Discussion of the seismogenic structure of the 1901 M 6¾ Nyemo earthquake
-
摘要: 史料记载1901年4月26日西藏尼木发生M 6¾级地震,其发震构造尚未有报道,对其发震构造的厘定有助于理解尼木地堑群的地震复发规律,科学评价周边地区的未来强震危险性。遥感解译与地质调查表明,尼木地堑群内部的庞刚地堑西边界断裂长约30 km,走向近北西—北北西,以彭刚玛曲为界分为南北两段。北段断裂地貌线性特征显著,陡坎发育,断错了多级冰碛物及河流阶地。位移恢复结果显示,河流阶地垂直断距T0约1.0 m,T1约2.6 m,T2约5.0 m。南段断裂沿虾庆曲展布,地貌线性特征显著,陡坎发育,断错了多期冲洪积扇体。尼木县城北部发现断裂错动T2阶地剖面,显示该断裂延伸至尼木县城北部。根据位移-震级经验公式计算,庞刚地堑西边界断裂最新一次地震的矩震级约为MW 6.8,这与尼木地震比较吻合。遥感解译、地质调查与震级表明,庞刚地堑可能为1901年尼木地震的发震构造。结合历史地震记录分析认为,尼木地堑群中各个地堑具有独立发生中强地震的能力,其地震复发模式及其与亚东-谷露裂谷南北两段的地震活动差异等尚需进一步研究。Abstract: According to historical records, an M 6¾ earthquake occurred in Nyemo, Tibet on April 21, 1901 without any reports on its seismogenic structure yet. To sort out its seismogenic structure helps to understand the earthquake recurrence pattern of the Nyemo graben group (NGG) and to scientifically evaluate the future earthquake risk of surrounding areas. According to our results from the remote sensing interpretation and geological survey, a 30 km-long fault with a trend of nearly NW-NNW at the western boundary of the Panggang graben (PG), one of the NGG, is divided into north segment and south segment by the Penggang River. The north segment is characterized by significant linear features, with fault scarps developed, offsetting multistage river terraces and moraines. The recovered displacements show that the vertical offsets of Terrace T0, T1 and T2 are ~1.0 m, ~2.6 m and ~5.0 m, respectively. The south segment with obvious linear features develops along the Xiaqing River and extends to the north Nyemo County, with fault scarps developed, offsetting multi-stage alluvial fans. We found the offset Terrance T2 profile in northern Nyemo, indicating the extension of the fault. Through the magnitude recovery, we calculated the moment magnitude of the latest earthquake as about MW6.8 along the PG, which is consistent with the Nyemo earthquake. Inferred from the results of the satellite image interpretation, geological survey and magnitude recovery, the PG is likely the seismogenic structure of the Nyemo earthquake. Also based on historical seismic records, we consider that each graben in the NGG could independently generate moderate-strong earthquakes, and the earthquake recurrence pattern and the seismicity difference between the NGG and the north and south segments of the Yadong-Gulu rift need further study.
-
Key words:
- 1901 Nyemo earthquake /
- seismogenic structure /
- Yadong-Gulu rift /
- Panggang graben
-
图 2 尼木地堑群几何展布特征图
PBG—帕布地堑;PEGG—彭刚地堑;PAGG—庞刚地堑;AG—安岗地堑;YG—羊易地堑;GG—格达地堑
a—尼木地堑群组成结构;b—跨尼木地堑群地质剖面图Figure 2. Geometric distribution of the Nyemo graben group. (a) Composition of the NGG. (b) Geological section cross the NGG.PBG—Pabu graben; PEGG—Penggang graben; PAGG—Panggang graben; AG—Angang graben; YG—Yangyi graben; GG—Geda graben
图 3 尼木地震等震线图(西藏自治区科学技术委员会档案馆,1982)
Figure 3. Isoseismal map of the Nyemo earthquake (The Science and Technology Committee and the Archives of Xizang Autonomous Region, 1982)
图 4 庞岗地堑几何特征展布遥感影像及解译图(a中红色箭头指示断裂位置)
Figure 4. Remote sensing image and interpretation of the geometric distribution of the Panggang graben (The red arrows in Fig. 4a show the trace of the faults)
图 5 庞刚地堑N01调查点多级河流阶地位错地貌特征
P0,P1,P2指示跨断层及阶地陡坎地形剖面位置; 图中红色箭头指示断裂位置
a,b—庞刚地堑N01点遥感影像及解译图;c—多级阶地位错照片Figure 5. Features of fault scarps of multi-stage river terraces at Site N01. (a, b) Satellite image and interpretation at Site N01 of the Panggang graben. (c) Field photo of multi-stage terrace offsets. P0, P1 and P2 show the location of the topographic section cross the faults or terraces. The red arrows show the trace of the faults.
图 8 尼木玛曲阶地野外地质照片
a—尼木玛曲五级河流阶地;b—尼木县北部T3阶地砾石层直接覆盖在基岩之上;c—T3阶地砾石统计点(砾石最大扁平面统计显示古流向为南东)
Figure 8. Field photos of the Nyemo Maqu terraces. (a) Five-stage terrace along the Nyemo Maqu River. (b) The gravel layer of T3 directly covers on the bedrock in the north of Nyemo county. (c) The position for statistics in Terrace T3, and the largest flat plane of gravel shows that the paleocurrent flowed towards southeast.
图 9 庞刚地堑晚第四纪正断层活动野外照片
a,b—剖面1尼木县雪莱村北正断层,可见断层错动晚第四纪河流阶地,断距约1.0 m;c,d—剖面2正断层观察点,可见断层错断晚第四纪冲积河流阶地,砾石层被显著错动约0.5 m;e—剖面3观察点,可见阶梯状正断层错动晚第四纪冲洪积扇
Figure 9. Filed photos showing the late Quaternary normal faulting along the Panggang graben. (a, b) Normal fault of the Section 1 in the north of Xuelai village, showing that fault dislocated the late Quaternary river terrace with a displacement of ~1.0 m. (c, d) Observation point in the normal fault of the Section 2, showing that the fault dislocated the late Quaternary alluvial river terrace with an obvious displacement of ~0.5 m on the gravel layer. (e) Observation point in the Section 3, showing the late Quaternary alluvial-proluvial fan with step-like normal fault dislocations.
表 1 历史记载以来沿尼木地堑发生的M≥6.0地震参数(吴中海等,2015)
Table 1. Seismic parameters of M≥6.0 along the NGG on record (Wu et al., 2015)
地震日期 震中位置 震级 可能的发震构造 北纬/东经 参考地点 1264 29.70°/90.60° 楚布寺 ≥6¾ 羊易地堑/安岗地堑 1901.04.21 29.50°/90.10° 尼木北 6¾ 庞岗地堑 1990.07.30 29.60°/90.25° 安岗 6.3 安岗地堑 2008.10.06 29.80°/90.30° 羊易 6.6 羊易地堑 -
ARMIJO R, TAPPONNIER P, MERCIER J L, et al., 1986. Quaternary extension in southern Tibet: field observations and tectonic implications[J]. Journal of Geophysical Research: Soil Earth, 91(B14): 13803-13872. doi: 10.1029/JB091iB14p13803 ARMIJO R, TAPPONNIER P, HAN T L, 1989. Late Cenozoic right-lateral strike-slip faulting in southern Tibet[J]. Journal of Geophysical Research: Soil Earth, 94(B3): 2787-2838. doi: 10.1029/JB094iB03p02787 BASANG C, CAO Z Q, DENG G Y et al., 2009. Damage Analysis of Dangxiong Ms6.6 and Nimu Ms 6.5 Earthquakes in Tibet[J]. Technology for Earthquake Disaster Prevention, 4(2): 233-239. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZZFY200902015.htm CHENG J, XU X W, GAN W J, et al., 2012. Block model and dynamic implication from the earthquake activities and crustal motion in the southeastern margin of Tibetan Plateau[J]. Chinese Journal of Geophysics, 55(4): 1198-1212. (in Chinese with English abstract) http://www.researchgate.net/publication/270648382_Block_model_and_dynamic_implication_from_the_earthquake_activities_and_crustal_motion_in_the_southeastern_margin_of_Tibetan_Plateau CHENG J, RONG Y F, MAGISTRALE H, et al., 2020. Earthquake rupture scaling relations for mainland China[J]. Seismological Research Letters, 91(1): 248-261. doi: 10.1785/0220190129 DENG Q D, YU G H, YE W H, 1992. Relationship between earthquake magnitude and parameters of surface ruptures associated with historical earthquakes[G]//DENG Q D, WANG Y P. Researcher on active fault (2). Beijing: Seismological Press: 247-264. (in Chinese) ENGLAND P, HOUSEMAN G, 1989. Extension during continental convergence, with application to the Tibetan Plateau[J]. Journal of Geophysical Research: Solid Earth, 94(B12): 17561-17579. doi: 10.1029/JB094iB12p17561 GONG Y, ZHANG W F, 1993. Macro-investigation for Nimu earthquake with Magnitude 6.5 in July 30, 1992 in Tibet[J]. Sichuan Earthquake(2): 59-64. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-SCHZ199302008.htm HA G H, 2019. Normal faulting of Central-Southern Yadong-Gulu rift since Late Cenozoic, Southern Tibet[D]. Beijing: Chinese Academy of Geological Sciences. (in Chinese with English abstract) HAN T L, 1987. The active tectonics in Xizang (Tibet)[M]//Chinese Academy of Geological Sciences. People's Republic of China, Ministry of Geology and Mineral Resources, Geological Memoirs Series 5 (Number 4): Tectonic evolution of the lithosphere of the Himalayas. Beijing: Geological Publishing House. (in Chinese) LEE J, HAGER C, WALLIS S R, et al., 2011. Middle to late Miocene extremely rapid exhumation and thermal reequilibration in the Kung Co rift, southern Tibet[J]. Tectonics, 30(2): TC2007. doi: 10.1029/2010TC002745 LI J., WEN S., ZHANG Q., et al., 1979. Discussion on the age, amplitude and form of the uplift of the Qinghai Tibet Plateau. [J]. Science China, (6): 608-616. (in Chinese) http://www.researchgate.net/publication/288012867_Discussion_on_the_age_amplitude_and_form_of_the_uplifting_of_the_Qinghai-Tibetan_plateau MERCIER J L, ARMIJO R, TAPPONNIER P, et al., 1987. Change from Late Tertiary compression to Quaternary extension in southern Tibet during the India-Asia Collision[J]. Tectonics, 6(3): 275-304. doi: 10.1029/TC006i003p00275 MOLNAR P, TAPPONNIER P, 1977. The collision between India and Eurasia[J]. Scientific American, 236(4): 30-41. doi: 10.1038/scientificamerican0477-30 MOLNAR P, TAPPONNIER P, 1978. Active tectonics of Tibet[J]. Journal of Geophysical Research: Solid Earth, 83(B11): 5361-5375. doi: 10.1029/JB083iB11p05361 MOLNAR P, CHEN W P, 1983. Focal depths and fault plane solutions of earthquakes under the Tibetan Plateau[J]. Journal of Geophysical Research: Solid Earth, 88(B2): 1180-1196. doi: 10.1029/JB088iB02p01180 MOLNAR P, LYON-CAENT H, 1989. Fault plane solutions of earthquakes and active tectonics of the Tibetan Plateau and its margins[J]. Geophysical Journal International, 99(1): 123-154. doi: 10.1111/j.1365-246X.1989.tb02020.x MOLNAR P, ENGLAND P, MARTINOD J, 1993. Mantle dynamics, uplift of the Tibetan Plateau, and the Indian Monsoon[J]. Reviews of Geophysics, 31(4): 357-396. doi: 10.1029/93RG02030 MURPHY M A, SANCHEZ V, TAYLOR M H, 2010. Syncollisional extension along the India-Asia suture zone, south-central Tibet: Implications for crustal deformation of Tibet[J]. Earth and Planetary Science Letters, 290(3-4): 233-243. doi: 10.1016/j.epsl.2009.11.046 NI J, YORK J E, 1978. Late Cenozoic tectonics of the Tibetan Plateau[J]. Journal of Geophysical Research: Solid Earth, 83(B11): 5377-5384. doi: 10.1029/JB083iB11p05377 ROTHERY D A, DRURY S A, 1984. The neotectonics of the Tibetan Plateau[J]. Tectonics, 3(1): 19-26. doi: 10.1029/TC003i001p00019 STYRON R H, TAYLOR M H, SUNDELL K E, et al., 2013. Miocene initiation and acceleration of extension in the South Lunggar rift, western Tibet: Evolution of an active detachment system from structural mapping and (U-Th)/He thermochronology[J]. Tectonics, 32(4): 880-907. doi: 10.1002/tect.20053/full STYRON R, TAYLOR M, SUNDELL K, 2015. Accelerated extension of Tibet linked to the northward underthrusting of Indian crust[J]. Nature Geoscience, 8(2): 131-134. doi: 10.1038/ngeo2336 TAPPONNIER P, MOLNAR P, 1977. Active faulting and tectonics in China[J]. Journal of Geophysical Research, 82(20): 2905-2930. doi: 10.1029/JB082i020p02905 TAPPONNIER P, MERCIER J L, ARMIJO R, et al., 1981. Field evidence for active normal faulting in Tibet[J]. Nature, 294(5840): 410-414. doi: 10.1038/294410a0 TAPPONNIER P, PELTZER G, LE DAIN A Y, et al., 1982. Propagating extrusion tectonics in Asia: New insights from simple experiments with plasticine[J]. Geology, 10(12): 611-616. doi: 10.1130/0091-7613(1982)10<611:PETIAN>2.0.CO;2 TAPPONNIER P, RYERSON F J, VAN DER WOERD J, et al., 2001. Long-term slip rates and characteristic slip: keys to active fault behaviour and earthquake hazard[J]. Earth and Planetary Sciences, 333: 483-494. http://www.sciencedirect.com/science/article/pii/S1251805001016688 TAYLOR M, YIN A, RYERSON F J, et al., 2003. Conjugate strike-slip faulting along the Bangong-Nujiang suture zone accommodates coeval east-west extension and north-south shortening in the interior of the Tibetan Plateau[J]. Tectonics, 22(4): 1044. doi: 10.1029/2002TC001361 The Science and Technology Committee and the Archives of Xizang Autonomous Region, 1982. A Compilation on Historical Earthquakes Data in Tibet (the First Volume)[G]. Lasa: Xizang People's Publishing House, 1-583. (in Chinese) WANG Y P, 1998. Principal features of the active tectonics in Qinghai-Xizang plateau[G]//The Editorial Committee of "Research on Active Fault". Research on active fault (6): Theory and application. Beijing: Seismological Press: 135-144. (in Chinese) WELLS D L, COPPERSMITH K J, 1994. New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement[J]. Bulletin of the Seismological Society of America, 84(4): 974-1002. http://gji.oxfordjournals.org/cgi/ijlink?linkType=ABST&journalCode=ssabull&resid=84/4/974 WU Z H, WU Z H, HU D G, et al., 2006. Holocene seismogenic faults along the Tanggula-Lhasa section of the Qinghai-Tibet Railway, China[J]. Geological Bulletin of China, 25(12): 1387-1401. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZQYD200612005.htm WU Z H, ZHANG Y S, HU D G, et al., 2008. The Quaternary normal faulting of the Cona-Oiga rift[J]. Seismology and Geology, 30(1): 144-160. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZDZ200801010.htm WU Z H, YE P S, WU Z H, 2009. The seismic intensity, seismogenic tectonics and mechanism of the Ms6.6 Damxung earthquake happened on October 6, 2008 in Southern Tibet, China[J]. Geological Bulletin of China, 28(6): 713-725. (in Chinese with English abstract) http://www.researchgate.net/publication/289319828_The_seismic_intensity_seismogenic_tectonics_and_mechanism_of_the_Ms66_Damxung_earthquake_happened_on_October_6_2008_in_southern_Tibet_China WU Z H, YE P S, BAROSH P J, et al., 2011. The October 6, 2008 Mw 6.3 magnitude Damxung earthquake, Yadong-Gulu rift, Tibet, and implications for present-day crustal deformation within Tibet[J]. Journal of Asian Earth Sciences, 40(4): 943-957. doi: 10.1016/j.jseaes.2010.05.003 WU Z H, YE P S, WANG C M, et al., 2015. The relics, ages and significance of prehistoric large earthquakes in the Angang Graben in South Tibet[J]. Earth Science, 40(10): 1621-1642. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX201510003.htm WU Z M, CAO Z Q, SHENTU B M, et al., 1992. Seismogenic structures of the 1411 southern Damxung earthquake of M=8 in Tibet[J]. Earthquake Research in China, 8(2): 46-52. (in Chinese with English abstract) http://epub.cnki.net/grid2008/docdown/docdownload.aspx?filename=ZGZD199202005&dbcode=CJFD&year=1992&dflag=pdfdown YIN A, TAYLOR M H, 2011. Mechanics of V-shaped conjugate strike-slip faults and the corresponding continuum mode of continental deformation[J]. Geological Society of America Bulletin, 123(9-10): 1798-1821. doi: 10.1130/B30159.1 ZENG Q L, YUAN G X, MCSAVENEY M, et al., 2020. Timing and seismic origin of Nixu rock avalanche in southern Tibet and its implications on Nimu active fault[J]. Engineering Geology, 268: 105522. doi: 10.1016/j.enggeo.2020.105522 ZHANG J J, GUO L, 2007. Structure and geochronology of the southern Xainza-Dinggye rift and its relationship to the south Tibetan detachment system[J]. Journal of Asian Earth Sciences, 29(5-6): 722-736. doi: 10.1016/j.jseaes.2006.05.003 ZHANG J J, SANTOSH M, WANG X X, et al., 2012. Tectonics of the northern Himalaya since the India-Asia collision[J]. Gondwana Research, 21(4): 939-960. doi: 10.1016/j.gr.2011.11.004 ZHANG P Z, SHEN Z K, WANG M, et al., 2004. Continuous deformation of the Tibetan Plateau from global positioning system data[J]. Geology, 32(9): 809-812. doi: 10.1130/G20554.1 ZHAO G M, WU Z H, LIU J, et al., 2019. The time space distribution characteristics and migration law of large earthquakes in the Indiam-Eurasian plate collision deformation area[J]. Journal of Geomechanics, 25(3): 324-340. (in Chinese with English abstract) http://www.researchgate.net/publication/333948849_THE_TIME_SPACE_DISTRIBUTION_CHARACTERISTICS_AND_MIGRATION_LAW_OF_LARGE_EARTHQUAKES_IN_THE_INDIAM-EURASIAN_PLATE_COLLISION_DEFORMATION_AREA ZHENG W J, ZHANG P Z, YUAN D Y, et al., 2019. Basic characteristics of active tectonics and associated geodynamic processes in continental China[J]. Journal of Geomechanics, 25(5): 699-721. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTotal-DZLX201905007.htm 巴桑次仁, 曹忠权, 邓桂英, 等, 2009. 西藏当雄6.6级地震与尼木6.5级地震震害特征分析[J]. 震灾防御技术, 4(2): 233-239. doi: 10.3969/j.issn.1673-5722.2009.02.013 程佳, 徐锡伟, 甘卫军, 等, 2012. 青藏高原东南缘地震活动与地壳运动所反映的块体特征及其动力来源[J]. 地球物理学报, 55(4): 1198-1212. doi: 10.6038/j.issn.0001-5733.2012.04.016 邓起东, 于贵华, 叶文华, 1992. 地震地表破裂参数与震级关系的研究[G]//邓起东, 汪一鹏. 活动断裂研究(2). 北京: 地震出版社: 247-264. 龚宇, 张文甫, 1993. 1992年7月30日西藏尼木6.5级地震宏观考察[J]. 四川地震(2): 59-64. https://www.cnki.com.cn/Article/CJFDTOTAL-SCHZ199302008.htm 哈广浩, 2019. 藏南亚东-谷露裂谷中-南段晚新生代正断层作用[D]. 北京: 中国地质科学院. 韩同林, 1987. 喜马拉雅岩石圈构造演化: 西藏活动构造[M]//中国地质科学院. 中华人民共和国地质矿产部地质专报五构造地质地质力学第4号. 北京: 地质出版社. 李吉均, 文世宣, 张青松, 等, 1979. 青藏高原隆起的时代、幅度和形式的探讨[J]. 中国科学(6): 608-616. https://www.cnki.com.cn/Article/CJFDTOTAL-JAXK197906008.htm 西藏自治区科学技术委员会档案馆, 1982. 西藏地震史料汇编(第一卷)[G]. 拉萨: 西藏人民出版社: 1-583. 汪一鹏, 1998. 青藏高原活动构造基本特征[G]//《活动断裂研究》编委会编. 活动断裂研究(6). 北京: 北京地震出版社: 135-144. 吴中海, 吴珍汉, 胡道功, 等, 2006. 青藏铁路唐古拉山-拉萨段全新世控震断裂研究[J]. 地质通报, 25(12): 1387-1401. doi: 10.3969/j.issn.1671-2552.2006.12.006 吴中海, 张永双, 胡道功, 等, 2008. 藏南错那-沃卡裂谷的第四纪正断层作用及其特征[J]. 地震地质, 30(1): 144-160. doi: 10.3969/j.issn.0253-4967.2008.01.010 吴中海, 叶培盛, 吴珍汉, 2009. 2008年10月6日西藏当雄Ms6.6级强震的地震烈度控震构造和发震机理[J]. 地质通报, 28(6): 713-725. doi: 10.3969/j.issn.1671-2552.2009.06.005 吴中海, 叶培盛, 王成敏, 等, 2015. 藏南安岗地堑的史前大地震遗迹、年龄及其地质意义[J]. 地球科学, 40(10): 1621-1642. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201510003.htm 吴章明, 曹忠权, 申屠炳明, 等, 1992. 1411年西藏当雄南8级地震发震构造[J]. 中国地震, 8(2): 46-52. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGZD199202005.htm 赵根模, 吴中海, 刘杰, 等, 2019. 印度-欧亚板块碰撞变形区的大地震时空分布特征与迁移规律[J]. 地质力学学报, 25(3): 324-340. https://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?flag=1&file_no=20190303&journal_id=dzlxxb 郑文俊, 张培震, 袁道阳, 等, 2019. 中国大陆活动构造基本特征及其对区域动力过程的控制[J]. 地质力学学报, 25(5): 699-721. https://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?flag=1&file_no=20190506&journal_id=dzlxxb