留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

修正剑桥模型在DPC桩—土结构层中的应用分析

胡贺松 廖湘英 陈晓斌

胡贺松, 廖湘英, 陈晓斌, 2018. 修正剑桥模型在DPC桩—土结构层中的应用分析. 地质力学学报, 24 (6): 849-854. DOI: 10.12090/j.issn.1006-6616.2018.24.06.088
引用本文: 胡贺松, 廖湘英, 陈晓斌, 2018. 修正剑桥模型在DPC桩—土结构层中的应用分析. 地质力学学报, 24 (6): 849-854. DOI: 10.12090/j.issn.1006-6616.2018.24.06.088
HU Hesong, LIAO Xiangying, CHEN Xiaobin, 2018. THE APPLICATION OF MODIFIED CAM-CLAY MODEL IN DPC PILE-SOIL INTERFACE. Journal of Geomechanics, 24 (6): 849-854. DOI: 10.12090/j.issn.1006-6616.2018.24.06.088
Citation: HU Hesong, LIAO Xiangying, CHEN Xiaobin, 2018. THE APPLICATION OF MODIFIED CAM-CLAY MODEL IN DPC PILE-SOIL INTERFACE. Journal of Geomechanics, 24 (6): 849-854. DOI: 10.12090/j.issn.1006-6616.2018.24.06.088

修正剑桥模型在DPC桩—土结构层中的应用分析

doi: 10.12090/j.issn.1006-6616.2018.24.06.088
基金项目: 

广东特支计划资助项目 2014TQ01Z014

广东特支计划资助项目 2015B020238014

国家自然科学基金 5167082383

详细信息
    作者简介:

    胡贺松(1979-), 男, 工学博士, 教授级高工, 主要研究岩土工程施工。E-mail:hesonghu79@126.com

  • 中图分类号: U43

THE APPLICATION OF MODIFIED CAM-CLAY MODEL IN DPC PILE-SOIL INTERFACE

  • 摘要: 针对DPC桩-土结构层开展大型直剪试验,基于试验分析,在考虑DPC桩-土结构层注浆影响上引入临界应力比,构建了可描述应变软化的修正剑桥模型应力应变方程。直剪试验表明DPC桩-土结构层剪切特性表现为剪切软化,具有明显的峰值强度和残余强度,呈现出明显的结构性,其特征与超固结的黏土的剪切应力应变曲线特性类似。推导出的修正剑桥模型能较好的解释实验结果,所得出的结论对DPC桩的设计有一定的指导意义。

     

  • 图  1  DPC桩—土结构层示意图

    Figure  1.  sketch of DPC pile-soil structural layer

    图  2  试验土级配曲线

    Figure  2.  Gradation curves of the tested soils

    图  3  大型剪切试验仪器及试样

    a—TYJ-800剪切仪;b—试样

    Figure  3.  The large-scale direct shear test device and the specimen

    图  4  DPC桩—粉质黏土结构层应力应变曲线

    a—注浆前DPC桩—土结构层;b—注浆后DPC桩—土结构层

    Figure  4.  Stress-strain curves of the DPC pile-silty clay structural layer

    图  5  DPC桩—素填土结构层应力应变曲线

    Figure  5.  Stress-strain curves of the DPC pile-plain fill structural layer

    图  6  DPC桩—土结构层屈服面扩展

    Figure  6.  Expansion of yield surface of DPC pile-soil structural layer

    图  7  模型预测与实验值对比

    a—DPC桩—粉质黏土结构层;b—DPC桩—素填土结构层

    Figure  7.  Predicted stress-strain curves and tested stress-strain curves

    表  1  试验土的基本物理力学参数值

    Table  1.   The fundamental physical and mechanical parameters of the tested soils

    桩周土 最优含
    水率/%
    最大干密度/
    (g·cm3)
    液限
    WL
    塑限
    WP
    粘聚力/
    kPa
    内摩擦角/
    (°)
    粉质黏土 18.5 1.71 24.1 16.53 11.6 31
    素填土 14.4 1.88 40.7 25.1 23.1 33
    下载: 导出CSV

    表  2  模型参数值

    Table  2.   Values of the model parameters

    DPC桩—结构层 λ κ e0 v M Mz β η
    DPC桩—粉质粘土 0.11 0.025 0.66 0.30 0.24 1.7 0.35 1.50
    DPC桩—素填土 0.12 0.021 0.58 0.25 0.92 2.3 0.30 1.33
    下载: 导出CSV
  • [1] Clough G W, Duncan J M. Finite element analysis of retaining wall behavior[J]. Journal of the Soil Mechanics and Foundations Division, 1971, 97(12):1657~1672.
    [2] 蒲诃夫, 郑俊杰, 章荣军.桩土界面荷载传递模型的改进及其数值实现[J].华中科技大学学报(城市科学版), 2010, 27(1):84~88. doi: 10.3969/j.issn.2095-0985.2010.01.019

    PU Hefu, ZHENG Junjie, ZHANG Rongjun. Improvement on the load transfer model of pile-soil interface and its numerical simulation[J]. Journal of Huazhong University of Science and Technology (Urban Science Edition), 2010, 27(1):84~88. (in Chinese with English abstract) doi: 10.3969/j.issn.2095-0985.2010.01.019
    [3] 曹卫平.桩土界面荷载传递双曲线模型的改进及其应用[J].岩石力学与工程学报, 2009, 28(1):144~151. doi: 10.3321/j.issn:1000-6915.2009.01.019

    CAO Weiping. An improved load transfer hyperbolic model for pile-soil interface and its application[J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(1):144~151. (in Chinese with English abstract) doi: 10.3321/j.issn:1000-6915.2009.01.019
    [4] Brandt J R T. Behaviour of soil-concrete interfaces[D]. Alberta, Canada: The University of Alberta, 1985.
    [5] Desai C S, Ma Y Z. Modelling of joints and interfaces using the disturbed-state concept[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1992, 16(9):623~652. doi: 10.1002/(ISSN)1096-9853
    [6] 胡黎明, 濮家骝.土与结构物接触面损伤本构模型[J].岩土力学, 2002, 23(1):6~11. doi: 10.3969/j.issn.1000-7598.2002.01.002

    HU Liming, PU Jialiu. Damage model of soil-structure interface[J]. Rock and Soil Mechanics, 2002, 23(1):6~11. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-7598.2002.01.002
    [7] 王伟, 卢廷浩.土与水工结构接触面模型研究[J].水力水电学报, 2012, 31(1):68~71. http://d.old.wanfangdata.com.cn/Periodical/slfdxb201201013

    WANG Wei, LU Tinghao. Study on constitutive law of soil-hydraulic structure interface[J]. Journal of Hydroelectric Engineering, 2012, 31(1):68~71. (in Chinese with English abstract) http://d.old.wanfangdata.com.cn/Periodical/slfdxb201201013
    [8] 李赛, 汪优, 秦志浩, 等.基于统计损伤本构模型的改进接触面模型研究[J].铁道科学与工程学报, 2016, 13(7):1247~1252. doi: 10.3969/j.issn.1672-7029.2016.07.004

    LI Sai, WANG You, QIN Zhihao, et al. Research on improved contact surface constitutive model based on statistical da mage constitutive model[J]. Journal of Railway Science and Engineering, 2016, 13(7):1247~1252. (in Chinese with English abstract) doi: 10.3969/j.issn.1672-7029.2016.07.004
    [9] 张嘎, 张建民.土与结构接触面弹塑性损伤模型用于单桩与地基相互作用分析[J].工程力学, 2006, 23(2):72~77. doi: 10.3969/j.issn.1000-4750.2006.02.013

    ZHANG Ga, ZHANG Jianmin. Elastoplastic damage model of soil-structure interface in single pile-soil interaction analysis[J]. Engineering Mechanics, 2006, 23(2):72~77. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-4750.2006.02.013
    [10] Chen X B, Zhang J S, Xiao Y J, et al. Effect of roughness on shear behavior of red clay-concrete interface in large-scale direct shear tests[J]. Canadian Geotechnical Journal, 2015, 52(8):1122~1135. doi: 10.1139/cgj-2014-0399
    [11] 石熊, 张家生, 邓国栋, 等.循环荷载作用下红黏土与混凝土接触面剪切特性试验研究[J].铁道科学与工程学报, 2014, 11(3):88~93. doi: 10.3969/j.issn.1672-7029.2014.03.015

    SHI Xiong, ZHANG Jiasheng, DENG Guodong, et al. Experimental research on shearing property of red clay-concrete interface under cyclic loading[J]. Journal of Railway Science and Engineering, 2014, 11(3):88~93. (in Chinese with English abstract) doi: 10.3969/j.issn.1672-7029.2014.03.015
    [12] Zheng G, Peng S Y, Ng C W W, et al. Excavation effects on pile behaviour and capacity[J]. Canadian Geotechnical Journal, 2012, 49(12):1347~1356. doi: 10.1139/t2012-095
    [13] Ebrahimian B, Bauer E. Numerical simulation of the effect of interface friction of a bounding structure on shear deformation in a granular soil[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2012, 36(12):1486~1506. doi: 10.1002/nag.v36.12
    [14] Kwak C W, Park I J, Park J B. Dynamic shear behavior of concrete-soil interface based on cyclic simple shear test[J]. KSCE Journal of Civil Engineering, 2014, 18(3):787~793. doi: 10.1007/s12205-014-0360-2
    [15] Liu J K, Lv P, Cui Y H, et al. Experimental study on direct shear behavior of frozen soil-concrete interface[J]. Cold Regions Science and Technology, 2014, 104~105:1~6. http://www.sciencedirect.com/science/article/pii/S0165232X14000949
    [16] Xiao S G, Suleiman M T, McCartney J S. Shear behavior of silty soil and soil-structure interface under temperature effects[A]. American Society of Civil Engineers Geo-Congress 2014[C]. Atlanta, Georgia: American Society of Civil Engineers, 2014.
    [17] 吕鹏, 刘建坤, 崔颖辉.冻土-混凝土接触面动剪强度研究[J].岩土力学, 2013, 34(S2):180~183 http://d.old.wanfangdata.com.cn/Periodical/ytlx2013z2029

    LÜ Peng, LIU Jiankun, CUI Yinghui. A study of dynamic shear strength of frozen soil-concrete contact interface[J]. Rock and Soil Mechanics, 2013, 34(S2):180~183. (in Chinese with English abstract) http://d.old.wanfangdata.com.cn/Periodical/ytlx2013z2029
    [18] Yu Y, Damians I P, Bathurst R J. Influence of choice of FLAC and PLAXIS interface models on reinforced soil-structure interactions[J]. Computers and Geotechnics, 2015, 65:164~174. doi: 10.1016/j.compgeo.2014.12.009
    [19] 唐孟雄.大直径随钻跟管桩的研制及工程化[J].广州建筑, 2009, 37(5):3~7. doi: 10.3969/j.issn.1671-2439.2009.05.001

    TANG Mengxiong. The development and engineering of drilling with PHC pipe cased pile[J]. Guangzhou Archtecture, 2009, 37(5):3~7. (in Chinese with English abstract) doi: 10.3969/j.issn.1671-2439.2009.05.001
    [20] 甄文战, 孙德安, 段博.不同应力路径下超固结黏土试样变形局部化分析[J].岩土力学, 2011, 32(1):293~298. doi: 10.3969/j.issn.1000-7598.2011.01.046

    ZHEN Wenzhan, SUN Dean, DUAN Bo. Analysis of strain localization in overconsolidated clay specimens along different stress paths[J]. Rock and Soil Mechanics, 2011, 32(1):293~298. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-7598.2011.01.046
    [21] Schofield A N, Wroth P. Critical State Soil Mechanics[M]. London:McGraw-Hill, 1968.
    [22] Nakai T, Kikumoto M, Kyokawa H, et al. A simple method to consider density and bonding effects in modeling of geomaterials[A]. Wan R, Alsaleh M, Labuz J. Bifurcations, Instabilities and Degradations in Geomaterials[M]. Berlin, Heidelberg: Springer, 2011, 91~111.
    [23] 徐连民, 祁德庆, 高云开.用修正剑桥模型研究超固结土的变形特性[J].水利学报, 2008, 39(3):313~317. doi: 10.3321/j.issn:0559-9350.2008.03.009

    XU Lianmin, QI Deqing, GAO Yunkai. Study on characteristics of over-consolidated soils with modified Cam Clay Model[J]. Journal of Hydraulic Engineering, 2008, 39(3):313~317. (in Chinese with English abstract) doi: 10.3321/j.issn:0559-9350.2008.03.009
    [24] 姚仰平. UH模型系列研究[J].岩土工程学报, 2015, 37(2):193~217. http://d.old.wanfangdata.com.cn/Periodical/ytgcxb201502001

    YAO Yangping. Advanced UH models for soils[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(2):193~217. (in Chinese with English abstract) http://d.old.wanfangdata.com.cn/Periodical/ytgcxb201502001
  • 加载中
图(7) / 表(2)
计量
  • 文章访问数:  222
  • HTML全文浏览量:  168
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-06-10
  • 修回日期:  2018-10-10
  • 刊出日期:  2018-12-01

目录

    /

    返回文章
    返回