留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

地质力学在青藏高原重大工程地质安全风险防控中的应用

张永双 任三绍 郭长宝 张涛 吴瑞安 陶昶旭

张永双,任三绍,郭长宝,等,2025. 地质力学在青藏高原重大工程地质安全风险防控中的应用[J]. 地质力学学报,31(5):926−939 doi: 10.12090/j.issn.1006-6616.2025130
引用本文: 张永双,任三绍,郭长宝,等,2025. 地质力学在青藏高原重大工程地质安全风险防控中的应用[J]. 地质力学学报,31(5):926−939 doi: 10.12090/j.issn.1006-6616.2025130
ZHANG Y S,REN S S,GUO C B,et al.,2025. Application of geomechanics in risk prevention and control for the geosafety of major projects on the Tibetan Plateau[J]. Journal of Geomechanics,31(5):926−939 doi: 10.12090/j.issn.1006-6616.2025130
Citation: ZHANG Y S,REN S S,GUO C B,et al.,2025. Application of geomechanics in risk prevention and control for the geosafety of major projects on the Tibetan Plateau[J]. Journal of Geomechanics,31(5):926−939 doi: 10.12090/j.issn.1006-6616.2025130

地质力学在青藏高原重大工程地质安全风险防控中的应用

doi: 10.12090/j.issn.1006-6616.2025130
基金项目: 国家自然科学基金项目(42472350,42307229)
详细信息
    作者简介:

    张永双(1968—),男,博士,教授,主要从事工程地质与地质灾害教学和研究工作。Email:zhys100@cugb.edu.cn

  • 中图分类号: P642.4

Application of geomechanics in risk prevention and control for the geosafety of major projects on the Tibetan Plateau

Funds: This research is financially supported by the National Natural Science Foundation of China (Grant Nos. 42472350 and 42307229).
More Information
    Author Bio:

    张永双,教授,博士生导师,现任中国地质大学(北京)地质安全研究院执行院长,国家减灾委专家委员会委员,中国地质学会工程地质专委会副主任委员,国际工程地质与环境协会新构造与地质灾害专委会(IAEG-C24)秘书长,《地质力学学报》副主编。研究方向为工程地质与地质灾害,先后主持国家重点研发计划项目、基金委重点项目等重要科技项目30余项,在国内外刊物发表论文200余篇,主编技术标准5部,曾获省部级科学技术奖一等奖4项、二等奖4项,获“全国抗震救灾模范”及自然资源部首批科技创新领军人才称号

  • 摘要: 青藏高原是全球构造活动最强烈的地区之一,内外动力耦合作用下地质灾害和复杂工程地质问题频现,给国家重大工程规划建设地质安全带来重大威胁。文章结合作者团队20余年来在青藏高原开展的工程地质与地质灾害研究工作,总结了地质力学理论在重大工程地质安全风险防控中的应用和成效,具体包括:继承和发展了区域地壳稳定性评价理论,提出了区域地壳稳定性−工程地质稳定性−场地稳定性调查评价方法,有效服务重大工程选线选址;提出了活动构造带工程地质研究框架,阐明了活动断裂的地质灾害效应,构建了高位滑坡地质力学模式,揭示了岩体结构与特殊岩性联合控滑机制;开展了基于实测地应力的深埋隧道岩爆机理研究,对比分析了不同构造环境下隧道岩爆特征的差异,提出了高地应力环境下隧道岩爆风险防控对策。在以上研究总结的基础上,提出了地质力学理论创新和工程应用的发展方向。相关研究有助于进一步推动地质力学发展,为国家重大工程规划建设和防灾减灾提供新的理论价值与技术支撑。

     

  • 图  1  滇藏交通廊道区域地壳稳定性评价图

    Figure  1.  Regional crustal stability evaluation map of the Yunnan–Tibet Transportation Corridor

    图  2  丽江-香格里拉铁路沿线工程地质条件计算结果图

    Figure  2.  Calculated engineering geological conditions around the Lijiang–ShangriLa Railway Track

    图  3  丽江—香格里拉段优化线路工程地质分区图

    Figure  3.  Engineering geological zonation of the optimized route along the Lijiang–ShangriLa section

    图  4  金沙江大桥斜坡特征

    Figure  4.  Slope characteristics of the Jinsha River Bridge section

    图  5  活动断裂带地质灾害效应的主要表现

    Figure  5.  Geohazard effects of active fault zones

    (a) Intense fault activity triggers geohazards; (b) Effect of fault creep on the slope stress field; (c) Active fault supplies material for the geohazard chain

    图  6  高位滑坡启动的地质力学模式示意图(据张永双等,2021修改)

    a—堆积体滑移型; b—顺层滑移拉裂型;c—卸荷剪断型;d—岩溶贯通拉裂型;e—崩滑溃散型;f—构造控制型

    Figure  6.  Schematic diagram of the geomechanical model for high-position landslide initiation (after Zhang et al., 2021)

    (a) Accumulation body slide type; (b)Bedding-plane slip and tension crack type; (c) Unloading and shearing type; (d) Karst penetration and tension crack type; (e) Collapse-slide and disintegration type; (f) Structurally controlled type.

    图  7  地质构造与蚀变黏土联合控制滑坡演化

    a—白格滑坡所在区域地质构造位置(1—上石炭统生帕群;2—二叠系—三叠系岗托岩组;3—下三叠统普水桥组;4—华力西期金沙江超镁铁质岩带、蛇纹岩;5—下三叠统色容寺组;6—三叠系花岗闪长岩;7—上三叠统下逆松多组下段;8—上三叠统下逆松多组上段;9—上三叠统洞卡组;10—上三叠统甲丕拉组;11—三叠系中统瓦拉寺组;12—三叠系辉长岩岩块;13—逆断裂;14—水系;15—白格滑坡;16—背斜); b—白格滑坡影像;c—充填蚀变黏土结构面野外特征;d—蚀变黏土结构面贯通形成滑带;e—结构面贯通示意图;f—含蚀变黏土夹层结构面循环剪切试验剪切破坏过程;g—蚀变黏土充填结构面抗剪强度参数与充填度关系曲线

    Figure  7.  Geological structure and altered clay jointly control of landslide evolution

    (a) Geological structure of the Baige landslide (1–Upper Carboniferous Shengpa Group; 2–Permian–Triassic Gangtuo Group; 3–Lower Triassic Pushuiqiao Group; 4–Jinsha River ultramafic belt and serpentine; 5–Lower Triassic Serongsi Group; 6–Triassic granodiorite; 7–Lower Songduo Group, Upper Triassic; 8–Upper Songduo Group, Upper Triassic; 9–Upper Triassic Dongka Group; 10–Upper Triassic Jiapira Group; 11–Middle Triassic Walasi Group; 12–Triassic gabbro block; 13–Faults; 14–Water system; 15–Baige Landslide; 16–Anticline); (b) Image of the Baige landslide; (c) Field characteristics of altered clay-filled structural planes; (d) Slip zone formation by interconnecting altered clay structural planes; (e) Schematic diagram of structural plane interconnection; (f) Shear failure process in cyclic shear tests on structural planes containing altered clay interlayers; (g) Relationship between shear strength parameters and degree to which structural planes are filled with altered clay

    图  8  高黎贡隧道区工程地质剖面图(AB段和BC段)

    Qh—全新世冲洪积物;J2m1—中侏罗统勐戛组下段砂泥岩、泥灰岩;J2m2—中侏罗统勐戛组上段玄武岩夹砂、泥岩;T2h—中二叠统河湾街组白云岩;D2h—中泥盆统回贤组灰岩;O1l—下奥陶统亮甲山组页岩、粉砂岩;O1m—下奥陶统马家沟组砂岩、粉砂岩; O—奥陶统细砂岩、粉砂岩、石英砂岩、板岩;S1—下志留统笔石页岩、粉砂岩;S2—中志留统条带状、网纹状灰岩、砂质泥灰岩;S2-3—中上志留统条带状、网纹状灰岩、砂质泥灰岩;${\rlap{--} {\mathrm{C}}}_3 $b—上寒武统保山组灰岩、砂岩、粉砂岩及页岩;${\rlap{--} {\mathrm{C}}}_3 $s2—上寒武统沙河厂组上段砂板岩、粉砂岩夹灰岩;${\rlap{--} {\mathrm{C}}} $gn2—寒武统公养河群绢云板岩夹石英岩、轻变质砂岩;Pz1gl—下古生界高黎贡山群黄灰色、褐灰色板岩、变质砂岩夹变粒岩;γ53(2)—燕山期黑云母花岗岩1—泥岩;2—粉砂岩;3—泥质粉砂岩;4—细砂岩;5—粗砂岩;6—杂砂岩;7—长石砂岩;8—长石石英砂岩;9—砂砾岩;10—砾岩;11—灰岩;12—泥质灰岩;13—砂质灰岩;14—白云岩;15—砂质白云岩;16—泥质板岩;17—砂质板岩;18—变质砂岩;19—千枚状板岩;20—石英片岩;21—片岩;22—大理岩;23—玄武岩;24—花岗岩(斑岩);25—断裂;26—钻孔及编号

    Figure  8.  Engineering geological section of the Gaoligong tunnel (Sections AB and BC)

    1−Mudstone; 2−Siltstone; 3−Silty mudstone; 4−Fine sandstone; 5−Coarse sandstone; 6−Greywacke; 7−Arkose; 8−Feldspathic quartz sandstone; 9−Sandy conglomerate; 10−Conglomerate; 11−Limestone; 12−Argillaceous limestone; 13−Sandy limestone; 14−Dolomite; 15−Sandy dolomite; 16−Argillaceous slate; 17−Sandy slate; 18−Metasandstone; 19−Phyllitic slate; 20−Quartz schist; 21−Schist; 22−Marble; 23−Basalt; 24−Granite (porphyry); 25−Fault; 26−Borehole and number Qh−Holocene alluvial-pluvial deposits; J2m1−Middle Jurassic Mengga Formation lower member sandstone and mudstone, marl; J2m2−Middle Jurassic Mengga Formation upper member basalt interbedded with sandstone and mudstone; T2h−Middle Triassic Hewanjie Formation dolomite; D2h−Middle Devonian Huixian Formation limestone; O1l−Lower Ordovician Liangjiashan Formation shale, siltstone; O1m−Lower Ordovician Majiagou Formation sandstone, siltstone; O−Ordovician fine sandstone, siltstone, quartz sandstone, slate; S1−Lower Silurian graptolite shale, siltstone; S2−Middle Silurian banded and reticulated limestone, sandy marl; S2-3−Middle-Upper Silurian banded and reticulated limestone, sandy marl; ${\rlap{--} {\mathrm{C}}}_3 $b−Upper Cambrian Baoshan Formation limestone, sandstone, siltstone, and shale; ${\rlap{--} {\mathrm{C}}}_3 $s2−Upper Cambrian Shahechang Formation upper member slate, siltstone interbedded with limestone; ${\rlap{--} {\mathrm{C}}} $gn2−Cambrian Gongyanghe Group sericite slate interbedded with quartzite and lightly metamorphosed sandstone; Pz1gl−Lower Paleozoic Gaoligongshan Group yellow-gray and brown-gray slate, metamorphosed sandstone interbedded with granulite; γ53(2) −Yanshanian biotite granite.

    图  9  隧道位于褶皱岩体时最大主应力等值线云图

    a—隧道位于向斜轴部; b—隧道与褶皱轴线垂直

    Figure  9.  Contours of the maximum principal stress for a tunnel in folded rock mass

    (a) Tunnel parallel to the syncline axis; (b) Tunnel perpendicular to the fold axis

    图  10  走滑断层岩体中隧道围岩应力分布特征

    a—隧道距离断裂40m;b—隧道距离断裂80m

    Figure  10.  Stress distribution for a tunnel with a strike-slip fault in the surrounding rock mass

    (a) Tunnel is 40 m away from the fault; (b) Tunnel is 80 m away from the fault

    表  1  花岗斑岩试件岩爆模拟试验过程和岩爆特征一览表

    Table  1.   Overview of rockburst simulation test procedures and rockburst characteristics of granite porphyry specimens

    试件
    编号
    破坏应力/MPa岩爆过程描述加载方式试件初始
    受力状态
    σVσh1σh2
    Y188.540.77.7卸荷后41 s 时触发岩爆,历时 0.551 s;顶部先出现碎屑剥离
    并伴脆性声响,继而碎屑/颗粒弹射;属局部滞后型岩爆
    卸载后保持
    Y2100.819.88.8卸载后再垂向加载,5.2 min 后发生岩爆,历时0.69 s;下部首先弹射破坏,
    大量碎屑/块体飞出,颗粒在空中有旋转;为局部滞后型岩爆
    卸载后增加垂直方向
    荷载
    105.719.60.0
    Y330.1119.810.4卸载后47.7 min 发生岩爆;右下部率先弹射,随后中部形成多条
    破裂面,试件被分割成块体并整体塌落;为整体滞后型岩爆
    卸载后保持
    Y410.090.040.0从卸载到破坏约 11 min,历时 0.699 s;前兆为上部少量碎屑下坠,随后
    偏右中部出现沿前表面平行飞出的碎屑(单向弹射);为局部滞后型岩爆
    卸载后增加水平最大主应力
    117.010.00.0
    Y523.480.78.8卸载后再水平向加载,9 min 触发岩爆并全面爆裂;
    前兆为上部小颗粒掉落/飞出,约 1 s 后转入整体破坏,
    伴密集弹裂声与细碎屑喷出;全过程 1.36 s;为整体滞后型
    卸载后增加水平荷载
    下载: 导出CSV
  • [1] CHEN Q X, 1986. Some problems deserving of special attention in the analysis of rock deformation and tectonic stress field[J]. Bulletin of the Institute of Geomechanics Cags(8): 1-8. (in Chinese with English abstract)
    [2] DU D J, 1994. Establishment and development of regional stability engineering geology in Chinese[J]. Journal of Engineering Geology, 2(3): 21-26. (in Chinese with English abstract)
    [3] FAN X M, SCARINGI G, KORUP O, et al., 2019. Earthquake-induced chains of geologic hazards: patterns, mechanisms, and impacts[J]. Reviews of Geophysics, 57(2): 421-503. doi: 10.1029/2018RG000626
    [4] FENG X T, XIAO Y X, FENG G L, et al., 2019. Study on the development process of rockbursts[J]. Chinese Journal of Rock Mechanics and Engineering, 38(4): 649-673. (in Chinese with English abstract)
    [5] GONG F Q, DAI J H, WANG M Y, et al., 2022. "Strength & stress" coupling criterion and its grading standard for high geostress[J]. Journal of Engineering Geology, 30(6): 1893-1913. (in Chinese with English abstract)
    [6] GU D Z, 1979. Fundamentals of rock mass engineering geomechanics[M]. Beijing: Science Press. (in Chinese)
    [7] GUO C B, 2011. Research on the major engineering geological problems of the Dali-Ruili Railway through Gaoligong Mt. [D]. Beijing: Chinese Academy of Geological Sciences. (in Chinese with English abstract)
    [8] HE M C, REN S L, TAO Z G, 2022. Disaster prevention and control methods for deep buried tunnels[J]. Journal of Engineering Geology, 30(6): 1777-1797. (in Chinese with English abstract)
    [9] HEAP M J, BAUMANN T S, ROSAS-CARBAJAL M, et al., 2021. Alteration-induced volcano instability at La Soufrière de Guadeloupe (Eastern Caribbean)[J]. Journal of Geophysical Research: Solid Earth, 126(8): e2021JB022514. doi: 10.1029/2021JB022514
    [10] HU H T, YIN Y P, 1996. Theory and evaluation methods of regional crust stability "Safety Island"[J]. Earth Science Frontiers, 3(1-2): 57-68. (in Chinese with English abstract)
    [11] HUANG R Q, 2008. Geodynamical process and stability control of high rock slope development[J]. Chinese Journal of Rock Mechanics and Engineering, 27(8): 1525-1544. (in Chinese with English abstract)
    [12] LI B, YIN Y P, TAN C X, et al., 2022. Geo-safety challenges against the site selection of engineering projects in the eastern Himalayan syntaxis area[J]. Journal of Geomechanics, 28(6): 907-918. (in Chinese with English abstract)
    [13] LI S G, 1945. Fundamentals and methods of geomechanics[M]. Chongqing: Chongqing University Press. (in Chinese)
    [14] LIU G C, 1979. Regional stability and earthquakes[J]. Hydrogeology & Engineering Geology, 6(2): 1-7. (in Chinese)
    [15] MAEDA H, SASAKI T, FURUTA K, et al., 2012. Relationship between landslides, geologic structures, and hydrothermal alteration zones in the Ohekisawa-Shikerebembetsugawa Landslide Area, Hokkaido, Japan[J]. Journal of Earth Science and Engineering, 2(6): 317-327.
    [16] PENG J B, MAO Y L, FAN W, 2001. Study on regional stability dynamics[M]. Beijing: Science Press. (in Chinese)
    [17] PENG J B, CUI P, ZHUANG J Q, 2020. Challenges to engineering geology of Sichuan—Tibet railway[J]. Chinese Journal of Rock Mechanics and Engineering, 39(12): 2377-2389. (in Chinese with English abstract)
    [18] REN S S, ZHANG Y S, LI J Q, et al., 2023. A new type of sliding zone soil and its severe effect on the formation of giant landslides in the Jinsha River tectonic suture zone, China[J]. Natural Hazards, 117(2): 1847-1868. doi: 10.1007/s11069-023-05931-0
    [19] SHUGAR D H, JACQUEMART M, SHEAN D, et al., 2021. A massive rock and ice avalanche caused the 2021 disaster at Chamoli, Indian Himalaya[J]. Science, 373(6552): eabh4455.
    [20] SUN G Z, 1988. Rock mass structure mechanics[M]. Beijing: Science Press. (in Chinese)
    [21] SUN G Z, SUN Y, 2004. Rock mass structure mechanics[M]. Beijing: Geological Publishing House. (in Chinese)
    [22] SUN Y, TAN C X, WANG R J, et al., 1996. An assessment and zonation of regional crustal stability in and around the dam region of the Three Gorges Project on the Yangtze River[J]. Acta Geoscientia Sinica, 17(3): 258-268. (in Chinese with English abstract)
    [23] SUN Y K, 1997. Rockmass structural mechanism - a new advance in rock engineering - geological mechanicas[J]. Journal of Engineering Geology, 5(4): 292-294. (in Chinese with English abstract)
    [24] TAN C X, SUN W F, SUN Y, et al., 2006. A consideration on in-situ crustal stress measuring and its underground engineering application[J]. Acta Geologica Sinica, 80(10): 1627-1632. (in Chinese with English abstract)
    [25] WANG S J, 2002. Coupling of earth's endogenic and exogenic geological processes and origins on serious geological disasters[J]. Journal of Engineering Geology, 10(2): 115-117. (in Chinese with English abstract)
    [26] WU F Q, WANG S J, PAN B T, 2022. Statistical mechanics of rock masses(SMRM): inheriting and developing of engineering geomechanics of rock masses[J]. Journal of Engineering Geology, 30(1): 1-20. (in Chinese with English abstract)
    [27] WU S R, WANG R J, 1996. Some development trends in the study of geological hazards and regional crustal stability[J]. Journal of Geomechanics, 2(3): 78-80. (in Chinese)
    [28] WU Z H, YE P S, WU Z H, et al., 2003. Hazard effects of active faulting along the Golmud-Lhasa railway across the Tibetan Plateau[J]. Geoscience, 17(1): 1-7. (in Chinese with English abstract)
    [29] WU Z H, ZHAO G M, LONG C X, et al., 2014. The seismic hazard assessment around south-east area of Qinghai-Xizang Plateau: a preliminary results from active tectonics system analysis[J]. Acta Geologica Sinica, 88(8): 1401-1416. (in Chinese with English abstract)
    [30] XU Q, LI W L, 2010. Distribution of large-scale landslides induced by the Wenchuan earthquake[J]. Journal of Engineering Geology, 18(6): 818-826. (in Chinese with English abstract)
    [31] YI M C, HU H T, YIN Y P, et al., 2006. Developing Li Siguang's "safety island" thought and making serious evaluation and research on regional crustal stability in areas of engineering works[J]. Journal of Geomechanics, 12(2): 105-118. (in Chinese with English abstract)
    [32] YIN Y P, 2008. Researches on the geo-hazards triggered by Wenchuan earthquake, Sichuan[J]. Journal of Engineering Geology, 16(4): 433-444. (in Chinese with English abstract)
    [33] YIN Y P, LI B, GAO Y, et al., 2023. Geostructures, dynamics and risk mitigation of high-altitude and long-runout rockslides[J]. Journal of Rock Mechanics and Geotechnical Engineering, 15(1): 66-101. doi: 10.1016/j.jrmge.2022.11.001
    [34] ZHANG Y S, QU Y X, LIU J R, et al., 2007. Engineering geological research on altered rocks in the area of NW Yunnan along Yunnan-Tibet railway line[J]. Chinese Journal of Geotechnical Engineering, 29(4): 531-536. (in Chinese with English abstract)
    [35] ZHANG Y S, LEI Z W, SHI J S, et al., 2008. General characteristics of 5.12 earthquake-induced geohazards in Sichuan[J]. Journal of Geomechanics, 14(2): 109-116. (in Chinese with English abstract)
    [36] ZHANG Y S, XIONG T Y, DU Y B, et al., 2009. Geostress characteristic and simulation experiment of rockburst of a deep-buried tunnel in Gaoligong mountain[J]. Chinese Journal of Rock Mechanics and Engineering, 28(11): 2286-2294. (in Chinese with English abstract)
    [37] ZHANG Y S, SHI J S, SUN P, et al., 2013. Surface ruptures induced by the Wenchuan earthquake: their influence widths and safety distances for construction sites[J]. Engineering Geology, 166: 245-254. doi: 10.1016/j.enggeo.2013.09.010
    [38] ZHANG Y S, CHENG Y L, YIN Y P, et al., 2014. High-position debris flow: a long-term active geohazard after the Wenchuan earthquake[J]. Engineering Geology, 180: 45-54. doi: 10.1016/j.enggeo.2014.05.014
    [39] ZHANG Y S, GUO C B, YAO X, et al. , 2014. Seismic engineering geology of the east marginal region of Tibetan Plateau[M]. Beijing: Geological Publishing House. (in Chinese)
    [40] ZHANG Y S, GUO C B, YAO X, et al., 2016. Research on the geohazard effect of active fault on the eastern margin of the Tibetan Plateau[J]. Acta Geoscientia Sinica, 37(3): 277-286. (in Chinese with English abstract)
    [41] ZHANG Y S, REN S S, GUO C B, et al., 2019. Research on engineering geology related with active fault zone[J]. Acta Geologica Sinica, 93(4): 763-775. (in Chinese with English abstract)
    [42] ZHANG Y S, DU G L, GUO C B, et al., 2021. Research on typical geomechanical model of high-position landslides on the Sichuan-Tibet traffic corridor[J]. Acta Geologica Sinica, 95(3): 605-617. (in Chinese with English abstract)
    [43] ZHANG Y S, LI J Q, REN S S, et al., 2022a. Development characteristics of clayey altered rocks in the Sichuan-Tibet traffic corridor and their promotion to large-scale landslides[J]. Earth Science, 47(6): 1945-1956. (in Chinese with English abstract)
    [44] ZHANG Y S, WU R A, GUO C B, et al., 2022b. Geological safety evaluation of railway engineering construction in plateau mountainous region: ideas and methods[J]. Acta Geologica Sinica, 96(5): 1736-1751. (in Chinese with English abstract)
    [45] 陈庆宣, 1986. 岩石形变与构造应力场分析中值得引起注意的几个问题[J]. 中国地质科学院地质力学研究所所刊(8): 1-8.
    [46] 杜东菊, 1994. 中国区域稳定工程地质学产生与发展[J]. 工程地质学报, 2(3): 21-26.
    [47] 冯夏庭, 肖亚勋, 丰光亮, 等, 2019. 岩爆孕育过程研究[J]. 岩石力学与工程学报, 38(4): 649-673.
    [48] 宫凤强, 代金豪, 王明洋, 等, 2022. 高地应力“强度&应力”耦合判据及其分级标准[J]. 工程地质学报, 30(6): 1893-1913.
    [49] 谷德振, 1979. 岩体工程地质力学基础[M]. 北京: 科学出版社.
    [50] 郭长宝, 2011. 大瑞铁路高黎贡山越岭段重大工程地质问题研究[D]. 北京: 中国地质科学院.
    [51] 何满潮, 任树林, 陶志刚, 2022. 深埋隧道灾变防控方法[J]. 工程地质学报, 30(6): 1777-1797.
    [52] 胡海涛, 殷跃平, 1996. 区域地壳稳定性评价“安全岛”理论及方法[J]. 地学前缘, 3(1-2): 57-68.
    [53] 黄润秋, 2008. 岩石高边坡发育的动力过程及其稳定性控制[J]. 岩石力学与工程学报, 27(8): 1525-1544.
    [54] 李滨, 殷跃平, 谭成轩, 等, 2022. 喜马拉雅东构造结工程选址面临的地质安全挑战[J]. 地质力学学报, 28(6): 907-918.
    [55] 李四光, 1945. 地质力学之基础与方法[M]. 重庆: 重庆大学出版社.
    [56] 刘国昌, 1979. 区域稳定性与地震[J]. 水文地质工程地质, 6(2): 1-7.
    [57] 彭建兵, 毛彦龙, 范文, 2001. 区域稳定动力学研究: 黄河黑山峡大型水电工程例析[M]. 北京: 科学出版社.
    [58] 彭建兵, 崔鹏, 庄建琦, 2020. 川藏铁路对工程地质提出的挑战[J]. 岩石力学与工程学报, 39(12): 2377-2389.
    [59] 孙广忠, 1988. 岩体结构力学[M]. 北京: 科学出版社.
    [60] 孙广忠, 孙毅, 2004. 地质工程学原理[M]. 北京: 地质出版社.
    [61] 孙叶, 谭成轩, 王瑞江, 等, 1996. 长江三峡工程坝区及外围地壳稳定性评价与分区研究[J]. 地球学报, 17(3): 258-268.
    [62] 孙玉科, 1997. 岩体结构力学: 岩体工程地质力学的新发展[J]. 工程地质学报, 5(4): 292-294.
    [63] 谭成轩, 孙炜锋, 孙叶, 等, 2006. 地应力测量及其地下工程应用的思考[J]. 地质学报, 80(10): 1627-1632.
    [64] 王思敬, 2002. 地球内外动力耦合作用与重大地质灾害的成因初探[J]. 工程地质学报, 10(2): 115-117.
    [65] 伍法权, 王思敬, 潘别桐, 2022. 统计岩体力学(SMRM): 岩体工程地质力学的传承与发展[J]. 工程地质学报, 30(1): 1-20.
    [66] 吴树仁, 王瑞江, 1996. 地质灾害与区域地壳稳定性研究的某些发展趋势[J]. 地质力学学报, 2(3): 78-80.
    [67] 吴珍汉, 叶培盛, 吴中海, 等, 2003. 青藏铁路沿线断裂活动的灾害效应[J]. 现代地质, 17(1): 1-7.
    [68] 吴中海, 赵根模, 龙长兴, 等, 2014. 青藏高原东南缘现今大震活动特征及其趋势: 活动构造体系角度的初步分析结果[J]. 地质学报, 88(8): 1401-1416.
    [69] 许强, 李为乐, 2010. 汶川地震诱发大型滑坡分布规律研究[J]. 工程地质学报, 18(6): 818-826.
    [70] 易明初, 胡海涛, 殷跃平, 等, 2006. 发扬李四光“安全岛”思想, 认真做好工程建设地区的区域地壳稳定性评价研究工作[J]. 地质力学学报, 12(2): 105-118.
    [71] 殷跃平, 2008. 汶川八级地震地质灾害研究[J]. 工程地质学报, 16(4): 433-444.
    [72] 张永双, 曲永新, 刘景儒, 等, 2007. 滇藏铁路滇西北段蒙脱石化蚀变岩的工程地质研究[J]. 岩土工程学报, 29(4): 531-536.
    [73] 张永双, 雷伟志, 石菊松, 等, 2008. 四川5.12地震次生地质灾害的基本特征初析[J]. 地质力学学报, 14(2): 109-116.
    [74] 张永双, 熊探宇, 杜宇本, 等, 2009. 高黎贡山深埋隧道地应力特征及岩爆模拟试验[J]. 岩石力学与工程学报, 28(11): 2286-2294.
    [75] 张永双, 郭长宝, 姚鑫, 等, 2014. 青藏高原东缘地震工程地质[M]. 北京: 地质出版社.
    [76] 张永双, 郭长宝, 姚鑫, 等, 2016. 青藏高原东缘活动断裂地质灾害效应研究[J]. 地球学报, 37(3): 277-286.
    [77] 张永双, 任三绍, 郭长宝, 等, 2019. 活动断裂带工程地质研究[J]. 地质学报, 93(4): 763-775.
    [78] 张永双, 杜国梁, 郭长宝, 等, 2021. 川藏交通廊道典型高位滑坡地质力学模式[J]. 地质学报, 95(3): 605-617.
    [79] 张永双, 李金秋, 任三绍, 等, 2022a. 川藏交通廊道黏土化蚀变岩发育特征及其对大型滑坡的促滑作用[J]. 地球科学, 47(6): 1945-1956.
    [80] 张永双, 吴瑞安, 郭长宝, 等, 2022b. 高原山区铁路工程建设地质安全评价: 思路与方法[J]. 地质学报, 96(5): 1736-1751.
  • 加载中
图(10) / 表(1)
计量
  • 文章访问数:  198
  • HTML全文浏览量:  36
  • PDF下载量:  84
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-09-10
  • 修回日期:  2025-09-20
  • 录用日期:  2025-09-21
  • 预出版日期:  2025-10-11
  • 刊出日期:  2025-10-28

目录

    /

    返回文章
    返回