Deformation sequences and ore-controlling structures of the Chanziping–Daping gold mining area in Hunan Province, China
-
摘要: 湖南铲子坪−大坪金矿区位于雪峰弧形构造带西南段,金矿脉主要呈北西西向—北北西向,其次为北北东向。尽管现有研究表明北东向断裂为导矿和容矿构造、北西向断裂为容矿构造,但对控矿断裂的性质和形成时代缺乏明确可靠的认识。文章根据对地表露头构造和矿化蚀变的观测、解析,结合区域构造特征、构造演化和测年资料等,厘定了铲子坪−大坪金矿区构造变形序列及其时代背景,确定了控矿构造类型及其属性。研究认为,研究区自早至晚经历了6期主要变形事件:志留纪晚期受到北西西向挤压,形成北北东走向的褶皱、板劈理和脆韧性剪切带;中三叠世晚期受到北北西向挤压,形成北西西向—北西向右行走滑断裂和剪切破裂、南北向左行剪切破裂、北西向和北北东向共轭剪切破裂、北东东向的逆断裂和叠加褶皱;晚三叠世早期受到南北向挤压,形成北西向—北北西向右行走滑断裂和剪切破裂、北北东向—北东向左行剪切破裂和断裂、北东东向左行膝折构造;中侏罗世晚期受到北西西—近东西向挤压,形成南北向—北北东向逆断裂、北西向—北西西向左行剪切破裂、北东向右行逆冲剪切破裂、北北东向—近南北向的破劈理、面理褶皱和石香肠;古近纪中晚期受到北东向挤压,形成北北东向—南北向右行剪切破裂和断裂、北东东向左行剪切破裂、北西向的逆断裂和破劈理;古近纪晚期—新近纪初期受到北西向挤压,形成北东向逆冲剪切破裂、北西西向右行剪切破裂。研究区北北东向矿脉形成于志留纪晚期和晚三叠世,北西西向—北北西向矿脉形成于晚三叠世晚期。志留纪晚期成矿与断裂运动导致的构造活化作用有关,晚三叠世晚期成矿与同期大规模花岗质岩浆活动有关。导矿构造主要为志留纪晚期北西西向挤压形成的北北东向大断裂即脆韧性剪切带。主要容矿构造为中三叠世晚期北北西向挤压形成的北西西向—北西向右行走滑断裂、晚三叠世早期南北向挤压形成的北西向—北北西向右行走滑断裂,其次为志留纪晚期北西西向挤压形成的北北东向脆韧性剪切带。Abstract: The Chanziping–Daping gold deposit area is located in the southwest section of the Xuefeng arc-shaped structural belt, with mainly NWW-NNW-trending and secondary NNE-trending Au veins. Existing studies proposed the NE-trending faults as the ore-passing and ore-bearing structures and the NW-trending faults as the ore-bearing structures. However, there is no clear and reliable understanding of the nature and age of ore-controlling faults. Given this, the authors carried out detailed field observation and analysis of surface outcrop structures and mineralization alteration, and then combined with regional structural characteristics, tectonic evolutions, and dating data, determined the deformation sequences and their ages in the Chanziping–Daping gold deposit area, and determined the types and attributes of ore-controlling structures. The study suggests that the study area experienced six main deformation events from early to late: Regional NWW compression during the late Silurian which resulted in the NNE-trending folds, slaty cleavages and brittle-ductile shear zones; Regional NNW compression in the late Middle Triassic which caused the formation of NWW-to-NW-trending dextral strike-slip faults and shear fractures, NS-trending sinistral shear fractures, NW- and NNE-trending conjugate shear fractures, NEE-trending thrust faults and superimposed folds; Regional NS compression in the early Late Triassic which led to the development of NW-to-NNW-trending dextral strike-slip faults and shear fractures, NNE-to-NE-trending sinistral shear fractures and faults, and NEE-trending sinistral kinks; Regional NWW-to-near EW-compression in the late Middle Jurassic which resulted in the NS-to-NNE-trending thrust faults, NW-to-NWW-trending sinistral shear fractures, NE-trending dextral thrust shear fracture, NNE-to-near NS-trending fracture cleavages, foliation folds and boudins; Regional NE compression in the middle-late Paleogene which led to the development of NNE-to-NS-trending dextral shear fractures and faults, NEE-trending sinistral shear fractures, NW-trending thrust faults and fracture cleavages; Regional NW compression during the late Paleogene to early Neogene which led to the formation of NE-trending thrust shear fractures and NWW-trending dextral shear fractures. The NNE-trending mineral veins in the study area formed in the late Silurian and the late Late Triassic, and the NWW-to-NNW-trending mineral veins formed in the late Late Triassic. The mineralization in the late Silurian was associated with the tectonic activation caused by the fault movement, and the mineralization in the late Late Triassic was related to large-scale granitic magmatism in the same period. The ore-passing structures are mainly the large NNE-trending faults, namely the brittle-ductile shear zones formed by NWW- compression in the late Silurian. The main ore-bearing structures are the NWW-to-NW-trending dextral strike-slip faults formed by NNW compression in the late Middle Triassic, NW-to-NNW-trending dextral strike-slip faults formed by NS compression in the early Late Triassic, with next NNE-trending brittle-ductile shear zones formed by NWW compression in the late Silurian.
-
0. 引言
江南造山带湖南段表现为一大型弧形构造带(以下称雪峰弧形构造带),发育大量金(锑钨)矿床。关于矿床特征、成因等已有大量研究并取得丰硕成果,但关于成矿时代及构造背景尚存在不同认识(Xu et al.,2017;Zhang et al.,2019;黄建中等,2020;柏道远等,2021a)。此外,尽管对各矿床(区)的导矿和容矿构造已有基本认识,但控矿断裂的运动学特征、形成时代和动力学机制等方面的研究大多非常薄弱(柏道远等,2021a)。
铲子坪−大坪金矿区位于雪峰弧形构造带西南段,处于多条北北东向深大断裂与白马山−中华山花岗岩带的交汇部位,成矿地质条件良好,发育有铲子坪、大坪、石榴寨、桐溪、响溪、断坑、白岩云等金矿床。关于铲子坪金矿的矿床特征和找矿标志(魏道芳,1995;骆学全,1996a,1996b;赵建光,2000)、矿床成因和物质来源(魏道芳,1993;曹亮等,1995a,1995b)已有较多研究,对其控矿构造也已有较多探讨,明确北东向断裂为导矿和容矿构造、北西向断裂为容矿构造(骆学全,1993;陈明扬,1996;孟宪刚等,2001;符海华等,2011)。但关于控矿断裂的运动学特征、形成时代和区域构造体制等存在很大争议,如骆学全(1993)提出北东向导矿断裂在加里东期发生韧性剪切逆冲作用,印支期转为脆性,燕山期转为右行走滑;北西向断裂在加里东期为斜节理,燕山期转为左行扭张并成矿;符海华等(2011)认为北西向容矿断裂形成于加里东期,印支—燕山期再次活动,具张扭性;孟宪刚等(2001)提出北北东向和北东向控矿断裂主要形成于加里东期,印支—燕山期产生张裂而形成矿体充填。此外,上述有关控矿断裂运动学特征和形成时代的认识一般缺乏可靠的证据支持。鉴于控矿构造研究方面存在上述问题与不足,作者根据对地表露头构造和矿化蚀变的观测、解析,结合区域构造特征、构造演化和成岩成矿的年代学资料等,厘定铲子坪−大坪金矿区构造变形序列及其时代背景,确定控矿构造类型及其属性,以深化对构造控矿特征和机制的认识。
1. 区域地质背景及矿床地质概况
1.1 区域地质背景
雪峰弧形构造带中—西南段发育有板溪锑矿、合仁坪金矿、沃溪金锑钨矿床、大溶溪钨矿、渣滓溪锑钨矿、古台山金矿、龙王江锑金矿、铲子坪金矿、漠滨金矿等众多金、锑、钨矿床,是重要的金−锑−钨成矿带。铲子坪−大坪金矿区位于弧形构造带西南段,区域内有溆浦−靖州断裂、通道−江口断裂以及城步−新化断裂经过或位于该区旁侧,成矿地质条件优越(图1)。
图 1 区域地质及锑−钨−金矿床分布图(据柏道远等,2021a修改)F1—慈利−保靖断裂(江南断裂);F2—保靖−铜仁断裂;F3—古丈−吉首断裂;F4—怀化−沃溪断裂;F5—溆浦−靖州断裂;F6—通道−江口断裂;F7—城步−江口断裂;F8—城步−新化断裂;F9—公田−灰汤−新宁断裂Figure 1. Regional geological map and distribution of Sb-W-Au deposits(modified after Bai et al., 2021a)F1–Cili–Baojing fault (Jiangnan fault); F2–Baojing–Tongren fault; F3–Guzhang–Jishou fault; F4–Huaihua–Woxi fault; F5–Xupu–Jingzhou fault; F6–Tongdao–Jiangkou fault; F7–Chengbu–Jiangkou fault; F8–Chengbu–Xinhua fault; F9–Gongtian–Huitang–Xinning fault铲子坪−大坪金矿区出露地层主要为新元古代高涧群(板溪群同期异相沉积)和南华系,少量震旦系、寒武系和奥陶系(图2)。高涧群自下而上依次为石桥铺组岩屑石英杂砂岩、石英杂岩,黄狮洞组钙质板岩、大理岩、粉砂质板岩,砖墙湾组含碳泥质板岩、板岩夹粉砂岩,架枧田组长石石英杂砂岩夹粉砂质板岩,岩门寨组沉凝灰岩与粉砂质板岩等。南华系自下而上依次为下统长安组冰碛砾泥岩、绢云母板岩夹岩屑杂砂岩,富禄组长石石英砂岩夹砂质板岩与铁矿层;中统大塘坡组炭质板状页岩与含锰砂岩;上统洪江组冰碛砾泥岩、冰碛砾砂岩等。震旦系自下而上为金家洞组硅质板岩与炭质板岩,留茶坡组硅质岩夹硅质板岩。寒武系下部为炭质板岩夹泥质粉砂岩与硅质岩;上部为灰岩、泥灰岩夹炭泥质板岩。奥陶系为粉砂质板岩夹绢云母板岩。
图 2 铲子坪−大坪金矿区地质图及观察点上构造形迹与应力场方位f1—芙蓉溪向斜;f2—大坪背斜;f3—青山洞向斜;f4—砖墙湾背斜;F1—母溪断裂;F2—公平断裂;F3—永胜断裂;F4—大坪断裂;F5—杨柳断裂;F6—花树脚断裂;F7—界脚断裂;F8—大坳断裂;F9—里木冲断裂;F10—断坑断裂;F11—响溪断裂;F12—塘湾断裂(a)铲子坪−大坪金矿区地质图;(b)观察点上构造形迹与应力场方位Figure 2. Regional geological map of the Chanziping–Daping gold mining area and deformations and stress orientations on observation points(a) Regional geological map of the Chanziping–Daping gold mining area (modified from 1∶50 000 Tieposhan Sheet Map, Tangwan Sheet Map and 1∶250000 Huaihua Sheet Map); (b) Deformations and stress orientations on observation pointsf1–Furongxi syncline; f2–Daping anticline; f3–Qingshandong syncline; f4–Zhuanqiangwan anticline; F1–Muxi fault; F2–Gongping fault; F3–Yongsheng fault; F4–Daping fault; F5–Yangliu fault; F6–Huashujiao fault; F7–Jiejiao fault; F8–Da’ao fault; F9–Limuchong fault; F10–Duankeng fault; F11–Xiangxi fault; F12–Tangwan fault区内岩浆岩主要为中生代花岗岩(图2)。东北部为黄茅园花岗岩体,岩性为晚三叠世黑云母花岗闪长岩和黑云母二长花岗岩,少量晚侏罗世二云母二长花岗岩;西南部为中华山岩体,岩性为晚三叠世黑云母二长花岗岩。
区内自早古生代以来经历了多期挤压事件,形成了较复杂的构造格架,以及大量不同走向、规模、特征的褶皱、断裂、劈理、膝折和破裂等构造。研究区自花树脚断裂F6以西由北北东向(局部南北向)东倾和西倾逆断裂以及北北东向褶皱组成主体构造格架;该断裂以东由北北东向东倾单斜构造以及叠置其上的北东向逆断裂和走滑断裂组成主体构造格架,其中单斜构造北部的岩层因位于残缺背斜倾伏端而呈北西走向(图2)。规模褶皱主要分布于西部,走向北北东,自西向东有芙蓉溪向斜、大坪背斜、青山洞向斜、砖墙湾背斜等(图2),卷入地层为高涧群和南华系,形成于志留纪晚期。区内北北东向、北东向、北西西向、北西向—北北西向等不同走向的断裂构造极为发育,运动学特征存在逆冲、左行走滑、右行走滑、走滑兼逆冲等。
1.2 矿床地质概况
区内金矿床(点)分布广泛但一般规模不大。金矿床主要分布于高涧群砖墙湾组—岩门寨组以及长安组中,前者发育桐溪金矿和大坪金矿,矿脉赋存于北北东向脆韧性剪切带和北西向断裂中;后者发育青山洞金矿、铲子坪金矿、石榴寨金矿、响溪金矿、断坑金矿、白岩云金矿等,矿脉主要产于北西向断裂中(图2)。矿床特征以铲子坪和大坪两个大型金矿床最为典型。
铲子坪金矿赋矿地层为南华系长安组含砾砂质板岩夹粉砂质板岩和砂砾岩,矿脉产于北西向陡倾断裂带和裂隙中;主要为构造破碎蚀变岩型金矿床,另在主矿脉旁侧发育与之平行的石英细脉型矿脉(骆学全,1993)。围岩中板劈理发育,局部形成强劈理化带;劈理大多走向北北东、倾向北西。矿化蚀变简单,主要为硅化、绢云母化、黄铁矿化和毒砂化。矿区共发现3条金矿脉带,矿脉带走向300°~320°,斜列于花树脚断裂下盘(东盘;图3a)。单脉宽5~20 m,长数十至数百米,折尾追踪,尖灭侧现或再现,成带排列,构成了长达数千米的金矿脉带。矿体走向292°~320°,向南西陡倾斜,南陡北缓,Ⅰ脉带倾角77°~85°,Ⅱ脉带倾角67°~70°,Ⅲ脉带倾角62°。矿体水平长和倾向延深相近,水平面和横剖面上呈舒缓波状弯曲;矿体普遍向西侧伏,侧伏角60°~80°,与劈理化带倾角一致。矿石的矿物组分较简单,脉石矿物为石英和绢云母;矿石矿物主要为黄铁矿、毒砂,其次为黄铜矿、方铅矿,少量闪锌矿、黝铜矿、车轮矿、电气石等。自然金主要赋存形式有石英裂隙金、晶隙金、黄铁矿和毒砂的裂隙金以及包体金(骆学全,1993)。成矿作用分为早、晚两期,早期硫化物含量少、矿物共生组合简单,为石英−黄铁矿−毒砂组合;晚期分为两个成矿阶段,第一阶段硫化物含量多,矿物共生组合复杂,为石英−硫化物−自然金组合,第二阶段矿物共生组合简单,为石英−碳酸盐组合(符海华等,2011)。
图 3 铲子坪金矿区和大坪金矿区地质图a—铲子坪金矿区地质图(据骆学全,1996a修改);b—大坪金矿区地质图(据李华芹等,2008修改)Figure 3. Geological map of the Chanziping gold mining area and the daping gold mining area(a) Geological map of the Chanziping gold mining area (modified after Luo, 1996a); (b) Geological map of the Daping gold mining area (modified after Li et al., 2008)大坪金矿赋存于高涧群粉砂质板岩、绢云母板岩中,包括北北东向矿脉(体)和北西向矿脉(体)(图3b;李华芹等,2008)。北北东向矿体产于北北东走向脆韧性断裂带和片理化蚀变带中,已发现11条矿脉,多位于北北东向断裂带的下盘,以绢云母化、挤压片理化和局部强烈硅化为特征,蚀变程度总体较弱,但矿体延伸较长且稳定。北西向矿脉近10条,均产于北西向破碎蚀变带中,成因类型为破碎带蚀变岩型及石英脉型;矿体延伸较短,横切北北东向脆韧性剪切带和片理化带。按矿物组合,矿石类型为金−石英−黄铁矿型、金−石英−黄铁矿−毒砂型和金−石英−绢云母−黄铁矿型等,矿石结构常见自形—半自形晶结构、交代残余结构,矿石构造主要为脉状、浸染状、眼球状、千枚状等。脉石矿物主要为石英和绢云母,矿石矿物主要为黄铁矿和毒砂。
2. 构造变形序列
2.1 研究方法与思路
鉴于区内出露地层高涧群—奥陶系内部无角度不整合面,属同一构造层,因此变形序列的厘定主要通过恢复构造变形的应力场、综合厘定不同应力事件的方法来进行:对野外所见各类构造的几何学、运动学特征及先后关系进行详细观测,据此恢复各类构造形成的应力场(主要为最大主压应力方向);将上述露头观测资料进行归纳、总结,结合区域构造事件的应力场特征(柏道远等,2015,2021b;李彬等,2022a,2022b),厘定出研究区构造应力事件及其相对时序和变形类型,确定各期变形事件的时代背景(柏道远等,2023a,2023b,2023c)。
相关构造形成的最大主应力确定方法如下:褶皱、逆断裂和劈理形成的最大主应力分别垂直其走向;根据Anderson断层模式以及已有研究的实际观测,脆性剪切破裂(该剪切破裂相当于传统的剪节理)或断裂形成的最大主压应力与裂面和擦痕夹角取30°;膝折带形成的最大主压应力与膝折面夹角为55°左右(郑亚东等,2007)。
此次选择了10个露头良好的地表观察点开展构造观测和解析(图2a),对点上不同类型构造的几何学、运动学特征及切错、叠加和改造关系等进行了详细观测,并恢复了构造形成的应力方位(图2b)。走滑、斜滑剪切破裂和断裂所形成的应力方位不易直接确定,通过赤平投影软件strGraphPrj手工操作求解(图4)。
图 4 代表性露头观察点走滑、斜滑剪切破裂和断裂的应力解析发育多个裂面时,产状取走向和倾向的加权平均值Figure 4. Stress analysis for strike-slip and oblique-slip shear fractures and faults at representative outcrop pointsWhen multiple fractures are developed, the structural attitude is determined by the weighted average of dip direction and dip angle.根据上述研究思路和方法,对露头所收集资料和区域构造资料进行归纳、总结,自早至晚厘定出志留纪晚期北西西向挤压(D1)、中三叠世晚期北北西向挤压(D2)、晚三叠世早期南北向挤压(D3)、中侏罗世晚期北西西向—近东西向挤压(D4)、古近纪中晚期北东向挤压(D5)、古近纪晚期—新近纪初期北西向挤压(D6)共6期构造事件。
2.2 露头点构造特征
露头点上包括形成期次在内的构造解析,与研究区构造事件的综合分析和厘定之间为互相约束的关系。因此,文章在前述6期构造应力事件的框架下,介绍露头所见各类构造特征及其切错、叠加和改造关系,确定构造形成的应力场和变形期次,其中变形期次以构造事件代码(D1—D6)直接标示。
2.2.1 D501点
该点处出露南华系长安组的块状含砾板岩、板岩,岩层产状为340°∠20°。发育北西西向剪切破裂L1和南北向剪切破裂L2(图5a)。L1产状约为30°∠83°,反阶步指示早期右行走滑(D2;图5b),反映北北西向最大主应力(图4);正阶步指示晚期左行走滑(D4;图5b),反映东西向最大主应力(图4)。L2产状约为270°∠80°,正阶步指示早期左行走滑(D2;图5c),反映北北西向最大主应力(图4);反阶步指示晚期右行走滑(D5;图5c),反映北东向最大主应力(图4)。上述两组破裂早期属共轭剪切破裂(图2b),露头上见L2左行切错并限制L1(图5d)。
图 5 D501、D503及D504点构造特征a—D501点处北西西向剪切破裂L1与南北向剪切破裂L2;b—D501点处反阶步及正阶步分别显示北西西向剪切破裂L1早期右行与晚期左行走滑;c—D501点处正阶步及反阶步分别显示南北向剪切破裂L2早期左行与晚期右行走滑;d—D501点处共轭剪切破裂L2左行切错并限制破裂L1;e—D503点处北西西向面理;f—D503点处北北东向面理及变形强弱分带;g—D504点处层理与劈理;h—D504点处北西向剪切破裂L1及石英脉;i—D504点北西倾剪切破裂L3切入北西向剪切破裂L1中石英脉;j—D504点处正阶步指示破裂L2左行走滑;k—D504点处次级羽裂指示北西倾剪切破裂L3逆冲;l—D504点北西西向剪切破裂L4右行切错北北东向剪切破裂L2;m—D504点处正阶步指示北西西向剪切破裂L4右行走滑;n—D504点近南北向剪切破裂L5右行切错北西向剪切破裂L1;o—D504点北北东向脆韧性剪切带中剪切面理(俯视);p—D504点处北北东向脆韧性剪切带中S-C组构显示西盘上升(垂向剖面)Figure 5. Characteristics of structures at D501, D503 and D504(a) NWW-trending shear fracture L1 and SN-trending shear fracture L2 at D501; (b) Antisteps and steps indicate that the NWW-trending shear fracture L1 at D501 dextrally sheared early and sinistrally sheared later respectively; (c) Steps and antisteps indicate that the SN-trending fracture L2 at D501 sinistrally sheared early and dextral sheared later respectively; (d) Conjugate L2 sinistrally cuts and restricts L1 at D501; (e) NWW-trending structural foliation at D503; (f) NNE-trending structural foliation and strong–weak deformation zoning at D503; (g) Stratification and cleavages at D504; (h) NW-trending shear fracture L1 and quartz veins at D504; (i) NW-dipping shear fracture L3 cut the quartz vein in NW-trending shear fracture L1; (j) Steps indicate sinistral slip for L2 at D504; (k) Secondary pinnate fractures indicate the thrust of NW-dipping shear fracture L3 at D504; (l) NWW-trending shear fracture L4 at D504 dextrally cuts NNE-trending shear fracture L2; (m) Steps at D504 indicate dextral slip for NWW-trending fracture L4 ; (n) Nearly SN-trending shear fracture L5 at D504 dextrally cut NW-trending shear fracture L1; (o) The shear foliation at D504 in NNE-trending brittle-ductile shear zone (overlook); (p) S-C fabric in the NNE-trending brittle-ductile shear zone at D504 indicate upward movement of the western wall rises (vertical section)2.2.2 D503点
该点处为块状含砾砂质板岩,发育板劈理和剪切面理(D1)、具共轭关系的北西向剪切破裂L1和北北东向剪切破裂L2(D2)以及北东东向左行膝折构造(D3;图2b)。板劈理或剪切面理S1(D1)发育(图5e),产状为30°∠40°(图6a),往南10 m,S1产状变为300°∠78°(图6a);面理具强带弱带相间特征(图5f),强带应为纯剪为主的脆韧性剪切带(D1),弱带为一般劈理带(D1)。上述劈理走向变化与南北向挤压形成的北东东向左行膝折构造(D3)有关(图6b)。共轭剪切破裂为北西向破裂L1和北北东向破裂L2(D2),产状分别为40°∠52°、110°∠88°,反映北北西向最大主压应力(图4,图6c)。
图 6 D503劈理和剪切破裂①—含砾砂质板岩;Nh1 c —南华系长安组;L1—剪切破裂编号;S1—板劈理;S2—膝折面; σ 1—最大主应力a—露头剖面;b—北东东向左行膝折反映南北向最大主压应力;c—共轭剪切破裂反映北北西向最大主压应力Figure 6. Cleavages and shear fractures at D503(a) Outcrop profile; (b) NEE-trending sinistral kink zone indicate SN-compression; (c) Conjugated shear fractures indicate NNW compression ①–gravel-bearing sandy slate; Nh1 c –Nanhuan Chang’an Formation; L1–fractures and their numbers; S1–slaty cleavage; S2–axials of kink; σ1–maximum principal stress2.2.3 D504点
该点处发育一条北西向含金蚀变断裂破碎带(D3),属大坪金矿的12号矿脉。围岩地层为高涧群岩门寨组,断裂两盘不同期次、不同运动学特征的剪切破裂发育(图7)。
图 7 D504点处断裂与多期剪切破裂①—板岩;②—砂岩;Pt3 y —高涧群岩门寨组;L1—剪切破裂编号;S1—劈理; σ 1—最大主应力a—北东向劈理反映北西向最大主压应力;b—北西向右行剪切破裂反映南北向最大主压应力;c—北北东向左行剪切破裂反映南北向最大主压应力;d—北东向逆断裂和北西西向右行剪切破裂反映北西向最大主压应力;e—近南北向右行剪切破裂反映北东向最大主压应力Figure 7. Fault and multiple sets of shear fractures at D504(a) NE-trending cleavages indicate NW compression; (b) NW-trending dextral shear fractures indicate SN compression; (c) NNE-trending sinistral shear fractures indicate SN compression; (d) NE-trending thrust fault and NWW-trending dextral shear fractures indicate NW compression; (e) SN-trending dextral shear fractures indicate NE compression ①–slate; ②–sandstone; Pt3 y –Yanmenzhai Formation of Gaojian Group; L1–fractures and their numbers; S1–cleavages; σ 1–maximum principal stress(1)断裂带仅见一条金矿开挖形成的北西向沟槽,沟槽走向及以往地质资料显示,断裂产状直立,走向约320°。据两侧围岩中同产状的剪切破裂L1(D3)的运动特征判断,断裂具右行走滑性质。
(2)断裂北东盘下部为砂岩,上部为纹层状板岩、粉砂质板岩。层面S0产状为142°∠53°,板劈理S1(D1)产状约为135°∠65°(图5g),反映北西向最大主应力(图7a)。发育以下剪切破裂:①北西向右行剪切破裂L1(D3)与北北东向左行剪切破裂L2(D3)(图7b、7c),二者为共轭关系;L1产状为235°∠88°,直立,派生羽裂指示右行;沿破裂面可充填厚3 cm左右的石英脉(图5h),石英脉被后述L3(D6)穿切(图5i);L2产状为298°∠85°,正阶步指示左行走滑(图5j);共轭破裂反映南北向最大主应力(图4);②北东走向、倾向北西的逆冲剪切破裂L3(D6),产状为325°∠57°,次级羽裂指示逆冲性质(图5k),反映北西向挤压(图7d);③北西西向右行剪切破裂L4(D6),产状200°∠86°;L4右行切错L2(图5l),正阶步也指示右行特征(图5m),反映北东向最大主应力(图4,图7d)。
(3)断裂南西盘为板岩,板劈理S1(D1)产状为300°∠87°。发育以下剪切破裂:①北西向右行剪切破裂L1(D3),产状235°∠88°,切割板劈理;②近南北向右行剪切破裂L5(D5;图7e),产状为100°∠86°,直立;反阶步显示右行,且右行切错L1(D3)(图5n),反映北东向最大主应力(图4)。
于D504点西约60 m,见北北东向含金脆韧性剪切带(D1),剪切面理产状为292°∠84°,近直立。水平面上见平行的C面理(图5o),垂向剖面上见C面理与S面理组成S-C组构(图5p),指示剪切带西盘上升。
2.2.4 D505点
该点处为高涧群砖墙湾组板岩,见北北西向—北西向板劈理和脆韧性剪切面理(D1)、南北向和北西向破劈理(D4)、南北向—北北东向逆断裂(D4)、北西向逆断裂(D5)、北东向左行剪切破裂(D3)、小型南北向劈理褶皱(D4)等构造(图8)。自西向东剖面上所见主要构造现象依次如下。
图 8 D505点构造特征①—劈理化板岩; Pt3 z —高涧群砖墙湾组;L—剪切破裂;S1—劈理及编号;F1—断裂及编号; σ 1—最大主应力;β—褶皱枢纽;q—石英脉a—北东向左行剪切破裂反映近南北向最大主压应力;b—北西向逆断裂反映北东向最大主压应力;c—晚期北北西向破劈理产状;d—北北东向逆断裂反映北西西向最大主压应力;e—北北东向逆断裂反映北西西向最大主压应力;f—北北西向劈理产状Figure 8. Characteristics of deformation at D505(a) NE-trending sinistral shear fractures indicate SN compression; (b) NW-trending thrust fault indicate NE compression; (c) Attitudes of the later NNW-trending fracture cleavages; (d) NNE-trending thrust fault indicate NWW compression; (e) NNE-trending thrust fault indicate NWW compression; (f) Attitudes of the NNW-trending cleavages ①–cleavage slate; Pt3 z –Zhuanqiangwan Formation of Gaojian Group; L–shear fractures; S1–cleavages and their numbers; σ 1–maximum principal stress; β–hinge of fold; q–quartz vein(1)近南北向西倾逆断裂F1(D4):断裂上盘围岩层面S0产状为340°∠65°;板劈理(D1)S1产状为60°∠74°,呈北北西走向;主断裂面平直(图9a),产状280°∠38°,主断面下面发育宽约10 cm的断层泥;断裂下盘发育南北向剪切褶皱(图8,图9b),指示断裂具逆冲性质,反映北西西向—近东西向挤压(图8e)。
图 9 D505、D506点处构造特征部分图中的圆圈指示运动学标志发育部位a—D505点处近南北向西倾逆断裂F1;b—D505点处西倾逆断裂F1下盘剪切面理褶皱;c—D505点处北北东向逆断裂F2下盘顺面理石英脉;d—D505点处北北东向东倾逆断裂;e—D505点处北西向早期板劈理与晚期破劈理;f—D505点处北西向逆断裂F3及上盘剪切褶皱;g—D505点处南北向破劈理;h—D505点处北东向剪切破裂面上正、反阶步显示左行;i—D505点处南北向劈理褶皱;j—D505点处南北向破劈理切割北西向板劈理;k—D506点处北北东向强劈理化带(剪切带)与北北东向右行逆断裂;l—D506点处正阶步显示北北东向断裂右行逆冲;m—D506点处正阶步及擦痕指示北西向剪切破裂L1右行;n—D506点处正阶步指示北北西向剪切破裂L2右行;o—D506点北北西向剪切破裂L2右行切错北西向剪切破裂L1(俯视)Figure 9. Characteristics of structures at D505 and D506(a) Nearly SN-trending and W-dipping thrust fault F1 at D505; (b) Shear foliation folds at D505 in the footwall of the W-dipping thrust fault F1; (c) Quartz veins at D505 along foliation in the footwall of the NNE-trending thrust fault F2; (d) NNE-trending E-dipping thrust fault at D505; (e) NW-trending early slaty cleavages and later fracture cleavages at D505; (f) NW-trending thrust fault at D505 and shear folds in the hanging wall; (g) SN-trending fracture cleavages at D505; (h) Steps and antisteps indicate that the NE-trending fractures at D505 sinistrally shear; (i) SN-trending cleavage folds at D505; (j) SN-trending fracture cleavages at D505 cut NW-trending slate cleavages; (k) NNE-trending strong cleavage zone (shear zone) and NNE-trending dextral strike-slip-thrust fault at D506; (l) Steps indicate that the NNE-trending fault at D506 dextrally strike-slip-thrust; (m) Steps and striations indicate the NW-trending fracture L1 at D506 dextrally shear; (n) Steps indicate that the NNW-trending fracture L2 at D506 dextrally shear; (o) NNW-trending shear fracture L2 at D506 cut and dextrally move NW-trending fracture L1 (overlook) Circles in some figures indicate the position of kinematics markers.(2)北北东向东倾逆断裂F2(D4):断裂下盘早期板劈理或剪切面理S1极为发育(D1),且沿面理发育密集的石英细脉(图9c),面理产状为245°∠68°,呈北北西走向;断裂上盘劈理发育,但不发育石英脉;断裂带宽约40 cm,产状115°∠45°;带内劈理变为近直立(图9d),显示断裂具逆冲性质,反映北西西向挤压(图8d)。
(3)北西向的早期板劈理(D1)与晚期北西向破劈理(D5;图9e):早期板劈理S1产状为230°∠65°,应为志留纪晚期区域北北西向劈理经后期构造变位产物;晚期破劈理S2产状为240°∠85°,反映北东向挤压(图8c)。
(4)北西向逆断裂F3(D5):产状235°∠50°,上盘发育以劈理为变形面的剪切褶皱,指示断裂逆冲性质(图9f),反映北东向挤压(图8b)。
(5)南北向破劈理(D4)和北东向左行剪切破裂(D3):南北向破劈理切割板劈理,产状为265°∠85°(图9g),反映东西向挤压;北东向剪切破裂产状315°∠78°,正阶步和反阶步指示左行(图9h),反映近南北向最大主应力(图4,图8a)。
(6)近南北向劈理褶皱(D4)、近南北向破劈理(D4):发育由劈理变形而成的波长3~10 cm、枢纽产状为190°∠30°~10°∠20°的不对称南北向小褶皱(D4;图9i),反映沿板劈理的剪切;板劈理(D1)被南北向破劈理(D4)所切(图9j)。
值得指出的是,D505点处板劈理呈北西走向,有别于区域北北东向,其成因与中三叠世叠加褶皱(D2)有关:自桃李冲往东沿公路经砖墙湾至该点(D505点)进行连续路线观察,路线西段、中段板劈理走向北北东、倾向北西西;路线东段劈理走向逐渐发生逆时针偏转,相继为南北向、北北西向至北西向,倾向西至西南。上述产状变化反映出中三叠世晚期北东东走向、枢纽向西倾伏的叠加褶皱(背斜)的发育(图2a)。
2.2.5 D506点
该点位于响溪金矿1号附井东侧,出露长安组灰色块状含砾砂质板岩,岩层S0产状为95°∠50°~60°。发育北北东向劈理和脆韧性剪切带(D1)、北西向右行剪切破裂L1(D2)、北北西向右行剪切破裂L2(D3)、北北东向右行平移逆冲断裂(D5)等。
自东向西见强劈理化带与弱劈理带相间分布(图10),劈理(D1)直立(图9k),产状为110°∠88°,反映北西西向挤压。剖面东端强劈理化带西侧发育1条北北东向小断裂(D5;图9k),产状为104°∠54°;断面上擦痕侧伏向为47°N,正阶步指示右行平移逆冲(图9l),反映北东向最大主应力(图4,图10a)。北西向右行剪切破裂L1(D2)和北北西向右行剪切破裂L2(D3)位于剖面西端,L1产状为212°∠72°,正阶步及水平擦痕指示右行剪切(图9m),反映北北西向最大主压应力(图4,图10b);L2产状为240°∠72°,正阶步指示右行剪切(图9n),反映南北向最大主应力(图4,图10c)。见L2右行切错L1,错距约1 cm(图9o)。
图 10 D506点处构造特征①—强劈理化带;②—弱劈理化带;Nh1c—南华系长安组;L1—剪切破裂编号;S1—劈理及编号;F—断裂;σ1—最大主应力a—北北东向右行平移逆断裂反映北东向最大主压应力;b—北西向右行剪切破裂反映北北西向最大主压应力;c—北北西向右行剪切破裂反映南北向最大主压应力Figure 10. Characteristics of deformation at D506(a) NNE-trending dextral strike-slip thrust fault indicate NE compression; (b) NW-trending dextral shear fractures indicate NNW compression; (c) NNW-trending dextra shear fractures indicate SN compression ①–strong silicified zone; ②–weak silicified zone; Nh1c–Nanhuan Chang’an Formation; L1–fractures and their number; S1–cleavages; σ1–maximum principal stress值得注意的是,北北东向右行平移断裂(D5)可成为破矿构造。响溪金矿呈北西走向的主矿脉V2脉被多条北北东向小断裂右行切错,错距可达1~2 m。
2.2.6 D507点
该点位于小路旁见铲子坪金矿北西向Ⅰ脉组的硅化断裂带出露,但由于滑坡体和浮土掩盖,仅见硅化带及南西盘围岩,且其接触界面被掩盖;见北东向板劈理(D1)、北西向右行断裂带和剪切破裂L1(D2;11b)、北西向左行剪切破裂L2(D4;图11a)等发育(图2b,图12)。
图 11 D507—D511点处构造特征a—D507点处北西向断裂南西盘北东向剪切破裂及北东向劈理;b—D507点处北西向剪切破裂派生羽裂示右行走滑(斜俯视);c—D508点处强硅化带Ⅰ带顺层石英脉因挤压形成石香肠;d—D508点处强硅化带1带中羽裂指示北东东向剪切破裂左行(斜俯视);e—D508点处无硅化带Ⅱ带特征;f—D508点处强硅化带Ⅲ带中面理及顺层脉背斜;g—D508点处强硅化带Ⅴ带中背斜及核部石英脉;h—D508点处强硅化带Ⅴ带中板劈理S1与破劈理S2;i—D508点处弱硅化带Ⅵ带中劈理;j—D509点处强劈理化带中所夹脆韧性剪切带;k—D510点处北东向断裂及北西向剪切破裂L1、北东向剪切破裂L2;l—D510点处正阶步示北西向剪切破裂L1右行;m—D510点处正阶步及擦痕指示NW向断裂左行逆平移;n—D510点处后期NE向SE倾斜剪切破裂L2切割NE向次级断裂面;羽裂示L2右行逆冲;o—D511点处北北东向剪切破裂L2右行错移北西向剪切破裂L1Figure 11. Characteristics of structures at D507—D511(a) NW-trending shear fracture and NE-trending cleavages in the southwestern wall of the NW-trending fault at D507; (b) Secondary pinnate fractures indicate that NW-trending fracture at D507 dextrally shear (oblique overlook); (c) Bedding quartz veins in the strong silicified zone Ⅰ at D508 forms boudins under compression; (d) Pinnate fractures indicate that NEE-trending fractures in the strong silicified zone Ⅰat D508 sinistrally shear (oblique overlook); (e) Characteristics of the non-silicified zone Ⅱ at D508; (f) Structural foliation and bedding quartz vein anticline in the strong silicified zone Ⅲ at D508; (g) Anticline and quartz vein in the strong silicified zone Ⅴ at D508; (h) Slate cleavages S1 and fracture cleavages S2 in the strong silicified zone Ⅴ at D508; (i) Cleavages in the weak silicified zone Ⅵ at D508; (j) Brittle–ductile shear zone in the strong cleavage at D509; (k) NE-trending fault, NW-trending shear fractures L1 and NE-trending shear fractures L2 at D510; (l) Steps indicate that the NW-trending fractures L1 at D510 dextrally shear; (m) Steps and striations indicate that the NW-trending fault sinistrally thrust-strike-slip at D510; (n) Later NE-trending SE-dipping shear fracture L2 cut NE-trending secondary fracture at D510; Pinnate fractures indicate that L2 dextrally strike-slip thrust; (o) NNE-trending shear fracture L2 dextrally move NW-trending shear fracture L1 at D511图 12 D507点处构造特征①—劈理化板岩;Nh1 c —南华系长安组;L1—剪切破裂编号;S1—劈理;q—石英脉;F—断裂; σ 1—最大主应力a—北西向左行剪切破裂反映北西西向最大主压应力;b—北西向右行剪切破裂反映北北西向最大主压应力Figure 12. Characteristics of deformation at D507(a) NW-trending sinistral shear fractures indicate NWW compression; (b) NW-trending dextral shear fractures indicate NNW compression ①–cleavage slate; Nh1 c –Nanhuan Chang’an Formation; L1–fractures and their numbers; S1–cleavages; q–quartz vein; F–fault; σ 1–maximum principal stress西南盘围岩为长安组块状板岩,具绢云母化蚀变,其板劈理S1(D1)呈北东向,产状为320°∠60°(图11a)。围岩中北西向直立剪切破裂L1(D2)切割板劈理,产状225°~230°∠86°,次级羽裂指示L1右行走滑(图11b),反映北北西向最大主压应力(图4,图12b)。沿部分剪切破裂充填有含金石英细脉。硅化断裂带宽约3 m,走向北西,产状与围岩中北西向剪切破裂L1一致,也应为右行走滑性质;断裂带主要为硅化交代成因的含金石英脉充填,边部发育硅化断层角砾岩。北西向左行剪切破裂L2(D4)发育于石英脉中,产状为240°∠85°,反映北西西向最大主应力(图4,图12a)。上述构造与蚀变矿化体的关系,反映金成矿作用可能发生于晚三叠世中晚期。
2.2.7 D508点
该点位于北西向公路的北东侧,见良好露头剖面。发育一条斜宽约50 m、走向北北东、倾向东的脆韧性剪切带(断裂带;图13)。断裂下盘(西盘)粉砂质板岩中板劈理发育(D1),层面S0与劈理S1产状近一致,为115°∠85°;断裂上盘(东盘)为板岩,层面与劈理产状近一致,为110°∠75°。
图 13 D508点构造特征①—砂质板岩;②—板岩;Pt3z—高涧群砖墙湾组;L—剪切破裂;S1—劈理;β—褶皱枢纽;q—石英脉;Ⅰ—强硅化带;Ⅱ—弱硅化带;Ⅲ—强硅化带;Ⅳ—弱硅化带;Ⅴ—强硅化带;Ⅵ—弱硅化带Figure 13. Characteristics of deformation at D508①–sandy slate; ②–slate; Pt3z–Zhuanqiangwan Formation of Gaojian Group; L–shear fractures; S1–cleavages; β–hinge of fold; q–quartz vein; Ⅰ–strong silicified zone; Ⅱ–weak silicified zone; Ⅲ–strong silicified zone; Ⅳ–weak silicified zone; Ⅴ–strong silicified zone; Ⅵ–weak silicified zone脆韧性剪切带内强硅化带和弱硅化带相间(图13),前者剪切面理发育(D1),且顺面理发育大量石英脉;后者主要发育劈理且少见石英脉,属脆韧性剪切断裂带内断夹块。剪切面理与板劈理产状总体相近,多在105°~120°∠50°~80°之间,表明剪切机制以纯剪为主。自北西往南东各带特征如下:①强硅化带Ⅰ带,宽约10 m,顺剪切面发育大量石英脉(图11c);局部岩石破碎处发育大量不规则石英脉或石英团块;石英脉中发育走向约70°的北东东向左行剪切破裂(D5),羽裂指示左行特征(图11d),反映北东向挤压;局部顺层石英宽脉因挤压而形成长轴近水平的石香肠(D4;图11c),反映北西西向挤压;②弱硅化带Ⅱ带,宽约6 m,基本无石英脉发育(图11e);具强劈理化带特征(D1),面理产状为105°∠75°;③强硅化带Ⅲ带,宽约7 m,其南东段发育一条以剪切面理及石英脉为变形面的北北东向倒转背斜(D4;图11f),枢纽产状为20°∠5°,反映北西西向挤压;④弱硅化带Ⅳ带,宽约2 m,特征同Ⅱ带;⑤强硅化带Ⅴ带,宽约7 m,顺面理石英脉大量发育,发育一条以剪切面理为变形面的北北东向小倒转背斜(D5;图11g),枢纽产状为184°∠15°,反映近东西向挤压;背斜核部发育石英脉,背斜转折端因此呈宽圆形态,表明褶皱形成于脉体形成之后;局部片状岩块中见细密板劈理S1(95°∠68°)(D1)和破劈理S2(110°∠78°)(D4;图11h),后者切割前者;⑥弱硅化带Ⅵ带,宽约18.5 m,板岩中板劈理极为发育(D1;图11i);见多条顺面理石英脉,面理和脉体产状为105°∠85°。
根据上述构造特征并结合区域构造背景,推断顺志留纪晚期剪切面发育的硅化石英脉形成于晚三叠世,与同期花岗质岩浆活动有关。勘查工作表明,石英脉具有金矿化,但金品位低,未能形成工业矿体。
2.2.8 D509点
该点处发育砖墙湾组板岩、粉砂质板岩,层面S0产状为120°∠78°;板劈理极为发育(D1),劈理S1产状为120°∠85°。见一条走向北北东、倾向南南东的脆韧性剪切带(D1;图11j),宽约3 m,带内剪切面理发育,并具硅化;剪切面理产状与两盘围岩板劈理一致,为120°∠85°,表明剪切带变形机制以纯剪为主。自D509点往西约150 m范围内,主要为砖墙湾组强劈理化板岩,间夹多条宽1.5~2.5 m的脆韧性剪切带(D1);劈理与剪切面理产状基本一致,为120°∠80°~85°。上述北北东向板劈理及脆韧性剪切带反映北西西向挤压(图2b)。
2.2.9 D510点
该点位于响溪金矿区,出露南华系长安组块状粗粒岩屑砂岩,发育北北东向板劈理(产状300°∠72°;D1)、北东向左行逆平移断裂(D3)、北西向右行剪切破裂L1(D2)、北东向右行逆冲剪切破裂L2(D4)等构造(图11k,图14)。
图 14 D510点NE向断裂与剪切破裂特征①—岩屑砂岩;Nh1 c —南华系长安组;L1—剪切破裂及编号;S1—劈理;q—石英脉; σ 1—最大主应力a—北西向右行剪切破裂反映北北西向最大主压应力;b—北东向左行逆平移断裂反映南北向最大主压应力;c—北东向右行逆冲剪切破裂反映北西西向最大主应力Figure 14. NE-trending fault and shear fractures at D510(a) NW-trending dextral shear fractures indicate NNW compression; (b) NE-trending sinistral thrust strike-slip fault indicate SN compression; (c) NE-trending dextral thrust shear fractures indicate NWW compression ①–litharenite; Nh1 c –Nanhuan Chang’an Formation; L1–fractures and their numbers; S1–cleavages; q–quartz vein; σ 1–maximum principal stress北东向断裂为断坑断裂(图2a),断裂带宽约2 m,倾向北西,产状为310°∠50°,带内与断裂产状一致的次级裂面发育(图11k),裂面上发育擦痕与正阶步,指示断裂具左行逆平移性质(图11m),反映近南北向最大主应力(D3)(图4,图14b)。北西向剪切破裂L1切割断裂下盘围岩(图11k),产状220°∠75°,正阶步指示右行(图11l),反映北北西向最大主应力(D2)(图4,图14a)。北东向剪切破裂L2(D4)位于断裂带中,产状140°∠32°,切割北东向次级裂面(图11k);其派生羽裂(R)产状约为180°∠20°,指示L2右行逆冲(图11n),反映北西西向最大主应力(图4,图14c)。
2.2.10 D511点
该点处为南华系洪江组块状含砾砂质板岩,发育北西向左行剪切破裂L1(D4)和北北东向右行剪切破裂L2(D5;图11o)。L1产状为225°∠75°,派生羽裂产状为212°∠75°,指示左行,反映北西西向最大主应力(图4)。L2产状为295°∠85°,右行错移L1(图11o),反映北东向最大主应力(图4)。
2.3 构造变形序列及其区域构造背景
将区域内主要构造事件的主应力场与规模褶皱、断裂和野外露头所见各类构造反映的应力场比较,结合构造卷入地层时代、不同构造的切错、叠加、改造关系以及区域构造演化背景(湖南省地质调查院,2017),系统厘定了研究区构造变形序列,确定自早至晚经历了6期主要变形事件(D1—D6),各期事件的变形类型及动力背景见表1和图15。
表 1 铲子坪—大坪金矿区构造变形序列Table 1. Deformation sequences in Chanziping–Daping Au deposit area时代 变形
期次构造变形 实例 区域构造体制 形成构造动力背景 E3—N1 D6 NE向逆冲剪切破裂 D504 NW向挤压 菲律宾海板块与华南块体碰撞 NWW向右行剪切破裂 D504 E2—E3 D5 NNE向—SN向右行剪切破裂、断裂 D501(继承活动)、D504、D506、D510 NE向挤压 印度−欧亚板块碰撞导致亚洲东部形成右行走滑断裂 NEE向左行剪切破裂(切割石英脉) D508 NW向逆断裂 D505 NW向破劈理 D505 J2晚期 D4 NW向—NWW向左行剪切破裂 D501(继承性活动)、D507、D511 NWW—近EW向挤压 古太平洋板块(或伊泽奈崎板块)俯冲 SN向—NNE向逆断裂 D505 NE向右行逆冲剪切破裂 D510 NNE向—近SN向破劈理 D505、D508 NNE向—近SN向劈理褶皱或剪切面理褶皱 D505、D508 NNE向石英脉石香肠 D508 T3 D3 NW向—NNW向右行走滑断裂(含金矿)、剪切破裂 D504、D506;F7(图2a) SN向挤压 扬子及其以南各地块向北运移与中朝板块碰撞 NNE向—NE向左行剪切破裂、断裂 D504、D505、D510;F10(图2a) NEE向左行膝折构造 D503 T2晚期 D2 NWW向—NW向右行走滑断裂(含金矿)、剪切破裂 D501、D506、D507、D510;铲子坪含矿断裂等(图2a) NNW向挤压 中扬子板块与华夏板块的继发性陆内俯冲汇聚,以及秦岭−大别−苏鲁构造带碰撞造山 SN向左行剪切破裂 D501 NW向和NNE向共轭剪切破裂 D503 NEE向逆断裂 F4(图2a) NEE向叠加褶皱(使NNE向劈理变位为NW向) D505 S晚期 D1 区域NNE向褶皱 f1、f2、f3、f4(图2a) NWW向挤压 扬子与华夏陆内汇聚 NE向—NNE向板劈理(局部后期变位为NW向) D503、D504、D505、D506、D507、D508、D509、D510 NNE向脆韧性剪切带(含金矿)(局部后期变位为NW向) D503、D504、D505、D506、D508、D509;F2、F3、F5、F6等(图2a) 2.3.1 志留纪晚期构造变形(D1)
该期变形的区域应力场为北西西向挤压,形成北北东向褶皱、北东向—北北东向板劈理和北北东向脆韧性剪切带(表1)。北北东向褶皱有芙蓉溪向斜f1、大坪背斜f2、青山洞向斜f3、砖墙湾背斜f4等(图2a),为受北北东向逆断裂(脆韧性剪切带)控制的断裂相关褶皱。北东向—北北东向板劈理普遍发育,各露头点均有见及。北北东向脆韧性剪切带有公平断裂F2、永胜断裂F3、杨柳断裂F5和花树脚断裂F6等,露头上多点见及(表1)。其中北东向—北北东向板劈理和脆韧性剪切带局部因晚三叠世膝折(如D503点)和中三叠世晚期北东东向褶皱叠加(如D505点)而变位为北北西向—北西向。区域上新元古界高涧群—志留系内无角度不整合发育,泥盆系与志留系之间为角度不整合接触(湖南省地质调查院,2017);上文露头构造调查表明,该期构造受其他各期构造的叠加和改造,据此,可确定其变形时代为志留纪晚期。
该期变形由华夏古陆向北西运移和扩展引发(陈旭和戎嘉余,1999),区域主体构造体制主要为南北向挤压(丘元禧等,1998;郝义等,2010;王建等,2010;柏道远等,2021b;李彬等,2022a),但受新元古代中期钦杭结合带与扬子陆块间弧形边界的控制(柏道远等,2012a),研究区所在的雪峰构造带中段挤压应力主要为北西西向。
2.3.2 中三叠世晚期构造变形(D2)
该期变形的区域应力场为北北西向挤压,形成北西西向—北西向右行走滑断裂(D507点)和剪切破裂(D501、D506、D510点)、南北向左行剪切破裂(D501点)、北西向和北北东向共轭剪切破裂(D503点)、北东东向逆断裂、北东东向叠加褶皱(D505点)等(表1)。北西西向—北西向右行走滑断裂发育广泛,以铲子坪—石牛寨一带的含矿断裂(矿脉)为代表(图2a),为区内主要含矿断裂。北东东向逆断裂以大坪断裂F4为代表,该断裂使北盘大坪背斜的走向转为北东东向(图2a)。大量证据表明该期变形晚于志留纪晚期变形,如D503点北西向和北北东向共轭剪切破裂(D2)切割北北东向板劈理(D1),D505点北东东向规模褶皱(D2)卷入板劈理(D1),D506点北西向右行剪切破裂(D2)切割北北东向板劈理(D1)等。
区域上该期变形的动力背景为扬子陆块与华夏古陆的继发性陆内汇聚(张国伟等,2011)以及秦岭−大别−苏鲁构造带的碰撞造山(张岳桥等,2009;徐先兵等,2009),前者的构造体制为北西西向—北西向挤压,形成了湘东南地区北北东向(柏道远等,2012b)、湘中地区北东向(张国伟等,2011;柏道远等,2021b,2023b)为主的褶皱;后者的构造体制为南北向挤压,其形成了湘北慈利—石门地区的东西向褶皱(杨俊等,2021)。研究区位于湘东南—湘中地区与湘北慈利—石门地区之间的过渡带,受两种构造体制共同影响,挤压方向表现为过渡性的北北西向。
2.3.3 晚三叠世早期构造变形(D3)
该期变形的区域应力场为南北向挤压,形成北西向—北北西向右行走滑断裂和剪切破裂(D504、D506点)、北北东向—北东向左行剪切破裂(D504、D505点)和断裂、北东东向左行膝折构造(D503点)等(表1)。北西向—北北西向右行走滑断裂有界脚断裂F7等(图2a),该组断裂在大坪矿区可充填金矿脉(D504点)。代表性北东向左行走滑断裂有断坑断裂F10(图2a),露头上见于D510点。D506点北北西向右行剪切破裂(D3)切错北西向右行剪切破裂(D2),表明该期变形晚于中三叠世晚期变形。结合北西向—北北西向右行走滑断裂为晚三叠世中晚期金矿的含矿构造(见下文),进一步确定该期变形的时代为晚三叠世早期。
该期变形属晚三叠世特提斯构造域(Shu et al.,2009,2021;张岳桥等,2009),可能与扬子及其以南各地块向北运移与中朝板块碰撞有关(万天丰和朱鸿,2002)。区域上,湘中地区上古生界中形成了显著的东西向褶皱(柏道远等,2023b)。
2.3.4 中侏罗世晚期构造变形(D4)
该期变形的区域应力场为北西西—近东西向挤压,形成南北向—北北东向逆断裂(D505点)、北西向—北西西向左行剪切破裂(D501、D507、D511点)、北东向右行逆冲剪切破裂(D510点)、北北东向—近南北向的破劈理和劈理褶皱或剪切面理褶皱(D505、D508点)、北北东向石英脉石香肠(D508点)等(表1)。研究区东部的里木冲断裂F9、响溪断裂F11和塘湾断裂F12等北北东向断裂切割印支期花岗岩(图2),推测也为该期逆断裂。D507点北西向左行剪切破裂(D4)切割北西断裂(D2)中石英脉体,D510点北东向右行逆冲剪切破裂(D4)切割北东向左行逆冲断裂(D3),表明该期变形晚于晚三叠世变形。
该期变形与古太平洋板块或伊泽奈崎板块俯冲影响有关(舒良树和周新民,2002;舒良树等,2004;Li and Li,2007;徐先兵等,2009;张岳桥等,2009;Chu et al.,2019),湖南全境受其影响,如湘东北幕阜山地区(柏道远等,2023d)和万古地区(吴能杰等,2023)、湘北桑植—石门地区(杨俊等,2021)、湘中宁乡—邵阳地区(李彬等,2022a;柏道远等,2023b)、湘西怀化—靖州地区(柏道远等,2015)等均受到强烈北西西向挤压而形成北北东向褶皱和逆断裂、北西向左行走滑断裂等构造形迹。
2.3.5 古近纪中晚期构造变形(D5)
该期变形的区域应力场为北东向挤压,形成北北东向—南北向右行剪切破裂和断裂(D501、D504、D506、D510点,D506点逆冲兼右行)、北东东向左行剪切破裂(D508点)、北西向逆断裂(D505点)、北西向破劈理(D505点)等(表1)。D501点南北向剪切破裂早期左行走滑(D2)而晚期右行走滑(D5),D504点近南北向右行剪切破裂(D5)切错北西向右行剪切破裂(D3),为改期变形时代提供了一定支持。
该期变形与印度板块与亚洲大陆碰撞有关(Yin and Harrison,2000;张进等,2010;张岳桥等,2012)。已有研究揭示中新世之前印度−欧亚板块的碰撞使亚洲东部形成一系列的右行走滑断裂(Gilder et al.,1999),雪峰构造带内的溆浦−靖州断裂、通道−安化断裂等北北东向断裂即产生右行走滑(张进等,2010;柏道远等,2015)并派生北东向挤压,自湘西沅麻盆地(柏道远等,2015)往东至湘中娄底—邵阳地区(柏道远等,2023b,2023c)、湘东北万古地区(吴能杰等,2023)和幕阜山地区(柏道远等,2023d)均发育该期北东向挤压构造变形。
2.3.6 古近纪晚期—新近纪初构造变形(D6)
该期变形的区域应力场为北西向挤压,形成北东向逆冲剪切破裂和北西西向右行剪切破裂(D504点;表1)。D504点北东向逆冲剪切破裂(D6)切割北西向右行剪切破裂(D3)中脉体、北西西向右行剪切破裂(D6)右行切错北北东向左行剪切破裂(D3),为该期变形时代提供了一定约束。
该期变形的动力背景可能和菲律宾海板块向北运移并与华南块体东部斜向碰撞有关(Allen et al.,1997;Hall,2002;张进等,2010)。研究区西侧的沅麻盆地形成了卷入白垩系的北东向褶皱和北东向—北北东向逆断裂(柏道远等,2015),华南的其他一些中、新生代盆地边缘发育同期的逆冲变形,造成中国东部普遍存在中新统与渐新统之间的角度不整合(Allen et al.,1997;徐政语等,2004)。
上述不同应力场特征的6期构造事件,与邻区研究结论(柏道远等,2015,2023a,2023b、2023c;李彬等,2022a)相吻合,进一步佐证了作者厘定的变形序列。此外,尽管区内D5与D4、D6与D5之间先后关系缺乏露头证据,但邻区沅麻盆地显示出D5晚于D4、D6晚于D5的明确证据(柏道远等,2015),湘东北万古地区和幕阜山地区变形地质体时代(白垩系和晚燕山期花岗岩)均明确反映D5晚于D4(吴能杰等,2023;柏道远等,2023d)。此外,区域上存在白垩纪伸展事件,形成了大量以北北东向为主的断陷盆地(柏道远等,2015,2023b),研究区很可能存在该期张性断裂活动,但受工作程度所限,此次未能观察到地质表现。
3. 讨论
3.1 成矿时代及其构造背景
铲子坪金矿位于黄茅园岩体(白马山岩体西体)南西侧,矿脉产于北西向陡倾断裂带和裂隙中,含金石英脉Rb-Sr等时线年龄为206±9 Ma,而紧邻的黄茅园岩体黑云母花岗岩SHRIMP锆石U-Pb年龄为222.3±1.7 Ma(李华芹等,2008),二者在误差范围内相近,结合流体包裹体揭示矿床成因类型为中高温岩浆热液型(曹亮等,2015a),可确定铲子坪金矿形成于晚三叠世中晚期,成矿与同期岩浆活动密切相关。
大坪金矿紧邻铲子坪金矿西侧,含金石英脉产于早期北北东向脆韧性断裂带和片理化蚀变带以及晚期北西向破碎蚀变带中。北西向断裂中的含金石英脉Rb-Sr等时线年龄为205±6 Ma(李华芹等,2008),与铲子坪金矿完全一致,属晚三叠世。北北东向脆韧性剪切带中金矿脉目前缺少测年数据,有迹象表明存在早古生代晚期和晚三叠世2期成矿作用:①研究区西侧同样产于北北东向剪切带的字溪金矿的毒砂Re-Os等时线年龄为425±28 Ma(Wang et al.,2020);矿区勘探资料揭示两溪口一带的北北东向矿脉被北西向矿脉切割(图3b),且北西向矿脉在交会处更为富集,暗示大坪地区北北东向金矿脉存在早古生代晚期的成矿作用。②D509点上北北东向脆韧性剪切带中顺面理发育的石英脉形成于晚三叠世,并具同期金矿化。此外,产于北北东向脆韧性剪切带中的21号金矿脉的钻孔岩芯中,见后期脆性破裂斜切早期脆韧性剪切面理,并沿脆性破裂带形成深色金属矿化(毒砂化、黄铁矿化等)体。以上表明,北北东向金矿脉叠加了晚三叠世金成矿作用,且晚三叠世成矿可能是形成北北东向工业矿体的关键。
综上所述,铲子坪−大坪金矿区存在早古生代晚期和晚三叠世中晚期2期成矿作用(图15),并以晚三叠世中晚期成矿为主。从区域构造背景来看,早古生代晚期成矿可能与北东向逆冲断裂导致的构造活化作用有关(柏道远等,2021a)。晚三叠世中晚期成矿应与同期花岗质岩浆活动提供流体和能量有关(柏道远等,2020,2021a,2022),大量年龄数据和地质证据表明铲子坪及周邻地区的晚三叠世花岗质岩浆活动和成矿作用强烈:白马山岩体(罗志高等,2010;李建华等,2014)、黄茅园岩体(李华芹等,2008)、大神山岩体(张龙升等,2012)、崇阳坪岩体(苏康明等,2016)、瓦屋塘岩体(苏康明等,2016)等花岗岩时代介于204~225 Ma;古台山金矿脉的白云母Ar-Ar坪年龄为223.6±5.3 Ma(Li et al.,2018),白马山岩体南缘杏枫山钨矿的热液樨石U-Pb年龄为215.2±2.7 Ma(吕沅峻等,2021)、大溶溪钨矿的辉钼矿Re-Os等时线年龄为223.3±3.9 Ma(张龙升等,2014)、渣滓溪锑钨矿的白钨矿Sm-Nd等时线年龄为227.3±6.2 Ma(王永磊等,2012);茶山钨矿和牛角界钨矿受晚三叠世崇阳坪岩体和瓦屋塘岩体同侵位断裂控制(苏康明等,2016)。
3.2 控矿构造类型与属性
根据上文各露头点观察、解析资料及在此基础上厘定的构造变形序列、控矿构造类型和成矿时代,结合区域构造和岩浆特征,就铲子坪−大坪金矿区矿床定位的构造条件以及控矿构造类型等总结如下。
(1)铲子坪−大坪金矿区位于溆浦−靖州、通道−江口和城步−江口3条北北东向深大断裂与白马山−黄茅园−中华山花岗岩浆带的交汇部位(图1)。北北东向深大断裂和同走向次级断裂以及北西西向—北北西向的走滑断裂和剪切破裂等组成网状断裂系统,为含矿流体的运移、岩石的蚀变交代以及矿质的沉淀等提供了通道和空间;晚三叠世的大规模花岗质岩浆活动为成矿提供了热液和能量,使得本区具备良好的成矿构造条件(图15)。
(2)导矿构造主要为区内大量发育的北北东向大断裂即脆韧性剪切带,其为形成于志留纪晚期北西西向挤压的逆断裂。以铲子坪金矿I矿脉带为例,该矿带西段矿物组合比东段复杂、深部比浅部复杂,表明成矿热液来自西部的北北东向花树脚断裂(图3)和深部(骆学全,1993)。此外,北北东向逆断裂是研究区内的主干构造,是横向和垂向延伸规模最大的一类断裂,理论上北北东向大断裂与深部变质岩、岩浆岩、剪切带和滑脱带相连,横向上也可与花岗岩体相接(图2a),从而成为深部流体和矿质运移至含矿断裂的主要通道。由于北北东向—北东向导矿断裂向深部倾斜,可从侧面(水平方向)和下部(垂向)向北西向断裂输送成矿流体和矿质(图16),因此北西向矿脉在地表与北北东向—北东向断裂既可相接,也可保持一定距离(图2)。此外,延深规模较大的北西向断裂既可为容矿构造,也可兼具导矿构造性质。
(3)主要容矿构造为北西西向—北西向右行走滑断裂和北西向—北北西向右行走滑断裂,其次为北北东向脆韧性剪切带(图16)。其中,北北东向脆韧性剪切带形成于志留纪晚期北西西向挤压,以大坪金矿Ⅰ17、Ⅰ21、Ⅰ20等北北东向矿脉为代表(图3b);北西西向—北西向右行走滑断裂形成于中三叠世晚期北北西向挤压,以铲子坪金矿北西西向—北西向矿脉为代表(如上文D707点);北西向—北北西向右行走滑断裂形成于晚三叠世早期南北向挤压,以大平金矿Ⅰ12矿脉为代表(如下文D504点)。
(4)破矿构造:对早古生代晚期北北东向矿脉而言,中三叠世晚期以来的5期变形事件(D2—D6)中形成的不同类型断裂均可能成为破矿构造;对晚三叠世北西向矿脉而言,中侏罗世以来的3期变形事件(D4—D6)中形成的不同类型断裂均可能成为破矿构造(表1,图15),其中古近纪形成的北北东向右行走滑断裂(D5)即切错北西向金矿脉(响溪金矿D506点)。
4. 结论
(1)研究区自早至晚经历了6期主要变形事件:①志留纪晚期受到北西西向挤压,形成北北东走向的褶皱、板劈理和脆韧性剪切带;②中三叠世晚期受到北北西向挤压,形成北西西向—北西向右行走滑断裂和剪切破裂、南北向左行剪切破裂、北西向和北北东向共轭剪切破裂、北东东向的逆断裂和叠加褶皱;③晚三叠世早期受到南北向挤压,形成北西向—北北西向右行走滑断裂和剪切破裂、北北东向—北东向左行剪切破裂和断裂、北东东向左行膝折构造;④中侏罗世晚期受到北西西向—近东西向挤压,形成南北向—北北东向逆断裂、北西向—北西西向左行剪切破裂、北东向右行逆冲剪切破裂、北北东向—近南北向的破劈理、面理褶皱和石香肠;⑤古近纪中晚期受到北东向挤压,形成北北东向—南北向右行剪切破裂和断裂、北东东向左行剪切破裂、北东向的逆断裂、破劈理和石香肠;⑥古近纪晚期—新近纪初期受到北西向挤压,形成北东向逆冲剪切破裂、北西西向右行剪切破裂。
(2)北北东向矿脉形成于志留纪晚期和晚三叠世,北西西向—北北西向矿脉形成晚三叠世晚期。志留纪晚期成矿与断裂运动导致的构造活化作用有关,晚三叠世晚期成矿与同期大规模花岗质岩浆活动有关。
(3)主要导矿构造为志留纪晚期北西西向挤压形成的北北东向大断裂即脆韧性剪切带。主要容矿构造为中三叠世晚期北北西向挤压形成的北西西向—北西向右行走滑断裂、晚三叠世早期南北向挤压形成的北西向—北北西向右行走滑断裂,其次为志留纪晚期北西西向挤压形成的北北东向脆韧性剪切带。晚于矿脉形成的不同类型断裂均可能成为破矿构造。
致谢:审稿专家对论文进行了仔细审查并提出宝贵修改建议,在此表示衷心感谢。
-
图 1 区域地质及锑−钨−金矿床分布图(据柏道远等,2021a修改)
F1—慈利−保靖断裂(江南断裂);F2—保靖−铜仁断裂;F3—古丈−吉首断裂;F4—怀化−沃溪断裂;F5—溆浦−靖州断裂;F6—通道−江口断裂;F7—城步−江口断裂;F8—城步−新化断裂;F9—公田−灰汤−新宁断裂
Figure 1. Regional geological map and distribution of Sb-W-Au deposits(modified after Bai et al., 2021a)
F1–Cili–Baojing fault (Jiangnan fault); F2–Baojing–Tongren fault; F3–Guzhang–Jishou fault; F4–Huaihua–Woxi fault; F5–Xupu–Jingzhou fault; F6–Tongdao–Jiangkou fault; F7–Chengbu–Jiangkou fault; F8–Chengbu–Xinhua fault; F9–Gongtian–Huitang–Xinning fault
图 2 铲子坪−大坪金矿区地质图及观察点上构造形迹与应力场方位
f1—芙蓉溪向斜;f2—大坪背斜;f3—青山洞向斜;f4—砖墙湾背斜;F1—母溪断裂;F2—公平断裂;F3—永胜断裂;F4—大坪断裂;F5—杨柳断裂;F6—花树脚断裂;F7—界脚断裂;F8—大坳断裂;F9—里木冲断裂;F10—断坑断裂;F11—响溪断裂;F12—塘湾断裂(a)铲子坪−大坪金矿区地质图;(b)观察点上构造形迹与应力场方位
Figure 2. Regional geological map of the Chanziping–Daping gold mining area and deformations and stress orientations on observation points
(a) Regional geological map of the Chanziping–Daping gold mining area (modified from 1∶50 000 Tieposhan Sheet Map, Tangwan Sheet Map and 1∶250000 Huaihua Sheet Map); (b) Deformations and stress orientations on observation pointsf1–Furongxi syncline; f2–Daping anticline; f3–Qingshandong syncline; f4–Zhuanqiangwan anticline; F1–Muxi fault; F2–Gongping fault; F3–Yongsheng fault; F4–Daping fault; F5–Yangliu fault; F6–Huashujiao fault; F7–Jiejiao fault; F8–Da’ao fault; F9–Limuchong fault; F10–Duankeng fault; F11–Xiangxi fault; F12–Tangwan fault
图 3 铲子坪金矿区和大坪金矿区地质图
a—铲子坪金矿区地质图(据骆学全,1996a修改);b—大坪金矿区地质图(据李华芹等,2008修改)
Figure 3. Geological map of the Chanziping gold mining area and the daping gold mining area
(a) Geological map of the Chanziping gold mining area (modified after Luo, 1996a); (b) Geological map of the Daping gold mining area (modified after Li et al., 2008)
图 4 代表性露头观察点走滑、斜滑剪切破裂和断裂的应力解析
发育多个裂面时,产状取走向和倾向的加权平均值
Figure 4. Stress analysis for strike-slip and oblique-slip shear fractures and faults at representative outcrop points
When multiple fractures are developed, the structural attitude is determined by the weighted average of dip direction and dip angle.
图 5 D501、D503及D504点构造特征
a—D501点处北西西向剪切破裂L1与南北向剪切破裂L2;b—D501点处反阶步及正阶步分别显示北西西向剪切破裂L1早期右行与晚期左行走滑;c—D501点处正阶步及反阶步分别显示南北向剪切破裂L2早期左行与晚期右行走滑;d—D501点处共轭剪切破裂L2左行切错并限制破裂L1;e—D503点处北西西向面理;f—D503点处北北东向面理及变形强弱分带;g—D504点处层理与劈理;h—D504点处北西向剪切破裂L1及石英脉;i—D504点北西倾剪切破裂L3切入北西向剪切破裂L1中石英脉;j—D504点处正阶步指示破裂L2左行走滑;k—D504点处次级羽裂指示北西倾剪切破裂L3逆冲;l—D504点北西西向剪切破裂L4右行切错北北东向剪切破裂L2;m—D504点处正阶步指示北西西向剪切破裂L4右行走滑;n—D504点近南北向剪切破裂L5右行切错北西向剪切破裂L1;o—D504点北北东向脆韧性剪切带中剪切面理(俯视);p—D504点处北北东向脆韧性剪切带中S-C组构显示西盘上升(垂向剖面)
Figure 5. Characteristics of structures at D501, D503 and D504
(a) NWW-trending shear fracture L1 and SN-trending shear fracture L2 at D501; (b) Antisteps and steps indicate that the NWW-trending shear fracture L1 at D501 dextrally sheared early and sinistrally sheared later respectively; (c) Steps and antisteps indicate that the SN-trending fracture L2 at D501 sinistrally sheared early and dextral sheared later respectively; (d) Conjugate L2 sinistrally cuts and restricts L1 at D501; (e) NWW-trending structural foliation at D503; (f) NNE-trending structural foliation and strong–weak deformation zoning at D503; (g) Stratification and cleavages at D504; (h) NW-trending shear fracture L1 and quartz veins at D504; (i) NW-dipping shear fracture L3 cut the quartz vein in NW-trending shear fracture L1; (j) Steps indicate sinistral slip for L2 at D504; (k) Secondary pinnate fractures indicate the thrust of NW-dipping shear fracture L3 at D504; (l) NWW-trending shear fracture L4 at D504 dextrally cuts NNE-trending shear fracture L2; (m) Steps at D504 indicate dextral slip for NWW-trending fracture L4 ; (n) Nearly SN-trending shear fracture L5 at D504 dextrally cut NW-trending shear fracture L1; (o) The shear foliation at D504 in NNE-trending brittle-ductile shear zone (overlook); (p) S-C fabric in the NNE-trending brittle-ductile shear zone at D504 indicate upward movement of the western wall rises (vertical section)
图 6 D503劈理和剪切破裂
①—含砾砂质板岩;Nh1 c —南华系长安组;L1—剪切破裂编号;S1—板劈理;S2—膝折面; σ 1—最大主应力a—露头剖面;b—北东东向左行膝折反映南北向最大主压应力;c—共轭剪切破裂反映北北西向最大主压应力
Figure 6. Cleavages and shear fractures at D503
(a) Outcrop profile; (b) NEE-trending sinistral kink zone indicate SN-compression; (c) Conjugated shear fractures indicate NNW compression ①–gravel-bearing sandy slate; Nh1 c –Nanhuan Chang’an Formation; L1–fractures and their numbers; S1–slaty cleavage; S2–axials of kink; σ1–maximum principal stress
图 7 D504点处断裂与多期剪切破裂
①—板岩;②—砂岩;Pt3 y —高涧群岩门寨组;L1—剪切破裂编号;S1—劈理; σ 1—最大主应力a—北东向劈理反映北西向最大主压应力;b—北西向右行剪切破裂反映南北向最大主压应力;c—北北东向左行剪切破裂反映南北向最大主压应力;d—北东向逆断裂和北西西向右行剪切破裂反映北西向最大主压应力;e—近南北向右行剪切破裂反映北东向最大主压应力
Figure 7. Fault and multiple sets of shear fractures at D504
(a) NE-trending cleavages indicate NW compression; (b) NW-trending dextral shear fractures indicate SN compression; (c) NNE-trending sinistral shear fractures indicate SN compression; (d) NE-trending thrust fault and NWW-trending dextral shear fractures indicate NW compression; (e) SN-trending dextral shear fractures indicate NE compression ①–slate; ②–sandstone; Pt3 y –Yanmenzhai Formation of Gaojian Group; L1–fractures and their numbers; S1–cleavages; σ 1–maximum principal stress
图 8 D505点构造特征
①—劈理化板岩; Pt3 z —高涧群砖墙湾组;L—剪切破裂;S1—劈理及编号;F1—断裂及编号; σ 1—最大主应力;β—褶皱枢纽;q—石英脉a—北东向左行剪切破裂反映近南北向最大主压应力;b—北西向逆断裂反映北东向最大主压应力;c—晚期北北西向破劈理产状;d—北北东向逆断裂反映北西西向最大主压应力;e—北北东向逆断裂反映北西西向最大主压应力;f—北北西向劈理产状
Figure 8. Characteristics of deformation at D505
(a) NE-trending sinistral shear fractures indicate SN compression; (b) NW-trending thrust fault indicate NE compression; (c) Attitudes of the later NNW-trending fracture cleavages; (d) NNE-trending thrust fault indicate NWW compression; (e) NNE-trending thrust fault indicate NWW compression; (f) Attitudes of the NNW-trending cleavages ①–cleavage slate; Pt3 z –Zhuanqiangwan Formation of Gaojian Group; L–shear fractures; S1–cleavages and their numbers; σ 1–maximum principal stress; β–hinge of fold; q–quartz vein
图 9 D505、D506点处构造特征
部分图中的圆圈指示运动学标志发育部位a—D505点处近南北向西倾逆断裂F1;b—D505点处西倾逆断裂F1下盘剪切面理褶皱;c—D505点处北北东向逆断裂F2下盘顺面理石英脉;d—D505点处北北东向东倾逆断裂;e—D505点处北西向早期板劈理与晚期破劈理;f—D505点处北西向逆断裂F3及上盘剪切褶皱;g—D505点处南北向破劈理;h—D505点处北东向剪切破裂面上正、反阶步显示左行;i—D505点处南北向劈理褶皱;j—D505点处南北向破劈理切割北西向板劈理;k—D506点处北北东向强劈理化带(剪切带)与北北东向右行逆断裂;l—D506点处正阶步显示北北东向断裂右行逆冲;m—D506点处正阶步及擦痕指示北西向剪切破裂L1右行;n—D506点处正阶步指示北北西向剪切破裂L2右行;o—D506点北北西向剪切破裂L2右行切错北西向剪切破裂L1(俯视)
Figure 9. Characteristics of structures at D505 and D506
(a) Nearly SN-trending and W-dipping thrust fault F1 at D505; (b) Shear foliation folds at D505 in the footwall of the W-dipping thrust fault F1; (c) Quartz veins at D505 along foliation in the footwall of the NNE-trending thrust fault F2; (d) NNE-trending E-dipping thrust fault at D505; (e) NW-trending early slaty cleavages and later fracture cleavages at D505; (f) NW-trending thrust fault at D505 and shear folds in the hanging wall; (g) SN-trending fracture cleavages at D505; (h) Steps and antisteps indicate that the NE-trending fractures at D505 sinistrally shear; (i) SN-trending cleavage folds at D505; (j) SN-trending fracture cleavages at D505 cut NW-trending slate cleavages; (k) NNE-trending strong cleavage zone (shear zone) and NNE-trending dextral strike-slip-thrust fault at D506; (l) Steps indicate that the NNE-trending fault at D506 dextrally strike-slip-thrust; (m) Steps and striations indicate the NW-trending fracture L1 at D506 dextrally shear; (n) Steps indicate that the NNW-trending fracture L2 at D506 dextrally shear; (o) NNW-trending shear fracture L2 at D506 cut and dextrally move NW-trending fracture L1 (overlook) Circles in some figures indicate the position of kinematics markers.
图 10 D506点处构造特征
①—强劈理化带;②—弱劈理化带;Nh1c—南华系长安组;L1—剪切破裂编号;S1—劈理及编号;F—断裂;σ1—最大主应力a—北北东向右行平移逆断裂反映北东向最大主压应力;b—北西向右行剪切破裂反映北北西向最大主压应力;c—北北西向右行剪切破裂反映南北向最大主压应力
Figure 10. Characteristics of deformation at D506
(a) NNE-trending dextral strike-slip thrust fault indicate NE compression; (b) NW-trending dextral shear fractures indicate NNW compression; (c) NNW-trending dextra shear fractures indicate SN compression ①–strong silicified zone; ②–weak silicified zone; Nh1c–Nanhuan Chang’an Formation; L1–fractures and their number; S1–cleavages; σ1–maximum principal stress
图 11 D507—D511点处构造特征
a—D507点处北西向断裂南西盘北东向剪切破裂及北东向劈理;b—D507点处北西向剪切破裂派生羽裂示右行走滑(斜俯视);c—D508点处强硅化带Ⅰ带顺层石英脉因挤压形成石香肠;d—D508点处强硅化带1带中羽裂指示北东东向剪切破裂左行(斜俯视);e—D508点处无硅化带Ⅱ带特征;f—D508点处强硅化带Ⅲ带中面理及顺层脉背斜;g—D508点处强硅化带Ⅴ带中背斜及核部石英脉;h—D508点处强硅化带Ⅴ带中板劈理S1与破劈理S2;i—D508点处弱硅化带Ⅵ带中劈理;j—D509点处强劈理化带中所夹脆韧性剪切带;k—D510点处北东向断裂及北西向剪切破裂L1、北东向剪切破裂L2;l—D510点处正阶步示北西向剪切破裂L1右行;m—D510点处正阶步及擦痕指示NW向断裂左行逆平移;n—D510点处后期NE向SE倾斜剪切破裂L2切割NE向次级断裂面;羽裂示L2右行逆冲;o—D511点处北北东向剪切破裂L2右行错移北西向剪切破裂L1
Figure 11. Characteristics of structures at D507—D511
(a) NW-trending shear fracture and NE-trending cleavages in the southwestern wall of the NW-trending fault at D507; (b) Secondary pinnate fractures indicate that NW-trending fracture at D507 dextrally shear (oblique overlook); (c) Bedding quartz veins in the strong silicified zone Ⅰ at D508 forms boudins under compression; (d) Pinnate fractures indicate that NEE-trending fractures in the strong silicified zone Ⅰat D508 sinistrally shear (oblique overlook); (e) Characteristics of the non-silicified zone Ⅱ at D508; (f) Structural foliation and bedding quartz vein anticline in the strong silicified zone Ⅲ at D508; (g) Anticline and quartz vein in the strong silicified zone Ⅴ at D508; (h) Slate cleavages S1 and fracture cleavages S2 in the strong silicified zone Ⅴ at D508; (i) Cleavages in the weak silicified zone Ⅵ at D508; (j) Brittle–ductile shear zone in the strong cleavage at D509; (k) NE-trending fault, NW-trending shear fractures L1 and NE-trending shear fractures L2 at D510; (l) Steps indicate that the NW-trending fractures L1 at D510 dextrally shear; (m) Steps and striations indicate that the NW-trending fault sinistrally thrust-strike-slip at D510; (n) Later NE-trending SE-dipping shear fracture L2 cut NE-trending secondary fracture at D510; Pinnate fractures indicate that L2 dextrally strike-slip thrust; (o) NNE-trending shear fracture L2 dextrally move NW-trending shear fracture L1 at D511
图 12 D507点处构造特征
①—劈理化板岩;Nh1 c —南华系长安组;L1—剪切破裂编号;S1—劈理;q—石英脉;F—断裂; σ 1—最大主应力a—北西向左行剪切破裂反映北西西向最大主压应力;b—北西向右行剪切破裂反映北北西向最大主压应力
Figure 12. Characteristics of deformation at D507
(a) NW-trending sinistral shear fractures indicate NWW compression; (b) NW-trending dextral shear fractures indicate NNW compression ①–cleavage slate; Nh1 c –Nanhuan Chang’an Formation; L1–fractures and their numbers; S1–cleavages; q–quartz vein; F–fault; σ 1–maximum principal stress
图 13 D508点构造特征
①—砂质板岩;②—板岩;Pt3z—高涧群砖墙湾组;L—剪切破裂;S1—劈理;β—褶皱枢纽;q—石英脉;Ⅰ—强硅化带;Ⅱ—弱硅化带;Ⅲ—强硅化带;Ⅳ—弱硅化带;Ⅴ—强硅化带;Ⅵ—弱硅化带
Figure 13. Characteristics of deformation at D508
①–sandy slate; ②–slate; Pt3z–Zhuanqiangwan Formation of Gaojian Group; L–shear fractures; S1–cleavages; β–hinge of fold; q–quartz vein; Ⅰ–strong silicified zone; Ⅱ–weak silicified zone; Ⅲ–strong silicified zone; Ⅳ–weak silicified zone; Ⅴ–strong silicified zone; Ⅵ–weak silicified zone
图 14 D510点NE向断裂与剪切破裂特征
①—岩屑砂岩;Nh1 c —南华系长安组;L1—剪切破裂及编号;S1—劈理;q—石英脉; σ 1—最大主应力a—北西向右行剪切破裂反映北北西向最大主压应力;b—北东向左行逆平移断裂反映南北向最大主压应力;c—北东向右行逆冲剪切破裂反映北西西向最大主应力
Figure 14. NE-trending fault and shear fractures at D510
(a) NW-trending dextral shear fractures indicate NNW compression; (b) NE-trending sinistral thrust strike-slip fault indicate SN compression; (c) NE-trending dextral thrust shear fractures indicate NWW compression ①–litharenite; Nh1 c –Nanhuan Chang’an Formation; L1–fractures and their numbers; S1–cleavages; q–quartz vein; σ 1–maximum principal stress
表 1 铲子坪—大坪金矿区构造变形序列
Table 1. Deformation sequences in Chanziping–Daping Au deposit area
时代 变形
期次构造变形 实例 区域构造体制 形成构造动力背景 E3—N1 D6 NE向逆冲剪切破裂 D504 NW向挤压 菲律宾海板块与华南块体碰撞 NWW向右行剪切破裂 D504 E2—E3 D5 NNE向—SN向右行剪切破裂、断裂 D501(继承活动)、D504、D506、D510 NE向挤压 印度−欧亚板块碰撞导致亚洲东部形成右行走滑断裂 NEE向左行剪切破裂(切割石英脉) D508 NW向逆断裂 D505 NW向破劈理 D505 J2晚期 D4 NW向—NWW向左行剪切破裂 D501(继承性活动)、D507、D511 NWW—近EW向挤压 古太平洋板块(或伊泽奈崎板块)俯冲 SN向—NNE向逆断裂 D505 NE向右行逆冲剪切破裂 D510 NNE向—近SN向破劈理 D505、D508 NNE向—近SN向劈理褶皱或剪切面理褶皱 D505、D508 NNE向石英脉石香肠 D508 T3 D3 NW向—NNW向右行走滑断裂(含金矿)、剪切破裂 D504、D506;F7(图2a) SN向挤压 扬子及其以南各地块向北运移与中朝板块碰撞 NNE向—NE向左行剪切破裂、断裂 D504、D505、D510;F10(图2a) NEE向左行膝折构造 D503 T2晚期 D2 NWW向—NW向右行走滑断裂(含金矿)、剪切破裂 D501、D506、D507、D510;铲子坪含矿断裂等(图2a) NNW向挤压 中扬子板块与华夏板块的继发性陆内俯冲汇聚,以及秦岭−大别−苏鲁构造带碰撞造山 SN向左行剪切破裂 D501 NW向和NNE向共轭剪切破裂 D503 NEE向逆断裂 F4(图2a) NEE向叠加褶皱(使NNE向劈理变位为NW向) D505 S晚期 D1 区域NNE向褶皱 f1、f2、f3、f4(图2a) NWW向挤压 扬子与华夏陆内汇聚 NE向—NNE向板劈理(局部后期变位为NW向) D503、D504、D505、D506、D507、D508、D509、D510 NNE向脆韧性剪切带(含金矿)(局部后期变位为NW向) D503、D504、D505、D506、D508、D509;F2、F3、F5、F6等(图2a) -
[1] ALLEN M B, MACDONALD D I M, XUN Z, et al. , 1997. Early Cenozoic two-phase extension and Late Cenozoic thermal subsidence and inversion of the Bohai Basin, northern China[J]. Marine and Petroleum Geology, 14(7-8): 951-972. doi: 10.1016/S0264-8172(97)00027-5 [2] BAI D Y, JIA B H, ZHONG X, et al. , 2012a. Potential genesis of the trending changes of Jinning Period and Caledonian structural lineamens in Middle-southern Hunan[J]. Journal of Geomechanics, 18(2): 165-177. (in Chinese with English abstract) [3] BAI D Y, JIA B H, ZHONG X, et al. , 2012b. Study on the deformation of Indosinian movement in Southeastern Hunan[J]. Geological Review, 58(1): 19-29. (in Chinese with English abstract) [4] BAI D Y, JIANG W, ZHONG X, et al. , 2015. Mesozoic-Cenozoic structural deformation characteristics of Yuanling-Mayang Basin and regional tectonic setting[J]. Geology in China, 42(6): 1851-1875. (in Chinese with English abstract) [5] BAI D Y, LI B, JIANG W, et al. , 2020. Tectonic framework controlling characteristics and dynamic mechanisms of main endogenous mineralization events in Hunan province, China[J]. Journal of Earth Sciences and Environment, 42(1): 49-70. (in Chinese with English abstract) [6] BAI D Y, LI B, ZHOU C, et al. , 2021a. Gold mineralization events of the Jiangnan Orogen in Hunan and their tectonic settings[J]. Acta Petrologica et Mineralogica, 40(5): 897-922. (in Chinese with English abstract) [7] BAI D Y, LI B, LI Y M, et al. , 2021b. Segmentation of the movement in Indosinian of the Changde-Anren fault in Hunan: constraints from granite[J]. Bulletin of Geological Science and Technology, 40(5): 173-187. (in Chinese with English abstract) [8] BAI D Y, TANG F P, LI B, et al. , 2022. Summary of main mineralization events in Hunan province[J]. Geology in China, 49(1): 151-180. (in Chinese with English abstract) [9] BAI D Y, LI B, WU M J, et al. , 2023a. Deformation sequences, ore-forming Epoch and attributes of ore-bearing structurals in the Zhazixi Sb-W deposit, Hunan province[J]. Geotectonica et Metallogenia, 47(2): 260-283. (in Chinese with English abstract) [10] BAI D Y, LI B, JIN H, et al. , 2023b. Deformation sequences and ore-controlling structures of Au—Sb deposits in the Longshan area in central Hunan province[J]. Geological Review, 69(1): 88-112. (in Chinese with English abstract) [11] BAI D Y, LI B, JIANG C, et al. , 2023c. Deformation sequences, metallogenic events and ore-controlling structures at Gutaishan Au-Sb deposit in central Hunan province[J]. Mineral Deposits, 42(2): 229-252. (in Chinese with English abstract) [12] BAI D Y, WEN C H, HUANG J Z, et al. , 2023d. Mesozoic tectono-magmatic characteristics and their control on rare metal pegmatites in Mufushan area, northeastern Hunan[J]. Geological Review, 69(3): 855-880. (in Chinese with English abstract) [13] CAO L, DUAN Q F, PENG S G, et al. , 2015a. Characteristics of fluid inclusions in the Chanziping gold deposit in western Hunan province and their geological implications[J]. Geology and Exploration, 51(2): 212-224. (in Chinese with English abstract) [14] CAO L, DUAN Q F, PENG S G, et al. , 2015b. Characteristics and geological significance of stable isotopes in the Chanziping gold deposit of Xuefeng Mountains[J]. Geology and Mineral Resources of South China, 31(2): 167-175. (in Chinese with English abstract) [15] CHEN M Y, 1996. Characteristics of alteration zone of NW structure in Chanziping gold deposit and its significance of research[J]. Hunan Geology, 15(2): 78-80, 84. (in Chinese with English abstract) [16] CHEN X, RONG J Y, 1999. From biostratigraphy to tectonics—with Ordovician and Silurian of South China as an example[J]. Geoscience, 13(4): 385-389. (in Chinese with English abstract) [17] CHU Y, LIN W, FAURE M, et al. , 2019. Cretaceous episodic extension in the South China Block, East Asia: evidence from the Yuechengling Massif of central South China[J]. Tectonics, 38(10): 3675-3702,doi: 10.1029/2019TC005516. [18] FU H H, TANG W G, TANG Y P, 2011. Re-understanding of Chanziping gold deposit ore-controlling factors and prospects analysis of deep side prospecting[J]. Mineral Resources and Geology, 25(2): 91-97. (in Chinese with English abstract) [19] GILDER S A, LELOUP P H, COURTILLOT V, et al. , 1999. Tectonic evolution of the Tancheng-Lujiang (Tan-Lu) fault via Middle Triassic to early Cenozoic paleomagnetic data[J]. Journal of Geophysical Research: Solid Earth, 104(B7): 15365-15390. doi: 10.1029/1999JB900123 [20] HALL R, 2002. Cenozoic geological and plate tectonic evolution of SE Asia and the SW Pacific: computer-based reconstructions, model and animations[J]. Journal of Asian Earth Sciences, 20(4): 353-431. doi: 10.1016/S1367-9120(01)00069-4 [21] HAO Y, LI S Z, JIN C, et al. , 2010. Galedonian structural characteristics and mechanism in Hunan-Jiangxi-Guangxi provinces[J]. Geotectonica et Metallogenia, 34(2): 166-180. (in Chinese with English abstract) [22] HUANG J Z, SUN J, ZHOU C, et al. , 2020. Metallogenic regularity and resource potential of gold deposits of Hunan area in the Jiangnan Orogenic Belt, South China[J]. Acta Geoscientica Sinica, 41(2): 230-252. (in Chinese with English abstract) [23] Hunan Institute of Geological Survey, 2017. Regional geology of China, Hunan province[M]. Beijing: Geology Press. (in Chinese) [24] LI B, XU D R, BAI D Y, et al. , 2022a. Characteristics of structural deformation and its tectonic setting in the Huishangang area, northern Xuefeng Orogen[J]. Geotectonica et Metallogenia, 46(1): 1-21. (in Chinese with English abstract) [25] LI B, XU D R, BAI D Y, et al. , 2022b. Structural deformation, metallogenic Epoch and genetic mechanism of the Woxi Au-Sb-W deposit, western Hunan province, South China[J]. Science China Earth Sciences, 65(12): 2358-2384. doi: 10.1007/s11430-021-9978-0 [26] LI H Q, WANG D H, CHEN F W, et al. , 2008. Study on chronology of the Chanziping and Daping gold deposit in Xuefeng Mountains, Hunan province[J]. Acta Geologica Sinica, 82(7): 900-905. (in Chinese with English abstract) [27] LI J H, ZHANG Y Q, XU X B, et al. , 2014. SHRIMP U-Pb dating of zircons from the Baimashan Longtan super-unit and Wawutang granites in Hunan province and its geological implication[J]. Journal of Jilin University (Earth Science Edition), 44(1): 158-175. (in Chinese with English abstract) [28] LI W, XIE G Q, MAO J W, et al. , 2018. Muscovite 40Ar/39Ar and in situ sulfur isotope analyses of the slate-hosted Gutaishan Au–Sb deposit, South China: implications for possible Late Triassic magmatic-hydrothermal mineralization[J]. Ore Geology Reviews, 101: 839-853. doi: 10.1016/j.oregeorev.2018.08.006 [29] LI Z X, LI X H, 2007. Formation of the 1300-km-wide intracontinental orogen and postorogenic magmatic province in Mesozoic South China: a flat-slab subduction model[J]. Geology, 35(2): 179-182,doi: 10.1130/G23193A.1. [30] LUO X Q, 1993. Tectonic metallogenesis of Chanziping gold deposit[J]. Hunan Geology, 12(3): 171-176. (in Chinese with English abstract) [31] LUO X Q, 1996a. Mineralization and prospecting guide of Chanziping gold deposit in Hunan[J]. Hunan Geology, 15(1): 33-38. (in Chinese with English abstract) [32] LUO X Q, 1996b. Typomorphic characteristics and geological implications of minerals from the Chanziping gold deposit, Hunan province[J]. Acta Petrologica et Mineralogica, 15(2): 170-179, 169. (in Chinese with English abstract) [33] LUO Z G, WANG Y J, ZHANG F F, et al. , 2010. LA-ICPMS zircon U-Pb dating for Baimashan and Jintan Indosinian granitic plutons and its petrogenetic implications[J]. Geotectonica et Metallogenia, 34(2): 282-290. (in Chinese with English abstract) [34] LV Y J, PENG J T, CAI Y F, 2021. Geochemical characteristics, U-Pb dating of hydrothermal titanite from the Xingfengshan tungsten deposit in Hunan province and their geological significance[J]. Acta Petrologica Sinica, 37(3): 830-846. (in Chinese with English abstract) doi: 10.18654/1000-0569/2021.03.12 [35] MENG X G, CHEN Z L, SHAO Z G, et al. , 2001. Ore-controlling structures and genesis in the Tongxi gold field in the central segment of the Xuefeng Mountains[J]. Regional Geology of China, 20(4): 404-410. (in Chinese with English abstract) [36] QIU Y X, ZHANG Y C, MA W P, 1998. Tectonics and geological evolution of Xuefengintra-continental orogene, South China[J]. Geological Journal of China Universities, 4(4): 432-443. (in Chinese with English abstract) [37] SHU L S, ZHOU X M, 2002. Late Mesozoic tectonism of southeast China[J]. Geological Review, 48(3): 249-260. (in Chinese with English abstract) [38] SHU L S, ZHOU X M, DENG P, et al. , 2004. Geological features and tectonic evolution of Meso-Cenozoic basins in southeastern China[J]. Geological Bulletin of China, 23(9-10): 876-884. (in Chinese with English abstract) [39] SHU L S, ZHOU X M, DENG P, et al. , 2009. Mesozoic tectonic evolution of the Southeast China Block: new insights from Basin analysis[J]. Journal of Asian Earth Sciences, 34(3): 376-391,doi: 10.1016/j.jseaes.2008.06.004. [40] SHU L S, YAO J L, WANG B, et al. , 2021. Neoproterozoic plate tectonic process and Phanerozoic geodynamic evolution of the South China Block[J]. Earth-Science Reviews, 216: 103596,doi: 10.1016/j.earscirev.2021.103596. [41] SU K M, LV S J, KONG L B, et al. , 2016. Geological characteristics, metallogenetic regularity and model of quartz vein type tungsten deposits in Chongyangping, Hunan province[J]. Mineral Deposits, 35(5): 902-912. (in Chinese with English abstract) [42] WAN T F, ZHU H, 2002. Tectonics and environment change of Meso-Cenozoic in China continent and its adjacent areas[J]. Geoscience, 16(2): 107-120. (in Chinese with English abstract) [43] WANG C, SHAO Y J, EVANS N J, et al. , 2020. Genesis of Zixi gold deposit in Xuefengshan, Jiangnan Orogen (South China): age, geology and isotopic constraints[J]. Ore Geology Reviews, 117: 103301,doi: 10.1016/j.oregeorev.2019.103301. [44] WANG J, LI S Z, JIN C, et al. , 2010. Dome-and-Basin pattern in central Hunan province: stages and genesis of fold superposition[J]. Geotectonica et Metallogenia, 34(2): 159-165. (in Chinese with English abstract) [45] WANG Y L, CHEN Y C, WANG D H, et al. , 2012. Scheelite Sm-Nd dating of the Zhazixi W-Sb deposit in Hunan and its geological significance[J]. Geology in China, 39(5): 1339-1344. (in Chinese with English abstract) [46] WEI D F, 1993. Source of ore-forming materials in Chanziping gold deposit and the geologic study of its mechanism of Formation[J]. Hunan Geology, 12(1): 29-34. (in Chinese with English abstract) [47] WEI D F, 1995. On discussion of geochemical anomaly model of Chanziping gold deposit, Qianyang County[J]. Hunan Geology, 14(4): 252-256. (in Chinese with English abstract) [48] WU N J, BAI D Y, LI B, et al. , 2023. Deformation sequence and its constraints on the attributes of ore-controlling structures of Wangu gold deposit in northeast Hunan[J]. Journal of Guilin University of Technology, 43(2): 161-175. (in Chinese with English abstract) [49] XU D R, DENG T, CHI G X, et al. , 2017. Gold mineralization in the Jiangnan Orogenic Belt of South China: geological, geochemical and geochronological characteristics, ore deposit-type and geodynamic setting[J]. Ore Geology Reviews, 88: 565-618. doi: 10.1016/j.oregeorev.2017.02.004 [50] XU X B, ZHANG Y Q, JIA D, et al. , 2009. Early Mesozoic geotectonic processes in South China[J]. Geology in China, 36(3): 573-593. (in Chinese with English abstract) [51] XU Z Y, LIN G, LIU C Y, et al. , 2004. A discussion on amalgamation course between the South China and North China blocks: evidences from deformational characters in the Jianghan superimposed Basin[J]. Chinese Journal of Geology, 39(2): 284-295. (in Chinese with English abstract) [52] YANG J, LUO P, LING Y X, et al. , 2021. Superimposed features and deformation mechanism of Early Mesozoic folds in the Sangzhi-Shimen area, northern Hunan[J]. Bulletin of Geological Science and Technology, 40(6): 43-54. (in Chinese with English abstract) [53] YIN A, HARRISON T M, 2000. Geologic evolution of the Himalayan-Tibetan orogen[J]. Annual Review of Earth and Planetary Sciences, 28: 211-280. doi: 10.1146/annurev.earth.28.1.211 [54] ZHANG G W, GUO A L, DONG Y P, et al. , 2011. Continental geology, tectonics and dynamics[J]. Earth Science Frontiers, 18(3): 1-12. (in Chinese with English abstract) [55] ZHANG L, YANG L Q, GROVES D I, et al. , 2019. An overview of timing and structural geometry of gold, gold-antimony and antimony mineralization in the Jiangnan Orogen, southern China[J]. Ore Geology Reviews, 115: 103173. doi: 10.1016/j.oregeorev.2019.103173 [56] ZHANG L S, PENG J T, ZHANG D L, et al. , 2012. Geochemistry and petrogenesis of the Indosinian Dashenshan granite, western Hunan, South China[J]. Geotectonica et Metallogenia, 36(1): 137-148. (in Chinese with English abstract) [57] ZHANG L S, PENG J T, HU A X, et al. , 2014. Re-Os dating of molybdenite from Darongxi tungsten deposit in western Hunan and its geological implications[J]. Mineral Deposits, 33(1): 181-189. (in Chinese with English abstract) [58] ZHANG Y Q, XU X B, JIA D, et al. , 2009. Deformation record of the change from Indosinian collision-related tectonic system to Yanshanian subduction-related tectonic system in South China during the Early Mesozoic[J]. Earth Science Frontiers, 16(1): 234-247. (in Chinese with English abstract) [59] ZHANG Y Q, DONG S W, LI J H, et al. , 2012. The new progress in the study of Mesozoic tectonics of South China[J]. Acta Geoscientica Sinica, 33(3): 257-279. (in Chinese with English abstract) [60] ZHAO J G, 2000. Existing state and distibution regular of Au in Chanziping gold deposit[J]. Hunan Geology, 19(3): 164-168. (in Chinese with English abstract) [61] ZHENG Y D, WANG T, WANG X S, 2007. The maximum effective moment criterion (MEMC) and related geological structures[J]. Earth Science Frontiers, 14(4): 49-60. (in Chinese with English abstract) [62] 柏道远, 贾宝华, 钟响, 等, 2012a. 湘中南晋宁期和加里东期构造线走向变化成因[J]. 地质力学学报, 18(2): 165-177. [63] 柏道远, 贾宝华, 钟响, 等, 2012b. 湘东南印支运动变形特征研究[J]. 地质论评, 58(1): 19-29. [64] 柏道远, 姜文, 钟响, 等, 2015. 湘西沅麻盆地中新生代构造变形特征及区域地质背景[J]. 中国地质, 42(6): 1851-1875. [65] 柏道远, 李彬, 姜文, 等, 2020. 湖南省主要内生成矿事件的构造格局控矿特征及动力机制[J]. 地球科学与环境学报, 42(1): 49-70. [66] 柏道远, 李彬, 周超, 等, 2021a. 江南造山带湖南段金矿成矿事件及其构造背景[J]. 岩石矿物学杂志, 40(5): 897-922. [67] 柏道远, 李彬, 李银敏, 等, 2021b. 湖南常德-安仁断裂印支期构造运动分段性: 来自花岗岩的约束[J]. 地质科技通报, 40(5): 173-187. [68] 柏道远, 唐分配, 李彬, 等, 2022. 湖南省成矿地质事件纲要[J]. 中国地质, 49(1): 151-180. [69] 柏道远, 李彬, 吴梦君, 等, 2023a. 湖南渣滓溪锑钨矿区变形序列、成矿时代及含矿构造属性[J]. 大地构造与成矿学, 47(2): 260-283. [70] 柏道远, 李彬, 金华, 等, 2023b. 湘中龙山地区变形序列及金锑矿控矿构造[J]. 地质论评, 69(1): 88-112. [71] 柏道远, 李彬, 江灿, 等, 2023c. 湘中古台山金锑矿床变形序列、成矿事件及控矿构造[J]. 矿床地质, 42(2): 229-252. [72] 柏道远, 文春华, 黄建中, 等, 2023d. 湘东北幕阜山地区中生代构造—岩浆特征及其对稀有金属伟晶岩的控制[J]. 地质论评, 69(3): 855-880. [73] 曹亮, 段其发, 彭三国, 等, 2015a. 雪峰山铲子坪金矿床流体包裹体特征及地质意义[J]. 地质与勘探, 51(2): 212-224. [74] 曹亮, 段其发, 彭三国, 等, 2015b. 雪峰山铲子坪金矿床稳定同位素特征及成矿地质意义[J]. 华南地质与矿产, 31(2): 167-175. [75] 陈明扬, 1996. 铲子坪金矿北西向构造蚀变带特征及其研究意义[J]. 湖南地质, 15(2): 78-80, 84. [76] 陈旭, 戎嘉余, 1999. 从生物地层学到大地构造学: 以华南奥陶系和志留系为例[J]. 现代地质, 13(4): 385-389. [77] 符海华, 唐卫国, 汤亚平, 2011. 铲子坪金矿控矿因素再认识与深边部找矿远景分析[J]. 矿产与地质, 25(2): 91-97. [78] 郝义, 李三忠, 金宠, 等, 2010. 湘赣桂地区加里东期构造变形特征及成因分析[J]. 大地构造与成矿学, 34(2): 166-180. [79] 湖南省地质调查院, 2017. 中国区域地质志·湖南志[M]. 北京: 地质出版社. [80] 黄建中, 孙骥, 周超, 等, 2020. 江南造山带(湖南段)金矿成矿规律与资源潜力[J]. 地球学报, 41(2): 230-252. [81] 李彬, 许德如, 柏道远, 等, 2022a. 雪峰造山带北段灰山港地区构造变形特征及其形成构造背景[J]. 大地构造与成矿学, 46(1): 1-21. [82] 李彬, 许德如, 柏道远, 等, 2022b. 湘西沃溪金-锑-钨矿床构造变形、成矿时代及成因机制[J]. 中国科学: 地球科学, 52(12): 2479-2505. [83] 李华芹, 王登红, 陈富文, 等, 2008. 湖南雪峰山地区铲子坪和大坪金矿成矿作用年代学研究[J]. 地质学报, 82(7): 900-905. doi: 10.3321/j.issn:0001-5717.2008.07.006 [84] 李建华, 张岳桥, 徐先兵, 等, 2014. 湖南白马山龙潭超单元、瓦屋塘花岗岩锆石SHRIMP U-Pb年龄及其地质意义[J]. 吉林大学学报(地球科学版), 44(1): 158-175. [85] 骆学全, 1993. 铲子坪金矿的构造成矿作用[J]. 湖南地质, 12(3): 171-176. [86] 骆学全, 1996a. 湖南铲子坪金矿的成矿规律及找矿标志[J]. 湖南地质, 15(1): 33-38. [87] 骆学全, 1996b. 湖南铲子坪金矿的矿物标型及其地质意义[J]. 岩石矿物学杂志, 15(2): 170-179, 169. [88] 罗志高, 王岳军, 张菲菲, 等, 2010. 金滩和白马山印支期花岗岩体LA-ICPMS锆石U-Pb定年及其成岩启示[J]. 大地构造与成矿学, 34(2): 282-290. [89] 吕沅峻, 彭建堂, 蔡亚飞, 2021. 湖南杏枫山钨矿床热液榍石的地球化学特征、U-Pb定年及其地质意义[J]. 岩石学报, 37(3): 830-846. [90] 孟宪刚, 陈正乐, 邵兆刚, 等, 2001. 雪峰山中段桐溪金矿田控矿构造及成因[J]. 中国区域地质, 20(4): 404-410. [91] 丘元禧, 张渝昌, 马文璞, 1998. 雪峰山陆内造山带的构造特征与演化[J]. 高校地质学报, 4(4): 432-443. [92] 舒良树, 周新民, 2002. 中国东南部晚中生代构造作用[J]. 地质论评, 48(3): 249-260. [93] 舒良树, 周新民, 邓平, 等, 2004. 中国东南部中、新生代盆地特征与构造演化[J]. 地质通报, 23(9-10): 876-884. [94] 苏康明, 吕书君, 孔令兵, 等, 2016. 湖南崇阳坪地区石英脉型钨矿床的地质特征、成矿规律及成矿模式[J]. 矿床地质, 35(5): 902-912. [95] 万天丰, 朱鸿, 2002. 中国大陆及邻区中生代-新生代大地构造与环境变迁[J]. 现代地质, 16(2): 107-120. doi: 10.3969/j.issn.1000-8527.2002.02.001 [96] 王建, 李三忠, 金宠, 等, 2010. 湘中地区穹盆构造: 褶皱叠加期次和成因[J]. 大地构造与成矿学, 34(2): 159-165. [97] 王永磊, 陈毓川, 王登红, 等, 2012. 湖南渣滓溪W-Sb矿床白钨矿Sm-Nd测年及其地质意义[J]. 中国地质, 39(5): 1339-1344. [98] 魏道芳, 1993. 铲子坪金矿成矿物质来源及成矿机理的地球化学研究[J]. 湖南地质, 12(1): 29-34. [99] 魏道芳, 1995. 黔阳县铲子坪金矿地球化学异常模式探讨[J]. 湖南地质, 14(4): 252-256. [100] 吴能杰, 柏道远, 李彬, 等, 2023. 湘东北万古金矿区变形序列及其对控矿构造属性的约束[J]. 桂林理工大学学报, 43(2): 161-175. [101] 徐先兵, 张岳桥, 贾东, 等, 2009. 华南早中生代大地构造过程[J]. 中国地质, 36(3): 573-593. [102] 徐政语, 林舸, 刘池阳, 等, 2004. 从江汉叠合盆地构造形变特征看华南与华北陆块的拼贴过程[J]. 地质科学, 39(2): 284-295. doi: 10.3321/j.issn:0563-5020.2004.02.015 [103] 杨俊, 罗鹏, 凌跃新, 等, 2021. 湘北桑植-石门一带早中生代褶皱叠加特征及变形机制[J]. 地质科技通报, 40(6): 43-54. [104] 张国伟, 郭安林, 董云鹏, 等, 2011. 大陆地质与大陆构造和大陆动力学[J]. 地学前缘, 18(3): 1-12. [105] 张龙升, 彭建堂, 张东亮, 等, 2012. 湘西大神山印支期花岗岩的岩石学和地球化学特征[J]. 大地构造与成矿学, 36(1): 137-148. doi: 10.3969/j.issn.1001-1552.2012.01.017 [106] 张龙升, 彭建堂, 胡阿香, 等, 2014. 湘西大溶溪钨矿床中辉钼矿Re-Os同位素定年及其地质意义[J]. 矿床地质, 33(1): 181-189. [107] 张岳桥, 徐先兵, 贾东, 等, 2009. 华南早中生代从印支期碰撞构造体系向燕山期俯冲构造体系转换的形变记录[J]. 地学前缘, 16(1): 234-247. [108] 张岳桥, 董树文, 李建华, 等, 2012. 华南中生代大地构造研究新进展[J]. 地球学报, 33(3): 257-279. [109] 赵建光, 2000. 铲子坪金矿床金的赋存状态及分布规律[J]. 湖南地质, 19(3): 164-168. [110] 郑亚东, 王涛, 王新社, 2007. 最大有效力矩准则及相关地质构造[J]. 地学前缘, 14(4): 49-60. doi: 10.3321/j.issn:1005-2321.2007.04.005 期刊类型引用(4)
1. 柏道远,李彬,曾广乾,杨俊. 湖南省印支运动应力场特征及其动力机制. 华南地质. 2024(02): 252-269 . 百度学术
2. 陈志友,曾广乾,柏道远,姚泽钰,王灵珏,文春华,陈旭,王勇,李彬,黄乐清,陈剑锋,梁恩云,许若潮,马慧英,向轲. 湘南大义山地区中—新生代变形序列及其动力学背景. 现代地质. 2024(04): 1092-1108 . 百度学术
3. 孙钦阳,王遥,赵鹏涛. 杨家山矿区围岩力学规律及控制技术研究. 能源与节能. 2024(10): 178-180 . 百度学术
4. 柏道远,李彬,吴梦君,王朝飞. 湖南渣滓溪锑钨矿床构造控矿特征及动力机制. 桂林理工大学学报. 2024(04): 567-575 . 百度学术
其他类型引用(0)
-