STUDY ON THE STRESS SENSITIVITY AND SEEPAGE CHARACTERISTICS OF TIGHT SANDSTONE BASED ON CT SCANNING
-
摘要: 认识低渗透储层的渗流特征对油气开采和储层改造具有重要意义。为此,研究利用微CT扫描技术对致密砂岩岩样进行扫描,据此建立了能够精细刻画岩样的微观模型,运用COMSOL模拟了流体在岩石孔隙中的渗流特征,研究了致密砂岩的渗流特征及应力敏感性。研究结果表明:流体入口和出口间压差固定时,岩石的渗透率保持不变,与入口出口压力的具体数值无关;不同方向的岩石模型计算渗透率处在同一数量级但有微小差异;在侧向压力作用下,渗流路径变窄,通过渗流路径的整体速度下降,渗透率下降,但在孔隙相对较大的地方,由于路径变窄,流体速度较未加压力前略有上升。Abstract: The understanding of seepage characteristics of low-permeable reservoir is of great significant for oil and gas production and reservoir reconstruction. Therefore, the micro CT scanning technology was used to scan the tight sandstone samples so as to establish a microscopic model that can accurately reflect real structures of rock samples. COMSOL was used to simulate the seepage characteristics of fluid in the pores of rocks, and the seepage characteristics and stress sensitivity of tight sandstone were studied. The results show that:When the pressure difference between the inlet and outlet of the fluid is a constant value, the rock permeability remains unchanged and has no correlation with the specific value of the inlet and outlet pressure. The calculated permeability of rock models in different directions is in the same order of magnitude but slightly different. Under the action of lateral pressure, the flow path narrows, and the fluid overall velocity through the seepage path decreases, which leads to the decrease of permeability. However, where the pore is relatively large, the velocity rises slightly compared with that before the pressure is applied due to the narrowing of the path.
-
Key words:
- CT scanning /
- tight sandstone /
- microscopic seepage /
- numerical simulation /
- stress sensitivity
-
表 1 不同压力条件下XZ向模型的计算渗透率
Table 1. The calculated permeabilities of the XZ model under different pressures
入口压力/Pa 出口压力/Pa 压力差/Pa 出口处平均速度/(m/s) 计算渗透率/mD 100 0 100 4.63282×10-8 0.474400343 200 100 100 4.63282×10-8 0.474400343 300 200 100 4.63282×10-8 0.474400343 100 0 100 4.63282×10-8 0.474400343 1000 0 1000 4.63282×10-7 0.474400343 1000000 0 1000000 4.61167×10-4 0.472235032 5000000 0 5000000 2.29524×10-3 0.47006424 10000000 0 10000000 4.56119×10-3 0.467065696 15000000 0 15000000 6.79764×10-3 0.464052534 20000000 0 20000000 9.01981×10-3 0.461814133 表 2 致密砂岩模型材料参数
Table 2. The material parameters of the tight sandstone model
杨氏模量/GPa 泊松比 密度/(kg/m3) 基质区域 27 0.17 2500 孔隙区域 2.16 0 1000 表 3 各方向上模型在不同侧向压力作用下的计算渗透率
Table 3. The calculated permeabilities of each side upward model under different lateral pressures
左边界压力/MPa 计算渗透率/mD XZ向 30° 60° 90° 120° 150° 平均值 0 0.47440 0.36246 0.32044 0.40315 0.54939 0.30818 0.40229 10 0.47116 0.35908 0.31702 0.39926 0.54376 0.30558 0.39931 20 0.46690 0.35356 0.31433 0.39519 0.54117 0.30255 0.39562 30 0.46310 0.35052 0.31197 0.38923 0.53654 0.29966 0.39183 40 0.45930 0.34601 0.30895 0.38485 0.53255 0.29684 0.38808 50 0.45549 0.34206 0.30592 0.37891 0.52661 0.29506 0.38401 -
[1] 冯建伟, 戴俊生, 刘美利.低渗透砂岩裂缝孔隙度、渗透率与应力场理论模型研究[J].地质力学学报, 2011, 17(4):303-311. doi: 10.3969/j.issn.1006-6616.2011.04.001FENG Jianwei, DAI Junsheng, LIU Meili. Theoretical model about fracture porosity, permeability and stress field in the low-permeability sandstone[J]. Journal of Geomechanics, 2011, 17(4):303-311. (in Chinese with English abstract) doi: 10.3969/j.issn.1006-6616.2011.04.001 [2] 刘建军, 刘先贵.有效压力对低渗透多孔介质孔隙度、渗透率的影响[J].地质力学学报, 2001, 7(1):41-44. doi: 10.3969/j.issn.1006-6616.2001.01.005LIU Jianjun, LIU Xiangui. The effect of effective pressure on porosity and permeability of low permeability porous media[J]. Journal of Geomechanics, 2001, 7(1):41-44. (in Chinese with English abstract) doi: 10.3969/j.issn.1006-6616.2001.01.005 [3] 康毅力, 张浩, 陈一健, 等.鄂尔多斯盆地大牛地气田致密砂岩气层应力敏感性综合研究[J].天然气地球科学, 2006, 17(3):335-338, 344. doi: 10.3969/j.issn.1672-1926.2006.03.011KANG Yili, ZHANG Hao, CHEN Yijian, et al. Comprehensive research of tight sandstones gas reservoirs stress sensitivity in Daniudi gas field[J]. Natural Gas Geoscience, 2006, 17(3):335-338, 344. (in Chinese with English abstract) doi: 10.3969/j.issn.1672-1926.2006.03.011 [4] 张浩, 康毅力, 陈一健, 等.岩石组分和裂缝对致密砂岩应力敏感性影响[J].天然气工业, 2004, 24(7):55-57. doi: 10.3321/j.issn:1000-0976.2004.07.017ZHANG Hao, KANG Yili, CHEN Yijian, et al. Influence of the rock components and fractures on tight sandstone stress sensitivity[J]. Natural Gas Industry, 2004, 24(7):55-57. (in Chinese with English abstract) doi: 10.3321/j.issn:1000-0976.2004.07.017 [5] 游利军, 康毅力, 陈一健, 等.考虑裂缝和含水饱和度的致密砂岩应力敏感性[J].中国石油大学学报(自然科学版), 2006, 30(2):59-63. doi: 10.3321/j.issn:1000-5870.2006.02.013YOU Lijun, KANG Yili, CHEN Yijian, et al. Stress sensitivity of fractured tight gas sands in consideration of fractures and water saturation[J]. Journal of China University of Petroleum, 2006, 30(2):59-63. (in Chinese with English abstract) doi: 10.3321/j.issn:1000-5870.2006.02.013 [6] 游利军, 康毅力, 陈一健, 等.含水饱和度和有效应力对致密砂岩有效渗透率的影响[J].天然气工业, 2004, 24(12):105-107. doi: 10.3321/j.issn:1000-0976.2004.12.034YOU Lijun, KANG Yili, CHEN Yijian, et al. Influence of water saturation and effective stress on effective permeability of tight sands[J]. Natural Gas Industry, 2004, 24(12):105-107. (in Chinese with English abstract) doi: 10.3321/j.issn:1000-0976.2004.12.034 [7] 罗瑞兰, 程林松, 彭建春, 等.油气储层渗透率应力敏感性与启动压力梯度的关系[J].西南石油学院学报, 2005, 27(3):20-22. doi: 10.3863/j.issn.1674-5086.2005.03.007LUO Ruilan, CHENG Linsong, PENG Jianchun, et al. The relationship between stress-sensitivity permeability and starting pressure gradient of reservoir[J]. Journal of Southwest Petroleum Institute, 2005, 27(3):20-22. (in Chinese with English abstract) doi: 10.3863/j.issn.1674-5086.2005.03.007 [8] 刘仁静, 刘慧卿, 张红玲, 等.低渗透储层应力敏感性及其对石油开发的影响[J].岩石力学与工程学报, 2011, 30(S1):2697-2702. http://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2011S1014.htmLIU Renjing, LIU Huiqing, ZHANG Hongling, et al. Study of stress sensitivity and its influence on oil development in low permeability reservoir[J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(S1):2697-2702. (in Chinese with English abstract) http://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2011S1014.htm [9] 张海勇, 何顺利, 栾国华, 等.超低渗透裂缝介质储层应力敏感性定量研究[J].岩石力学与工程学报, 2014, 33(S1):3349-3354. http://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2014S1106.htmZHANG Haiyong, HE Shunli, LUAN Guohua, et al. Quantifative study of stress sensitivity in ultralow permeability fracture media reservoir[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(S1):3349-3354. (in Chinese with English abstract) http://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2014S1106.htm [10] 周汉国, 郭建春, 李静, 等.裂隙特征对岩石渗流特性的影响规律研究[J].地质力学学报, 2017, 23(4):531-539. doi: 10.3969/j.issn.1006-6616.2017.04.004ZHOU Hanguo, GUO Jianchun, LI Jing, et al. A study on the influence rule of the fracture characteristics on rock seepage characteristics[J]. Journal of Geomechanics, 2017, 23(4):531-539. (in Chinese with English abstract) doi: 10.3969/j.issn.1006-6616.2017.04.004 [11] 闫国亮, 孙建孟, 刘学锋, 等.储层岩石微观孔隙结构特征及其对渗透率影响[J].测井技术, 2014, 38(1):28-32. http://d.old.wanfangdata.com.cn/Periodical/cjjs201401004YAN Guoliang, SUN Jianmeng, LIU Xuefeng, et al. Characterization of microscopic pore structure of reservoir rock and its effect on permeability[J]. Well Logging Technology, 2014, 38(1):28-32. (in Chinese with English abstract) http://d.old.wanfangdata.com.cn/Periodical/cjjs201401004 [12] 赵秀才, 姚军, 衣艳静, 等.基于择多算子的随机搜索法建立数字岩心的新技术[J].岩土力学, 2008, 29(5):1339-1344, 1350. doi: 10.3969/j.issn.1000-7598.2008.05.037ZHAO Xiucai, YAO Jun, YI Yanjing, et al. A new method of constructing digital core utilizing stochastic search algorithm based on majority operator[J]. Rock and Soil Mechanics, 2008, 29(5):1339-1344, 1350. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-7598.2008.05.037 [13] 赵秀才, 姚军, 陶军, 等.基于模拟退火算法的数字岩心建模方法[J].高校应用数学学报A辑, 2007, 22(2):127-133. doi: 10.3969/j.issn.1000-4424.2007.02.001ZHAO Xiucai, YAO Jun, TAO Jun, et al. A method of constructing digital core by simulated annealing algorithm[J]. Applied Mathematics A Journal of Chinese Universities Series A, 2007, 22(2):127-133. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-4424.2007.02.001 [14] 张思勤, 汪志明, 洪凯, 等.基于格子Boltzmann方法的3D数字岩心渗流特征分析[J].测井技术, 2016, 40(1):18-22. http://d.old.wanfangdata.com.cn/Periodical/cjjs201601003ZHANG Siqin, WANG Zhiming, HONG Kai, et al. Analysis of seepage characteristics of 3D digital core based on Boltzmann method[J]. Well Logging Technology, 2016, 40(1):18-22. (in Chinese with English abstract) http://d.old.wanfangdata.com.cn/Periodical/cjjs201601003 [15] 李静, 彭成乐, 周汉国, 等.基于显微红外光谱技术的岩石微观渗流特性研究[J].岩石力学与工程学报, 2017, 36(S1):3184-3191.LI Jing, PENG Chengle, ZHOU Hanguo, et al. Study on microscopic seepage characteristics of rock based on micro infrared spectra technology[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(S1):3184-3191. (in Chinese with English abstract) [16] 崔利凯, 孙建孟, 闫伟超, 等.基于多分辨率图像融合的多尺度多组分数字岩心构建[J].吉林大学学报(地球科学版), 2017, 47(6):1904-1912. http://d.old.wanfangdata.com.cn/Periodical/cckjdxxb201706027CUI Likai, SUN Jianmeng, YAN Weichao, et al. Construction of multi-scale and -component digital cores based on fusion of different resolution core images[J]. Journal of Jilin University (Earth Science Edition), 2017, 47(6):1904-1912. (in Chinese with English abstract) http://d.old.wanfangdata.com.cn/Periodical/cckjdxxb201706027 [17] 王平全, 陶鹏, 刘建仪, 等.基于数字岩心的低渗透率储层微观渗流和电传导数值模拟[J].测井技术, 2017, 41(4):389-393. http://d.old.wanfangdata.com.cn/Periodical/cjjs201704002WANG Pingquan, TAO Peng, LIU Jianyi, et al. Numerical simulation of micro seepage and electrical conduction in low-permeability reservoirs based on digital core[J]. Well Logging Technology, 2017, 41(4):389-393. (in Chinese with English abstract) http://d.old.wanfangdata.com.cn/Periodical/cjjs201704002 [18] 曹廷宽, 刘成川, 曾焱, 等.基于CT扫描的低渗砂岩分形特征及孔渗参数预测[J].断块油气田, 2017, 24(5):657-661. http://d.old.wanfangdata.com.cn/Periodical/dkyqt201705013CAO Tingkuan, LIU Chengchuan, ZENG Yan, et al. Fractal characteristic of low-permeability sandstone and physical parameters prediction based on CT scanning[J]. Fault-Block Oil & Gas Field, 2017, 24(5):657-661. (in Chinese with English abstract) http://d.old.wanfangdata.com.cn/Periodical/dkyqt201705013 [19] 林承焰, 吴玉其, 任丽华, 等.数字岩心建模方法研究现状及展望[J].地球物理学进展, 2018, 33(2):679-689. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqwlxjz201802030LIN Chengyan, WU Yuqi, REN Lihua, et al. Review of digital core modeling methods[J]. Progress in Geophysics, 2018, 33(2):679-689. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqwlxjz201802030 [20] 张浩, 康毅力, 陈一健, 等.致密砂岩油气储层岩石变形理论与应力敏感性[J].天然气地球科学, 2004, 15(5):482-486. doi: 10.3969/j.issn.1672-1926.2004.05.008ZHANG Hao, KANG Yili, CHEN Yijian, et al. Deformation theory and stress sensitivity of tight sandstones reserviors[J]. Natural Gas Geoscience, 2004, 15(5):482-486. (in Chinese with English abstract) doi: 10.3969/j.issn.1672-1926.2004.05.008 [21] 李传亮.储层岩石的应力敏感性评价方法[J].大庆石油地质与开发, 2006, 25(1):40-42. doi: 10.3969/j.issn.1000-3754.2006.01.010LI Chuanliang. Evaluation method for stress sensitivity of reservoir rock[J]. Petroleum Geology & Oilfield Development in Daqing, 2006, 25(1):40-42. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-3754.2006.01.010