对可靠。

    (2)清水营组

    在弧形构造带东北部的同心贺家口子剖面和丁家二沟剖面,清水营组都含有中-晚渐新世至中新世早期孢粉化石组合,同时西南部隆德剖面清水营组中孢粉组合可以与丁家二沟剖面上部的孢粉组合序列相对比,时代上可能隶属于渐新世晚期至中新世早期(宁夏回族自治区地质矿产局,1990)。针对清水营组开展的磁性地层研究结果与孢粉组合反映的清水营组沉积时代差异较大。程彧(2005)和李立立(2007)认为弧形构造带西南部清水营组的沉积起始于~30.30 Ma,结束于~23.4 Ma,而张广良(2006)则认为清水营组的沉积时代为14.90~10.97 Ma(图8)。在弧形构造带东北部,清水营组的沉积可能开始于~38.50 Ma,结束于~23.5 Ma(申旭辉等,2001;图8)。最新的磁性地层研究结果显示弧形构造带西南部寺口子剖面中清水营组的沉积时代为23.80~16.80 Ma(Wang et al.,2011),东北部贺家口子剖面中清水营组的沉积时代为21.70~16.50 Ma(Liang et al.,2021图8),这一结果不仅有古脊椎生物化石(Plesiaceratheriumsp.,时代为18~16 Ma)约束(Wang et al.,2011),而且与孢粉组合反映的清水营组沉积时间基本吻合。另外,由于隆德剖面中清水营组上部地层含有~17.8 Ma的碎屑锆石(n=3,寇琳琳等,2021),清水营组沉积结束时间不早于~17.8 Ma。因此,清水营组的沉积时代为晚渐新世至早中新世。

    (3)彰恩堡组

    彰恩堡组中含有大量脊椎动物(哺乳类、爬行类)、介形类、轮藻和腹足类等动物化石。弧形构造带西南部彰恩堡组底部Aprotodon Sp.Parasminthus Sp等脊椎动物化石与兰州盆地中新统动物化石组合接近,时代为早中新世—中中新世,同时弧形构造带西南部彰恩堡组的沉积时代为早中新世—中中新世(~23~16 Ma)(程彧,2005李立立,2006)。在弧形构造带东北部同心丁家二沟剖面和牛首山西麓彰恩堡组中脊椎动物化石群与俄罗斯高加索Belomechetskaya动物群特征接近,时代属中中新世(邱占祥和邱铸鼎,1990),磁性地层研究结果也显示弧形构造带东北部彰恩堡组沉积时代为中中新世—晚中新世(16.50~5.40 Ma)(Wang et al.,2011Liang et al.,2021)。因此,古生物化石组合指示的彰恩堡组沉积时代与磁性地层结果比较吻合。由此可见,彰恩堡组具有显著的穿时沉积特征,在弧形构造带西南部的沉积时代为早中新世—中中新世,而在东北部则为中中新世—晚中新世。

    (4)干河沟组

    干河沟组中含有较丰富的古生物化石,在弧形构造带东北部中卫、吴忠和牛首山地区的干河沟组中含有晚中新世哺乳类动物化石(邱占祥等,1988;邱占祥和邱铸鼎,1990),而在弧形构造带西南部干河沟组中含有晚中新世—上新世的介形虫化石(宁夏回族自治区地质矿产局,1990)。同时,磁性地层研究结果与古生物化石对干河沟组沉积时代的限定基本吻合。在弧形构造带东北部,中宁白马—新田地区干河沟组沉积时代为7.69~2.58 Ma(图8),同心贺家口子剖面中干河沟组沉积起始时间为9.26~7.60 Ma(申旭辉等,2001Liang et al.,2021),结束时间为2.23 Ma(申旭辉等,2001),而在弧形构造带西南部寺口子剖面中干河沟组沉积时代为5.40~2.50 Ma(Wang et al.,2011)。因此,弧形构造带东北部的干河沟组沉积时代早于西南部,从晚中新世开始,贯穿上新世。

    在目前的地层年代格架下,弧形构造带西南部泾源−隆德地区寺口子组沉积时代(32.26~30.27 Ma,李立立,2007)早于固原寺口子剖面(29.00~23.80 Ma,Wang et al.,2011)和东北部同心贺家口子剖面(<21.70 Ma,Liang et al.,2021)中寺口子组沉积时代,并且寺口子组沉积结束时间由西南向北东方向逐渐年轻(图9)。泾源−隆德地区清水营组的沉积时代与寺口子剖面、贺家口子剖面中清水营组存在巨大差异,这可能是由于地层序列划分方案不同造成的。清水营组沉积时期为~23.80~16.50 Ma(Wang et al.,2011赵杨,2019Liang et al.,2021)。自古近系寺口子组至清水营组沉积时期,弧形构造带区域沉积特征由早期的扇三角洲−河流相沉积体系逐步过渡为浅湖−半深湖相沉积体系,湖盆底形不断扩张,水体不断加深,整体上处于区域伸展的构造背景。

    图  9  青藏高原东北缘弧形构造带新生代地层年代对比格架
    Figure  9.  Cenozoic sedimentary sequence restricted by the magnetostratigraphic results in the arcuate tectonic belt in the northeastern Tibet Plateau

    在西秦岭礼县发育的~17.82 Ma新生代火山岩,表明西秦岭在早中新世受到青藏高原北东向扩展的远程效应影响,并发生显著隆升(喻学惠等,2011)。之后,弧形构造带内新生代第一期不整合在泾源地区的形成时代于~16.17 Ma(李立立,2007),稍晚于寺口子剖面和贺家口子剖面中不整合面的形成时代(~16.70~16.50 Ma)(Wang et al.,2011Liang et al.,2021)。在弧形构造带西南部隆德剖面中,清水营组与彰恩堡组之间呈角度不整合接触,在寺口子剖面中呈平行不整合接触,并且清水营组顶部发育大量指示地震活动的液化构造,在东北部贺家口子剖面中也呈平行不整合接触。因此,青藏高原北东向扩展的远程效应可能在早中新世清水营组沉积时(~16.7~16.2 Ma)就已经到达了弧形构造带,造成了显著的构造抬升,导致了清水营组与彰恩堡组之间早中新世不整合面的形成(图9)。

    随着青藏高原北东向的推挤作用在早中新世影响到弧形构造带,彰恩堡组的沉积序列表现为显著的湖退沉积序列,湖盆底部抬升,水体变浅。区域构造应力场反演结果表明,古近系寺口子组和清水营组主要处于北西—南东向的伸展构造应力场,而新近系彰恩堡组构造应力场转变为北东—南西向的挤压应力场(Shi et al.,20152020),同时在西南部固原地区和东北部同心—中卫地区存在两个沉积中心(图9)。随着青藏高原持续北东向推挤,在晚中新世彰恩堡组沉积结束时,弧形构造带发生显著地构造抬升,造成第二期区域不整合彰恩堡组与干河沟组之间晚中新世—早上新世沉积间断的形成。弧形构造带东北部同心丁家二沟剖面中,自晚中新世至上新世,不仅古水流方向由北东→南西转变为南西→北东,而且物源区由以鄂尔多斯地块为主转变为以祁连地块为主(Dong et al.,2022)。第二期区域不整合在弧形构造带东北部的形成时间(~7.7~7.6 Ma)早于西南部的形成时间(~5.4 Ma)(图9)。大罗山西麓山前冲积扇开始沉积时间为~4.64 Ma(Kou et al.,2022),指示的弧形构造带东北部剧烈隆升剥露的开始时间(~4.64 Ma)晚于区域不整合的形成时间。因此,关于干河沟组的沉积时代和不整合的形成时间仍需开展进一步的年代学研究工作。

    中晚渐新世寺口子期,沉积相以冲积扇−河流相沉积体系为主,区域上整体受控于北东和南西两个方向的物源(图10a)。在弧形构造带西南部的隆德剖面、寺口子剖面和东北部的丁家二沟剖面,寺口子组总体上都发育一套紫红色砾岩、含砾砂岩及砂岩,向上粒度逐渐变细,由冲积扇向河流相逐步过渡。晚渐新世至早中新世清水营期,沉积相以一套浅湖−半深湖相的干旱湖盆为主,以发育泥质石膏层为特征。区域上主要存在两个沉积中心,分别以同心—中卫地区和固原地区为中心,呈现近北东—南西向展布(图10b)。自古近系寺口子组至清水营组沉积时期,弧形构造带由早期的扇三角洲−河流相沉积体系逐步过渡为浅湖−半深湖相沉积体系,湖盆底形不断扩张,水体不断加深,整体上处于区域伸展的构造背景。在弧形构造带内,清水营组中普遍发育正断层,并且在其顶部逐渐消失,并且这些正断层控制着清水营组的沉积,而没有影响到上覆的新近系彰恩堡组(Shi et al.,20152020Liu et al.,2019Fan et al.,2019)。通过系统测量正断层上的擦痕产状,反演古近纪时弧形构造带处于南西—北东向的区域伸展应力场,并且该应力场可能受控于滨太平洋板块向西高角度俯冲和向东回撤作用(Shi et al.,20152020Liu et al.,2019)。

    图  10  青藏高原弧形构造带古近纪—新近纪沉积模式图
    a—中晚渐新世寺口子期;b—晚渐新世—早中新世清水营期;c— 中中新世至晚中新世彰恩堡期;d— 晚中新世至上新世干河沟期(寺口子期和干河沟期古水流数据来自野外实测,清水营期和彰恩堡期古水流数据来自Wang et al.,2013
    Figure  10.  Sedimentary evolution of the basins in the arcuate tectonic belt on the northeastern margin of the Tibet Plateau during Eogene to Neogene
    (a) Middle to late Oligocene Sikouzi period; (b) Late Oligocene to early Miocene Qingshuiying period; (c) Middle to late Miocene Zhang'enbao period; (d) Late Miocene to Pliocene Ganhegou period (Paleocurrents in the Sikouzi and Ganhegou period are measured in the field, and the paleocurrents in the Qingshuiying and Zhangenbao periods are referred from Wang et al., 2013)

    晚渐新世至早中新世,青藏高原北东向的推挤作用开始影响弧形构造带。中中新世至晚中新世彰恩堡期,沉积相以滨浅湖相沉积为主,沉积盆地长轴呈北西—南东向展布。自早中新世至晚中新世,明显表现为区域湖退的沉积序列,湖盆底部抬升,水体变浅,暗示着区域构造背景由早期的区域伸展向晚期的区域挤压逐步开始过渡(图10c)。晚中新世末期,彰恩堡组与干河沟组之间普遍发育不整合面,并且综合古水流方向、碎屑锆石U-Pb年龄序列和重矿物组合特征,表明干河沟组的物源区与下伏地层发生了显著变化。这些特征指示了青藏高原北东向推挤作用导致弧形构造带发生显著构造抬升。上新世时期,弧形构造带内发育以含砾粗砂、细砂和粉砂为主的河流相沉积体系,而在六盘山、罗山等山前发育冲积扇沉积体系(图10d)。冲积扇体系的发育意味着山脉的快速隆升剥露,大罗山山前冲积扇开始沉积于~4.64 Ma(Kou et al.,2022),而六盘山山前冲积扇开始沉积于~5.4 Ma(Wang et al.,20112013),这说明从弧形构造带的隆升过程从西南部传递到东北部的时间为~0.8 Ma。在弧形构造带东北部干河沟组开始沉积时间为~7.7~7.6 Ma(赵杨,2019Liang et al.,2021),早于六盘山和大罗山的快速隆升时间,这说明上新世以来弧形构造带经历了持续显著的构造隆升阶段。

    碎屑锆石U-Pb年代学研究显示,弧形构造带西南部从中晚渐新世寺口子期到晚渐新世—早中新世清水营期发生了显著的物源转换:寺口子期物源主要来自于北祁连地区,而在清水营期西秦岭成为主要的物源区(Dong et al.,2022)。之后,早中新世清水营组沉积结束之后,弧形构造带西南部地形地貌被显著改造,形成清水营组与彰恩堡组之间的角度不整合。弧形构造带内清水营组与彰恩堡组普遍呈平行不整合接触,也表明在早中新世经历过显著的构造抬升。另外,在清水营期弧形构造带内存在两个沉积中心,分别位于西南部的泾源—隆德一带和东北部的烟筒山一带。西南部泾源—隆德一带的清水营组(沉积厚度>700 m,开始沉积时间为~30.3 Ma)比东北部烟筒山一带清水营组(沉积厚度~600 m,开始沉积时间为23.8~21.7 Ma),厚度大,沉积起始时间早(图9)。而且,清水营组的沉积起始时间具有由西南向北东逐渐变新的趋势(图9)。据此,可推测青藏高原北东向推挤作用在晚渐新世—早中新世清水营期已经到达泾源—隆德一带,对弧形构造带的改造过程在早中新世达到第一次高峰。

    区域构造应力场反演结果表明,中中新世至晚中新世彰恩堡期构造应力场为北西—南东向的构造挤压(Shi et al.,20152020)。从晚渐新世—早中新世清水营期到中中新世至晚中新世彰恩堡期,不仅古水流方向没有发生明显变化(图10),而且碎屑锆石U-Pb年龄序列特征也基本一致(Dong et al.,2022)。据此可推测,从晚渐新世—早中新世清水营期到中中新世至晚中新世彰恩堡期,虽然构造应力场从伸展转变为挤压应力背景,但古地形地貌和物源区地层组成尚未发生明显变化。另外,在西南部固原地区和东北部同心−中卫地区存在两个沉积中心(图9)。彰恩堡期的沉积中心相较清水营期的沉积中心,位置向北东方向迁移,这可能与青藏高原北东向推挤的远程效应密切相关。这也从沉积盆地演化角度说明,从清水营期至彰恩堡期弧形构造带的形成是由西南向北东呈前展式逐渐扩展。弧形构造带内彰恩堡组与上覆干河沟组之间广泛发育平行不整合,表明在晚中新世彰恩堡组结束之后,发生显著而广泛的构造抬升,达到青藏高原北东向推挤作用对弧形构造带改造作用的第二次高峰。

    进入晚中新世至上新世干河沟期,在弧形构造带西南部大量发育冲积扇沉积体系,而在东北部则以河流沉积体系为主。并且,弧形构造带东北部不仅古水流发生显著转变,由北东→南西变为南西→北东(图9),而且重矿物组合(以赤铁矿为主)与下伏地层(以锆石、石榴子石为主)也有明显区别(Dong et al.,2022)。同时,干河沟组碎屑锆石U-Pb年龄序列与西南部清水营组和彰恩堡组具有相似的组成特征(Dong et al.,2022)。据此,可推测在晚中新世至上新世,青藏高原北东向推挤作用造成弧形构造带西南部强烈隆升,南高北低的地貌格局基本形成,并且在山前广泛发育冲积扇沉积体系,河流古流向转变为以南西→北东为主。综合弧形构造带西南部六盘山山前冲积扇(~5.4 Ma)早于东北部大罗山山前冲积扇(~4.64 Ma)发育的起始时限,可以推测晚中新世至上新世期间,弧形构造带的隆升扩展由西南向北东逐渐发生,并且西南部六盘山地区的快速隆升过程比东北部大罗山早~0.8 Ma(Kou et al.,2022)。

    (1)综合分析磁性地层、古生物化石组合和碎屑锆石U-Pb测年结果,重新梳理弧形构造带内古近纪—新近纪地层沉积时代:寺口子组的沉积时代为中晚渐新世;清水营组的沉积时代为晚渐新世—早中新世;彰恩堡组的沉积时代为中中新世至晚中新世;干河沟组的沉积时代为晚中新世至上新世。

    (2)古近纪—新近纪时期,弧形构造带内发育两期不整合:第一期不整合发育在清水营组与彰恩堡组之间,时代为早中新世;第二期不整合发育在彰恩堡组与干河沟组之间,时代为晚中新世。其中,第一期不整合指示了青藏高原北东向推挤作用开始到达弧形构造带,第二期不整合指示青藏高原北东向推挤作用对弧形构造带的改造达到高峰。

    (3)青藏高原东北缘弧形构造带新生代盆地的沉积演化过程主要经历了三个阶段:自中渐新世至早中新世,弧形构造带主要受控于早期的滨太平洋伸展构造体系域,处于伸展构造背景;早中新世至晚中新世,弧形构造带内的构造变形和盆地演化受到青藏高原构造体系域影响,处于挤压构造背景;晚中新世至上新世,弧形构造带持续快速隆升,并且走滑断裂体系的发育分割了新生代盆地。

    (4)古近纪至新近纪时期,青藏高原北东向推挤作用对弧形构造带隆升扩展过程的影响呈幕式发生,分别在早中新世和晚中新世达到高峰,并且弧形构造带的隆升扩展过程由西南向北东逐渐发生。

  • 图  1  青藏高原东北缘弧形构造带大地构造背景及周缘盆地分布图

    Figure  1.  Tectonic background of the arcuate tectonic belt on the northeastern margin of the Tibet Plateau and the surrounding basins

    图  2  青藏高原东北缘弧形构造带区域地质简图(据马兆颖等,2020修改)

    Figure  2.  Simplified geologic map of the arcuate tectonic belt on the northeastern margin of the Tibet Plateau (modified from Ma et al., 2020)

    图  3  青藏高原东北缘弧形构造带新生代沉积序列

    Figure  3.  Cenozoic stratigraphic sequence in the arcuate tectonic belt on the northeastern margin of the Tibet Plateau

    图  4  古近系寺口子组沉积特征

    a—观音店剖面中寺口子组中的透镜状含砾粗砂岩;b—观音店剖面中的古近系寺口子组底部的砾岩;c—丁家二沟剖面中寺口子组一段砾岩,含粗砂岩夹层;d—隆德地区观音店剖面中下白垩统乃家河组与古近系寺口子组呈平行不整合接触;e、f—固原地区寺口子剖面中下白垩统乃家河组与古近系寺口子组呈平行不整合接触;g—同心地区丁家二沟剖面下白垩统庙山湖组与古近系寺口子组呈角度不整合接触;h—寺口子剖面中寺口子组底部大型斜层理

    Figure  4.  Sedimentary characteristics of the Eogene Sikouzi Formation

    (a) Lenticular gravelly coarse sandstone of the Eogene Sikouzi Formation in the Guanyindian section; (b) Conglomerates at the bottom of the Eogene Sikouzi Formation in the Guanyindian section; (c) Conglomerates with coarse sandstone interlayers in the first part of the Sikouzi Formation in the Dingjiaergou section; (d) Parallel unconformity between the Early Cretaceous Naijiahe Formation and the Eogene Sikouzi Formation in the Guanyindian section of the Longde area; (e and f) Parallel unconformity between the Early Cretaceous Naijiahe Formation and Eogene Sikouzi Formation in the Sikouzi section of the Guyuan area; (g) Angular unconformity between the Early Cretaceous Miaoshanhu Formation and the Eogene Sikouzi Formation in the Dingjiaergou section of the Tongxin area; (h) Large cross beddings at the bottom of the Eogene Sikouzi Formation in the Sikouzi section

    图  5  古近系清水营组沉积特征

    a—隆德观音店剖面中古近系清水营组上段砂质泥岩、泥岩与含石膏砂岩互层;b—固原寺口子剖面中古近系寺口子组与清水营组整合接触;c—观音店剖面中古近系清水营组下段石英砂岩与砂质泥岩互层;d—固原寺口子剖面中清水营组顶部砂质泥岩,夹含石膏砂岩层,其中在砂质泥岩顶部发育大量泄水构造;e—寺口子剖面中清水营组顶部砂质泥岩顶部泄水构造;f—同心丁家二沟剖面中古近系清水营组一段石英砂岩与砂质泥岩互层;g—丁家二沟剖面中古近系清水营组二段深灰色石膏层;h—丁家二沟剖面中古近系清水营组三段泥岩和网状石膏脉

    Figure  5.  Seimentary characteristics of the Eogene Qingshuiying Formation

    (a) The interbedded silty mudstone, mudstone and gypseous sandstone in the upper part of the Eogene Qingshuiying Formation in the Guanyindian section of the Longde area; (b) Conformity between the Eogene Sikouzi Formation and the Qingshuiying Formation in the Sikouzi section of the Guyuan area; (c) The interbedded quartz sandstone and silty mudstone in the lower part of the Eogene Qingshuiying Formation in the Guanyindian section; (d) Silty mudstone with gypseous sandstone interlayers at the top of the Eogene Qingshuiying Formation in the Sikouzi section of the Guyuan area, and some water escape structures developed at the top of silty mudstone; (e) Water escape structure developed at the top of silty mudstone of the Eogene Qingshuiying in the Sikouzi section; (f) Interbedded sandstone and silty mudstone in the first part of the Eogene Qingshuiying Formation in the Dingjiaergou section of the Tongxin area; (g) Dark grey gypsum layers in the second part of the Eogene Qingshuiying Formation in the Dingjiaergou section; (h) Mudstone and cancellate gypsum veins in the third part of the Eogene Qingshuiying Formation in the Dingjiaergou section

    图  6  新近系彰恩堡组沉积特征

    a—观音店剖面中新近系彰恩堡组粉砂质泥岩与粉砂岩互层;b—寺口子剖面中彰恩堡组泥质粉砂岩夹薄层粉砂岩;c—隆德观音店剖面中古近系清水营组与新近系彰恩堡组角度不整合接触;d—寺口子剖面中新近系彰恩堡组与干河沟组平行不整合接触;e—固原寺口子剖面中彰恩堡组泥质粉砂岩与粉砂质泥岩互层;f—同心丁家二沟剖面中新近系彰恩堡组与干河沟组平行不整合接触;g—丁家二沟剖面中彰恩堡组泥质粉砂岩,夹少量薄层泥岩

    Figure  6.  Seimentary characteristics of the Neogene Zhang'enbao Formation

    (a) Interbedded silty mudstone and siltstone in the Zhang'enbao Formation in the Guanyindian section; (b) Argillaceous siltstone with thin siltstone interlayers in the Zhang'enbao Formation in the Sikouzi section; (c) Parallel unconformity between Eogene Qingshuiying Formation and Neogene Zhang'enbao Formation in the Guanyindian section of the Longde area; (d) Parallel unconformity between the Neogene Zhang'enbao Formation and the Ganhegou Formation in the Sikouzi section; (e) Interbedded argillaceous siltstone and silty mudstone in the Zhang'enbao Formation in the Sikouzi section of the Guyuan area; (f) Parallel unconformity between the Neogene Zhang'enbao Formation and the Ganhegou Formation in the Dingjiaergou section of the Tongxin area; (g) Argillaceous siltstone with a few thin mudstone interlayers in the Zhang'enbao Formation in the Dingjiaergou section

    图  7  新近系干河沟组沉积特征

    a—固原寺口子剖面中干河沟组下部砾岩与粗砂岩互层;b—寺口子剖面中干河沟组上部砾岩与含砾粗砂岩互层;c—寺口子剖面中干河沟组下部砾岩,砾石以泥灰岩砾石为主;d—寺口子剖面中干河沟组上部砾岩,砾石以花岗岩和砂岩砾石为主;e—干河沟组下部砂岩中的斜层理;f—干河沟组底部砂岩中的彰恩堡组泥岩团块;g、h—同心丁家二沟剖面中新近系彰恩堡组与干河沟组平行不整合接触,干河沟组底部发育砂岩

    Figure  7.  Sedimentary characteristics of the Ganhegou Formation

    (a) Interbedded conglomerate and coarse sandstone in the lower part of the Neogene Ganhegou Formation in the Sikouzi section of the Guyuan area; (b) Interbedded conglomerate and pebbly coarse sandstone in the upper part of the Ganhegou Formation in the Sikouzi section; (c) Conglomerate in the lower part of the Ganhegou Formation in the Sikouzi section and the lithology of gravels is mainly marlite; (d) Conglomerate in the upper part of the Ganhegou Formation in the Sikouzi section and the lithology of gravels is mainly granite and sandstone; (e) Cross beddings in the sandstone in the lower part of the Ganhegou Formation; (f) Fragments of the Neogene Zhang'enbao Formation in the sandstone at the bottom of the Ganhegou Formation; (g and h) Parallel unconformity between the Neogene Zhang'enbao Formation and Ganhegou Formation in the Dingjiaergou section of the Tongxin area, and sandstone developed at the bottom of the Ganhegou Formaiton

    图  8  青藏高原东北缘弧形构造带新生代地层磁性地层年龄对比图(据刘晓波,2019修改)

    A—泾源剖面;B—隆德剖面;C—寺口子剖面;D—贺家口子剖面;E—白马新田剖面

    Figure  8.  Comparsion of the magnetostratigraphic results of the Cenozoic in the arcuate tectonic belt on the northeastern margin of the Tibet Plateau (modified from Liu, 2019)

    A–Jingyuan section; B–Longde section; C–Sikouzi section; D–Hejiakouzi section; E–Baimaxintian section

    图  9  青藏高原东北缘弧形构造带新生代地层年代对比格架

    Figure  9.  Cenozoic sedimentary sequence restricted by the magnetostratigraphic results in the arcuate tectonic belt in the northeastern Tibet Plateau

    图  10  青藏高原弧形构造带古近纪—新近纪沉积模式图

    a—中晚渐新世寺口子期;b—晚渐新世—早中新世清水营期;c— 中中新世至晚中新世彰恩堡期;d— 晚中新世至上新世干河沟期(寺口子期和干河沟期古水流数据来自野外实测,清水营期和彰恩堡期古水流数据来自Wang et al.,2013

    Figure  10.  Sedimentary evolution of the basins in the arcuate tectonic belt on the northeastern margin of the Tibet Plateau during Eogene to Neogene

    (a) Middle to late Oligocene Sikouzi period; (b) Late Oligocene to early Miocene Qingshuiying period; (c) Middle to late Miocene Zhang'enbao period; (d) Late Miocene to Pliocene Ganhegou period (Paleocurrents in the Sikouzi and Ganhegou period are measured in the field, and the paleocurrents in the Qingshuiying and Zhangenbao periods are referred from Wang et al., 2013)

  • [1] BURCHFIEL B C, ZHANG P Z, WANG Y P, et al. , 1991. Geology of the Haiyuan fault zone, Ningxia-Hui Autonomous Region, China, and its relation to the evolution of the northeastern margin of the Tibetan Plateau[J]. Tectonics, 10(6): 1091-1110. doi: 10.1029/90TC02685
    [2] CHEN H, HU J M, GONG W B, et al. , 2013. Cenozoic deformation and evolution of the Niushou Shan Luo Shan fault zone in the northeast margin of the Tibet Plateau[J]. Earth Science Frontiers, 20(4): 18-35. (in Chinese with English abstract)
    [3] CHENG Y, 2005. Cenozoic deformation and uplift of the Liupan Shan in the NE Tibetan Plateau: evidence from high-resolution magnetostratigraphy of the foreland basin[D]. Lanzhou: Lanzhou University: 1-110. (in Chinese with English abstract)
    [4] DING G Y, CHEN J, TIAN Q J, et al. , 2004. Active faults and magnitudes of left-lateral displacement along the northern margin of the Tibetan Plateau[J]. Tectonophysics, 380(3-4): 243-260. doi: 10.1016/j.tecto.2003.09.022
    [5] DONG X P, LI Z H, LIU X S, et al. , 2022. Eogene to Neogene north-eastward expansion of the arcuate tectonic belt in north-east Tibetan Plateau: Constraints from detrital zircon geochronology and heavy minerals[J]. Geological Journal, 57(9): 3601-3622. doi: 10.1002/gj.4490
    [6] FAN L G, MENG Q R, WU G L, et al. , 2019. Paleogene crustal extension in the eastern segment of the NE Tibetan plateau[J]. Earth and Planetary Science Letters, 514: 62-74. doi: 10.1016/j.jpgl.2019.02.036
    [7] FANG J J, 2009. Sedimentary-structural evolution and reformation of Ningnan Basin[D]. Xi’an: Northwest University: 1-103. (in Chinese with English abstract)
    [8] FANG X M, LIU D L, SONG C H, et al. , 2013. Oligocene slow and Miocene–Quaternary rapid deformation and uplift of the Yumu Shan and North Qilian Shan: evidence from high-resolution magnetostratigraphy and tectonosedimentology[J]. Geological Society, London, Special Publications, 373(1): 149-171. doi: 10.1144/SP373.5
    [9] FANG X M, 2017. Phased uplift of the Tibetan Plateau[J]. Science & Technology Review, 35(6): 42-50. (in Chinese with English abstract)
    [10] Gansu Province Bureau of Geology and Mineral Resources, 1989. Regional geology of Gansu Province[M]. Beijing: Geological Publishing House. (in Chinese)
    [11] HAN P, 2008. Study on magnetostratigraphy and tectonics of Ningnan basin group[D]. Xi’an: Northwest University: 1-73. (in Chinese with English abstract)
    [12] HOU L H, ZHOU Z H, ZHANG F C, et al. , 2005. A Miocene ostrich fossil from Gansu Province, northwest China[J]. Chinese Science Bulletin, 50(16): 1808-1810. doi: 10.1360/982005-575
    [13] JIANG F Y, JI L Y, ZHAO Q, 2021. Numerical simulation of the present seismic risk of the Haiyuan-Liupanshan fault zone[J]. Journal of Geomechanics, 27(2): 230-240. (in Chinese with English abstract)
    [14] JIANG H C, DING Z L, XIONG S F, 2007. Magnetostratigraphy of the Neogene Sikouzi section at Guyuan, Ningxia, China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 243(1-2): 223-234. doi: 10.1016/j.palaeo.2006.07.016
    [15] KOU L L, LI Z H, DONG X P, et al. , 2021. The age sequence of the detrital zircons from the Guanyindian section in Longde, the northeastern margin of the Tibetan Plateau, and its geological significance[J]. Journal of Geomechanics, 27(6): 1051-1064. (in Chinese with English abstract)
    [16] KOU L L, DONG X P, LI Z H, et al. , 2022. Initiation and development of the Late Cenozoic uplift of Daluo Mountains, northeastern margin of the Tibetan Plateau[J]. Acta Geologica Sinica (English Edition), 96(6): 1917-1931. doi: 10.1111/1755-6724.14891
    [17] LEI Q Y, ZHANG P Z, ZHENG W J, et al. , 2016. Dextral strike-slip of Sanguankou-Niushoushan fault zone and extension of arc tectonic belt in the northeastern margin of the Tibet Plateau[J]. Science China Earth Sciences, 59(5): 1025-1040. doi: 10.1007/s11430-016-5272-1
    [18] LI J J, FANG X M, PAN B T, et al. , 2001. Late Cenozoic intensive uplift of Qinghai-Xizang Plateau and its impacts on environments in surrounding area[J]. Quaternary Sciences, 21(5): 381-391. (in Chinese with English abstract)
    [19] LI L L, 2007. Magnetostratigraphy and magnetic susceptibility of Tertiary in the Liupanshan Mountain[D]. Lanzhou: Lanzhou University: 1-109. (in Chinese with English abstract)
    [20] LI X Z, QU J J, FU T Y, et al. , 2012. Some problems of Sikouzi sandstone in northern Mt. Liupanshan, China[J]. Advances in Earth Science, 27(6): 644-650. (in Chinese with English abstract)
    [21] LI Y C, QU C Y, SHAN X J, et al. , 2015. Deformation of the Haiyuan-Liupanshan fault zone inferred from the denser GPS observations[J]. Earthquake Science, 28(5): 319-331.
    [22] LI Y C, SHAN X J, QU C Y, et al. , 2016. Fault locking and slip rate deficit of the Haiyuan-Liupanshan fault zone in the northeastern margin of the Tibetan Plateau[J]. Journal of Geodynamics, 102: 47-57. doi: 10.1016/j.jog.2016.07.005
    [23] LI Y H, DU X X, LI T X, 2022. Characterization of the Holocene extensional structures in the Wuwei Basin, northeastern margin of the Tibetan Plateau, and their formation mechanism[J]. Journal of Geomechanics, 28(3): 353-366. (in Chinese with English abstract)
    [24] LIANG H, ZHANG K, FU J L, et al. , 2021. Sedimentary basin evolution and its implications for outward expansion of the northeastern Tibetan Plateau: Insights from the Tongxin Basin, China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 575: 110460. doi: 10.1016/j.palaeo.2021.110460
    [25] LIN X B, CHEN H L, WYRWOLL K H, et al. , 2009. Uplift of the northeastern Tibetan Plateau: evidences from the Xiaohonggou section in Tongxin, Ningxia[J]. Acta Geologica Sinica, 83(4): 455-467. (in Chinese with English abstract)
    [26] LIN X B, CHEN H L, WYRWOLL K H, et al. , 2010. Commencing uplift of the Liupan Shan since 9.5 Ma: Evidences from the Sikouzi section at its east side[J]. Journal of Asian Earth Sciences, 37(4): 350-360. doi: 10.1016/j.jseaes.2009.09.005
    [27] LIU X B, 2019. Evolution of the Cenozoic basins in the western margin of the Ordos Block[D]. Beijing: Chinese Academy of Geological Sciences: 1-124. (in Chinese with English abstract)
    [28] LU H Y, AN Z S, WANG X Y, et al. , 2004. Geomorphic evidence of the latest 14 Ma periodical tectonic uplift of the northeastern Tibetan Plateau[J]. Science in China (Series D): Earth Science, 34(9): 855-864. (in Chinese)
    [29] MA Z Y, DONG X P, ZHANG Q, et al. , 2020. Sedimentary response to the uplift of the Liupan Shan since the Late Pleistocene and its environmental effects[J]. Coal Geology & Exploration, 48(5): 152-164. (in Chinese with English abstract)
    [30] Ningxia Hui Autonomous Region Bureau of Geology and Mineral Resources, 1990. Regional geology of Ningxia Hui Autonomous region[M]. Beijing: Geological Publishing House. (in Chinese)
    [31] QIU Z X, YE J, HUO F C, 1988. Description of a kubanochoerus skull from Tongxin, Ningxia[J]. Vertebrata Palasiatica, 26(1): 1-14. (in Chinese with English abstract)
    [32] QIU Z X, QIU Z D, 1990. Sequencing and staging of late tertiary local mammals in China[J]. Journal of Stratigraphy, 14(4): 241-260. (in Chinese)
    [33] SHEN X H, TIAN Q J, DING G Y, et al. , 2001. The late Cenozoic stratigraphic sequence and its implication to tectuic evolution Hejiakouzi area Ningxzia Hui autonomus regin[J]. Earthquake Research in China, 17(2): 156-166. (in Chinese with English abstract)
    [34] SHI W, ZHANG Y Q, MA Y S, 2006. Elevation distribution pattern of red clay beds in the regions east and west of Liupanshan and Neotectonic significance[J]. Marine Geology & Quaternary Geology, 26(5): 123-130. (in Chinese with English abstract)
    [35] SHI W, LIU Y, LIU Y, et al. , 2013. Cenozoic evolution of the Haiyuan fault zone in the northeast margin of the Tibetan Plateau[J]. Earth Science Frontiers, 20(4): 1-17. (in Chinese with English abstract)
    [36] SHI W, HU J M, CHEN H, et al. , 2015. Cenozoic tectonic evolution of the arcuate structures in the Northeast Tibetan Plateau[J]. Acta Geologica Sinica, 89(2): 676-677. doi: 10.1111/1755-6724.12457
    [37] SHI W, DONG S W, HU J M, 2020. Neotectonics around the Ordos Block, North China: A review and new insights[J]. Earth-Science Reviews, 200: 102969. doi: 10.1016/j.earscirev.2019.102969
    [38] SONG Y G, FANG X M, LI J J, et al. , 2001. The late Cenozoic uplift of the Liupan Shan, China[J]. Science in China Series D: Earth Science, 44(S1): 176-184. doi: 10.1007/BF02911985
    [39] WANG W T, ZHANG P Z, ZHANG G L, et al. , 2010. Cenozoic sedimentary evolution of the Sikouzi Basin on the northeastern margin of the Qinghai-Tibetan Plateau and its tectonic significance[J]. Chinese Journal of Geology, 45(2): 440-452. (in Chinese with English abstract)
    [40] WANG W T, 2011. Sedimentary responses to the Cenozoic tectonic evolution of the northeastern corner of the Tibetan Plateau[D]. Beijing: Institute of Geology, China Earthquake Administrator: 1-145. (in Chinese with English abstract)
    [41] WANG W T, ZHANG P Z, KIRBY E, et al. , 2011. A revised chronology for Tertiary sedimentation in the Sikouzi basin: Implications for the tectonic evolution of the northeastern corner of the Tibetan Plateau[J]. Tectonophysics, 505(1-4): 100-114. doi: 10.1016/j.tecto.2011.04.006
    [42] WANG W T, KIRBY E, ZHANG P Z, et al. , 2013. Tertiary basin evolution along the northeastern margin of the Tibetan Plateau: Evidence for basin formation during Oligocene transtension[J]. GSA Bulletin, 125(3-4): 377-400. doi: 10.1130/B30611.1
    [43] WANG W T, ZHENG D W, PANG J Z, 2013. Provenancial tracing for the Cenozoic Sikouzi section in the northeastern margin of the Tibetan Plateau and its tectonic Implications[J]. Acta Geologica Sinica, 87(10): 1551-1569. (in Chinese with English abstract)
    [44] WANG W T, ZHANG P Z, ZHENG D W, et al. , 2014. Late Cenozoic tectonic deformation of the Haiyuan fault zone in the northeastern margin of the Tibetan Plateau[J]. Earth Science Frontiers, 21(4): 266-274. (in Chinese with English abstract)
    [45] WANG W T, ZHANG P Z, YU J X, et al. , 2016. Constraints on mountain building in the northeastern Tibet: Detrital zircon records from synorogenic deposits in the Yumen Basin[J]. Scientific Reports, 6(1): 27604. doi: 10.1038/srep27604
    [46] YANG F, LI X Z, 2017. Discussion about origin of the Paleogene Sikouzi Formation sandstones in Guyuan, Ningxia[J]. Journal of Palaeogeography, 19(3): 445-456. (in Chinese with English abstract)
    [47] YAO W Q, 2019. Late Quaternary activity and geometric complexity of the Laohu Shan section and its adjacent area[D]. Beijing: Institute of Geology, China Earthquake Administrator: 1-147. (in Chinese with English abstract)
    [48] YU X H, MO X X, ZHAO Z D, et al. , 2011. Cenozoic bimodal volcanic rocks of the West Qinling: Implication for the genesis and nature of the rifting of north-south tectonic belt[J]. Acta Petrologica Sinica, 27(7): 2195-2202. (in Chinese with English abstract)
    [49] ZHANG G L, 2006. An integrated study on Late Cenozoic tectonic deformation in the Liupanshan-Madongshan area, northeastern margin of the Tibetan Plateau[D]. Beijing: Institute of Geology, China Earthquake Administrator: 1-147. (in Chinese with English abstract)
    [50] ZHANG H P, ZHANG P Z, ZHENG D W, et al. , 2012. Tectonic geomorphology of the Qilian Shan: Insights into the Late Cenozoic landscape evolution and deformation in the north eastern Tibetan Plateau[J]. Quaternary Sciences, 32(5): 907-920. (in Chinese with English abstract)
    [51] ZHANG J, MA Z J, REN W J, 2005. The Sedimentary characteristics of Cenozoic strata in central and southern Ningxia and their relationships with the development of the Qinghai-Tibetan Plateau[J]. Acta Geologica Sinica, 79(6): 757-773. (in Chinese with English abstract)
    [52] ZHANG J, MA Z J, REN W J, 2006. Discussion on the tectonic setting of deposition of the Eocene Sikouzi formation in Ningxia region[J]. Geological Review, 52(2): 207-214. (in Chinese with English abstract)
    [53] ZHANG K, CAI J B, 2006. Preliminary result of the dating by TCN technique of the highest terrace of the Heishanxia gorge mouth, northeast margin of Tibetan Plateau and its expression of neotectonic movement in that area[J]. Quaternary Sciences, 26(1): 85-91. (in Chinese with English abstract)
    [54] ZHANG P Z, BURCHFIEL B C, MOLNAR P, et al. , 1990. Late Cenozoic tectonic evolution of the Ningxia-Hui Autonomous Region, China[J]. GSA Bulletin, 102(11): 1484-1498. doi: 10.1130/0016-7606(1990)102<1484:LCTEOT>2.3.CO;2
    [55] ZHANG P Z, ZHENG D W, YIN G M, et al. , 2006. Discussion on late Cenozoic growth and rise of northeastern margin of the Tibetan Plateau[J]. Quaternary Sciences, 26(1): 5-13. (in Chinese with English abstract)
    [56] ZHANG Y X, GONG H J, 2003. Taphonomy of Pliocene mammalian fossils from Lingtai, Gansu[J]. Acta Palaeontologica Sinica, 42(3): 460-465. (in Chinese with English abstract)
    [57] ZHAO Y, 2019. Sedimentary characteristics and tectonic significance of Paleogene-Neogene in Dingjiaergou profile of the southern Ningxia Basin[D]. Beijing: China University of Geosciences (Beijing): 1-93. (in Chinese)
    [58] ZHENG D W, ZHANG P Z, WAN J L, et al. , 2006. Rapid exhumation at ~8 Ma on the Liupan Shan thrust fault from apatite fission-track thermochronology: Implications for growth of the northeastern Tibetan Plateau margin[J]. Earth and Planetary Science Letters, 248(1-2): 198-208. doi: 10.1016/j.jpgl.2006.05.023
    [59] 陈虹, 胡健民, 公王斌, 等, 2013. 青藏高原东北缘牛首山—罗山断裂带新生代构造变形与演化[J]. 地学前缘, 20(4): 18-35.
    [60] 程彧, 2005. 六盘山山前新生代沉积盆地高精度磁性地层与青藏高原东北边界变形隆升[D]. 兰州: 兰州大学: 1-110.
    [61] 房建军, 2009. 宁南盆地沉积构造演化与改造[D]. 西安: 西北大学: 1-103.
    [62] 方小敏, 2017. 青藏高原隆升阶段性[J]. 科技导报, 35(6): 42-50.
    [63] 甘肃省地质矿产局, 1989. 甘肃省区域地质志[M]. 北京: 地质出版社.
    [64] 韩鹏, 2008. 宁南盆地群第三系磁学特征及地质构造意义[D]. 西安: 西北大学: 1-73.
    [65] 侯连海, 周忠和, 张福成, 等, 2005. 甘肃发现中新世鸵鸟化石[J]. 科学通报, 50(12): 1286-1288.
    [66] 蒋锋云, 季灵运, 赵强, 2021. 海原-六盘山断裂带现今地震危险性的数值模拟分析[J]. 地质力学学报, 27(2): 230-240.
    [67] 寇琳琳, 李振宏, 董晓朋, 等, 2021. 青藏高原东北缘隆德观音店剖面碎屑锆石年龄序列及地质意义[J]. 地质力学学报, 27(6): 1051-1064.
    [68] 雷启云, 张培震, 郑文俊, 等, 2016. 青藏高原东北缘三关口-牛首山断裂的右旋走滑与弧形构造带扩展[J]. 中国科学: 地球科学, 46(5): 691-705.
    [69] 李吉均, 方小敏, 潘保田, 等, 2001. 新生代晚期青藏高原强烈隆起及其对周边环境的影响[J]. 第四纪研究, 21(5): 381-391.
    [70] 李立立, 2007. 六盘山第三系磁性地层、磁化率及其意义[D]. 兰州: 兰州大学: 1-109.
    [71] 李孝泽, 屈建军, 傅天阳, 等, 2012. 六盘山北部寺口子砂岩研究现状、问题及意义[J]. 地球科学进展, 27(6): 644-650.
    [72] 李艺豪, 杜星星, 李天秀, 2022. 青藏高原东北缘武威盆地内部全新世伸展构造特征及其成因机制[J]. 地质力学学报, 28(3): 353-366.
    [73] 林秀斌, 陈汉林, WYRWOLL K H, 等, 2009. 青藏高原东北部隆升: 来自宁夏同心小洪沟剖面的证据[J]. 地质学报, 83(4): 455-467.
    [74] 刘晓波, 2019. 鄂尔多斯地块西缘新生代盆地演化[D]. 北京: 中国地质科学院: 1-124.
    [75] 鹿化煜, 安芷生, 王晓勇, 等, 2004. 最近14 Ma青藏高原东北缘阶段性隆升的地貌证据[J]. 中国科学(D辑): 地球科学, 34(9): 855-864.
    [76] 马兆颖, 董晓朋, 张庆, 等, 2020. 六盘山晚更新世以来抬升过程沉积响应及环境效应[J]. 煤田地质与勘探, 48(5): 152-164.
    [77] 宁夏回族自治区地质矿产局, 1990. 宁夏回族自治区区域地质志[M]. 北京: 地质出版社.
    [78] 邱占祥, 叶捷, 霍福臣, 1988. 记宁夏同心发现的库班猪头骨化石[J]. 古脊椎动物学报, 26(1): 1-14.
    [79] 邱占祥, 邱铸鼎, 1990. 中国晚第三纪地方哺乳动物群的排序及其分期[J]. 地层学杂志, 14(4): 241-260.
    [80] 申旭辉, 田勤俭, 丁国瑜, 等, 2001. 宁夏贺家口子地区晚新生代地层序列及其构造意义[J]. 中国地震, 17(2): 156-166.
    [81] 施炜, 张岳桥, 马寅生, 2006. 六盘山两侧晚新生代红黏土高程分布及其新构造意义[J]. 海洋地质与第四纪地质, 26(5): 123-130.
    [82] 施炜, 刘源, 刘洋, 等, 2013. 青藏高原东北缘海原断裂带新生代构造演化[J]. 地学前缘, 20(4): 1-17.
    [83] 宋友桂, 方小敏, 李吉均, 等, 2001. 晚新生代六盘山隆升过程初探[J]. 中国科学(D辑): 地球科学, 31(S1): 142-148.
    [84] 王伟涛, 张培震, 张广良, 等, 2010. 青藏高原东北缘寺口子盆地新生代沉积演化及其构造意义[J]. 地质科学, 45(2): 440-452.
    [85] 王伟涛, 2011. 宁夏南部新生代盆地沉积演化及其对青藏高原东北角构造变形的响应[D]. 北京: 中国地震局地质研究所: 1-145.
    [86] 王伟涛, 郑德文, 庞建章, 2013. 青藏高原东北缘寺口子剖面碎屑锆石示踪及其构造意义[J]. 地质学报, 87(10): 1551-1569.
    [87] 王伟涛, 张培震, 郑德文, 等, 2014. 青藏高原东北缘海原断裂带晚新生代构造变形[J]. 地学前缘, 21(4): 266-274.
    [88] 杨帆, 李孝泽, 2017. 宁夏固原古近系寺口子组砂岩成因探讨[J]. 古地理学报, 19(3): 445-456.
    [89] 姚文倩, 2019. 海原断裂老虎山段及其邻区晚第四纪活动性及几何复杂度研究[D]. 北京: 中国地震局地质研究所: 1-147.
    [90] 喻学惠, 莫宣学, 赵志丹, 等, 2011. 西秦岭新生代双峰式火山作用及南北构造带成因初探[J]. 岩石学报, 27(7): 2195-2202.
    [91] 张广良, 2006. 青藏高原东北缘六盘山—马东山地区晚新生代构造变形综合研究[D]. 北京: 中国地震局地质研究所: 1-147.
    [92] 张会平, 张培震, 郑德文, 等, 2012. 祁连山构造地貌特征: 青藏高原东北缘晚新生代构造变形和地貌演化过程的启示[J]. 第四纪研究, 32(5): 907-920.
    [93] 张进, 马宗晋, 任文军, 2005. 宁夏中南部新生界沉积特征及其与青藏高原演化的关系[J]. 地质学报, 79(6): 757-773.
    [94] 张进, 马宗晋, 任文军, 2006. 试论宁夏地区始新统寺口子组沉积的构造背景[J]. 地质论评, 52(2): 207-214.
    [95] 张珂, 蔡剑波, 2006. 黄河黑山峡口最高阶地宇宙核素的初步年龄及所反映的新构造运动[J]. 第四纪研究, 26(1): 85-91.
    [96] 张培震, 郑德文, 尹功明, 等, 2006. 有关青藏高原东北缘晚新生代扩展与隆升的讨论[J]. 第四纪研究, 26(1): 5-13.
    [97] 张云翔, 弓虎军, 2003. 甘肃灵台上新世哺乳动物化石埋藏学[J]. 古生物学报, 42(3): 460-465.
    [98] 赵杨, 2019. 宁南盆地丁家二沟剖面古近纪—新近纪沉积特征及其构造意义[D]. 北京: 中国地质大学(北京): 1-93.
  • 期刊类型引用(8)

    1. 王晨旭,李西. 弧形构造带构造特征及其数值模拟分析——以红河断裂中南段为例. 地质力学学报. 2025(01): 39-60 . 本站查看
    2. 王世元,王竞,李福鹏,陶志刚,梁明剑,刘韶,屈淼,张力文,曾维祖,晋云霞. 川西理塘-义敦断裂措普湖段第四纪晚期滑动速率与古地震序列. 地质力学学报. 2024(02): 275-288 . 本站查看
    3. 郭敏,黄玲玲,孙社良,黄孔文,贺强翔,向安平. 广东韶关红岭黑云母花岗岩和离子吸附型稀土矿床地球化学特征. 成都理工大学学报(自然科学版). 2024(04): 572-589 . 百度学术
    4. 王阳,周小虎,史小辉,黄琪,刘禄山. 青藏高原东北缘清水河流域地貌特征及其构造意义. 成都理工大学学报(自然科学版). 2024(04): 624-639+648 . 百度学术
    5. 吴芳,李振宏,井向辉,寇琳琳,杜壮,刘博华. 中条山地区二叠系含煤岩系碎屑锆石年龄及其对区域构造活动的沉积学制约. 煤田地质与勘探. 2024(11): 37-54 . 百度学术
    6. 寇琳琳,李振宏,夏彩香,韦利杰,董晓朋,王森,崔加伟,黄婷,南德斌. 运城盐湖形成演化与盐离子来源. 地质力学学报. 2024(06): 933-951 . 本站查看
    7. 吴芳,马杰,刘博华,王婧,史保胤,张耀玲,谢非. 六盘山西缘前庄地区水资源特征及开发利用建议. 水利水电技术(中英文). 2023(10): 49-58 . 百度学术
    8. 赵远方,施炜,张宇. 甘肃金川矿区古构造应力场恢复及演化研究. 地质力学学报. 2023(06): 770-785 . 本站查看

    其他类型引用(0)

  • 加载中
图(10)
计量
  • 文章访问数:  1078
  • HTML全文浏览量:  246
  • PDF下载量:  192
  • 被引次数: 8
出版历程
  • 收稿日期:  2023-04-09
  • 修回日期:  2023-05-24
  • 录用日期:  2023-05-30
  • 预出版日期:  2023-06-07

目录

/

返回文章
返回