Mechanism of the strong earthquake triggered by high pressure fluid in reservoir: A case study of the 5.12 Wenchuan earthquake
-
摘要: 目前产生地震的机制仍以弹性回跳说为主:地震是因为断层错断使岩层的弹性能释放而引发。但越来越多的学者开始质疑,仅断层错断后的弹性能,是否真能达到实际地震所释放的巨大能量。因此,有必要探讨地震初动后破坏性强震的性质及其真正的能量来源。文章根据沉积地层中的储集层及其压力的特点分析得出,储集层内含有大量的高压流体,其压力在一定条件下可以释放出来,产生流体物理爆炸,有可能是强震能量的重要组成部分。通过计算得出,当断层破裂并刺穿面积较大的储集层时,其压力释放所产生的弹性能可以达到震级8.0以上地震所释放的能量;人为的工程活动也可引发小规模的流体压力的释放现象,如钻井时的井喷、水力压裂会诱发有感地震等。同时,文章根据对距离震中较近的地震台的波形及传播射线路径分析认为,强震波动可能不是横波S波,而是涨缩波P波,据此不能排除强震是由爆炸所致。综合汶川地震多个台站记录到的地震波的时间域和频率域特征、地面观测到的爆炸现象、地震后科学钻探获得的岩心等大量直接或间接证据,说明了这种流体爆炸能量释放的可能性。最后,文章提出了地震活动可分为三个阶段:微破裂阶段Ⅰ,该阶段有流体活动,并可产生动电效应,但未触发地震初动;地震初动后的断裂破裂阶段Ⅱ;由流体压力释放产生地震强震阶段Ⅲ。Abstract: At present, the mechanism of earthquake is still based on elastic rebound theory—Earthquake is caused by the release of elastic energy of rock strata due to fault dislocation. But more and more scholars began to question whether the elastic energy after fault faulting can really reach the huge energy released by the actual earthquake. Therefore, it is necessary to study the nature of destructive strong earthquake and its real energy source after the initial movement. According to the characteristics of the reservoir and its pressure in the sedimentary strata, it is concluded that there are a lot of high-pressure fluid in the reservoir, and its pressure can be released under certain conditions, resulting in fluid physical explosion, which may be an important part of strong earthquake energy. The calculation results show that when the fault ruptures and penetrates the reservoir with large area, the elastic energy produced by the pressure release can reach the energy released by the earthquake with magnitude above 8.0; Artificial engineering activities can also lead to the release of small-scale fluid pressure, such as blowout during drilling, earthquake induced by hydraulic fracturing, etc. At the same time, according to the analysis of the waveforms and propagation ray paths of the seismic stations close to the epicenter, it is considered that the strong earthquake wave may not be S-wave, but P-wave. Therefore, it cannot be ruled out that the strong earthquake might be caused by explosion. A large number of direct or indirect evidence, such as the time domain and frequency domain characteristics of seismic waves recorded by several stations during the Wenchuan earthquake, the explosion phenomena observed on the ground, and the cores obtained by scientific drilling after the earthquake, indicate the possibility of the release of this kind of fluid explosion energy. Finally, this paper proposes that the seismicity can be divided into three stages: The stage Ⅰ of micro rupture, in which there is fluid activity and electrokinetic effect, but the initial earthquake motion is not triggered; The stage Ⅱ of fault rupture after the initial earthquake motion; The strong earthquake stage Ⅲ, which is caused by the release of fluid pressure.
-
Key words:
- Wenchuan earthquake /
- time frequency analysis /
- initial fracture /
- initial motion /
- reservoir /
- fluid overpressure
-
图 1 孟加拉湾沉积地层与变质基底(剖面经度87°;据Curray,1991修改)
Figure 1. Sedimentary strata and metamorphic basement in Bay of Bengal (modified after Curray, 1991). Note: longitude of geological section: 87°
图 3 川西坳陷什邡地区地质统计学模拟的连井孔隙度剖面(武恒志等,2015)
Figure 3. Cross-well porosity section from the geostatistics modeling of the reservoirs in the Shifang area, Western Sichuan Depression(Wu et al., 2015)
图 7 汶川地震近震台站时频分析
S1、S2、S1′、S2′分别为卧龙台、清平台两次强振动事件主频位置;F1、F2、F1′、F2′分别为卧龙台、清平台两次强振动事件最大频率位置
Figure 7. Time frequency analysis of near the seismic stations during the Wenchuan earthquake
S1, S2, S1′ and S2′ are the main frequency positions of two strong vibration events observed at the Wolong station and the Qingping station respectively; F1, F2, F1′ and F2′ are the maximum frequency positions of two strong vibration events observed at the Wolong station and the Qingping station respectively.
图 8 卧龙地震台接收到的地震信号振幅包络线及地震射线路径示意图
a—连续时频分析频谱;b—分时段离散频谱;c—三个分量正振幅波动曲线及包络线;d—地震波射线路径
S—强振幅事件;P单个强振幅事件;A—初始破裂;H—震源;Ps—转换横波Figure 8. Amplitude envelope and seismic ray path of seismic signal received by the Wolong station. (a) Continuous time-frequency spectrum analysis. (b) The discrete spectrum of different periods. (c) The positive amplitude curves and envelopes of the three components. (d) Ray path of the seismic wave.
S-strong amplitude event; P-single strong amplitude event; A-initial fracture; H-hypocenter; Ps-converted shear wave
图 9 在汶川地震时流体活动与爆炸现象
a—八角庙露头中假玄武玻璃(Pst)流动构造特征(Wang et al., 2015);b—北川桂溪镇水井岩滑坡和堰塞体表面不同位置的4个爆炸坑(拍摄日期2008-06-20;镜向S;104.603°E,31.973°N;Shang et al., 2015)
Figure 9. Fluid activity and explosion during the Wenchuan earthquake. (a) Characteristics of the flow structure of pseudobasaltic glass in the outcrop of Bajiaomiao(Wang et al., 2015). (b) Four explosion pits at different positions on the surface of the shuijingyan landslide and weir plug in Guixi Town, Beichuan (shot date: June 20, 2008, lens direction: S, 104.603°E, 31.973°N) (Shang et al., 2015)
表 1 深部流体与油气参数对比
Table 1. Comparison of parameters between deep fluid and oil and gas
深部流体 页岩气 常规油气 赋存空间 变质基底 盆地 盆地 孔隙度 <1% 1%~5% 5%~30% 渗透率 <0.1 mD 0.1~50 mD 50~5000 mD 可自由流动距离 1 nm 1 m 500 m 流体/气体丰度 <0.05 cm3/g 7~15 cm3/g >8000 cm3/g 表 2 川西坳陷须家河组和灯影组储集层参数与模型参数对比表
Table 2. Comparison of reservoir parameters and model parameters of the Xujiahe formation and the Dengying formation in the Western Sichuan Depression
储层参数 实测参数 所取模型参数 资料来源 长度 10~50 km 5 km 冷济高等(2011) 宽度 5~22 km 0.5 km 储层厚度 150~300 m 100 m 赵正望等(2013) 储层孔隙度 5%~20% 5% 武恒志等(2015) 深度 >6 km 4 km 储层压力 1.8~2.1倍超压 按1.8倍超压 冷济高等(2011) 流体含量 鸭子河气田探明储量3.09×107 m3油当量(至2014年) 1.3×107 m3 徐天吉(2017) -
ARAI K, INOUE T, IKEHARA K, et al., 2014. Episodic subsidence and active deformation of the forearc slope along the Japan Trench near the epicenter of the 2011 Tohoku Earthquake[J]. Earth and Planetary Science Letters, 408: 9-15. doi: 10.1016/j.epsl.2014.09.048 BELL D R, ROSSMAN G R, 1992. Water in Earth's mantle: the role of nominally anhydrous minerals[J]. Science, 255(5050): 1391-1397. doi: 10.1126/science.255.5050.1391 BEROZA G C, JORDAN T H, 1990. Searching for slow and silent earthquakes using free oscillations[J]. Journal of Geophysical Research: Solid Earth, 95(B3): 2485-2510. doi: 10.1029/JB095iB03p02485 BRACE W F, BYERLEE J D, 1966. Stick-slip as a mechanism for earthquakes[J]. Science, 153(3739): 990-992. doi: 10.1126/science.153.3739.990 BYERLEE J D, 1970. The mechanics of stick-slip[J]. Tectonophysics, 9(5): 475-486. doi: 10.1016/0040-1951(70)90059-4 CHEN T, ZHANG X X, ZHANG X M, et al., 2021. Imminent Estimation of Earthquake Hazard by regional network monitoring the near surface vertical atmospheric electrostatic field[J]. Chinese Journal of Geophysics, 64(4): 1045-1054. (in Chinese with English abstract) http://www.mdpi.com/2072-4292/13/17/3420#metrics CURRAY J R, 1991. Possible greenschist metamorphism at the base of a 22-km sedimentary section, Bay of Bengal[J]. Geology, 19(11): 1097-1100. doi: 10.1130/0091-7613(1991)019<1097:PGMATB>2.3.CO;2 DU J G, SI X Y, CHEN Y X, et al., 2008. Geochemical anomalies connected with great earthquakes in China[M]//Geochemistry research advances. New York: Nova Science Publishers, Inc., 57-92. DZIERMA Y, THORWART M, RABBEL W, 2012. Moho topography and subducting oceanic slab of the Chilean continental margin in the maximum slip segment of the 1960 Mw 9.5 Valdivia (Chile) earthquake from P-receiver functions[J]. Tectonophysics, 530-531: 180-192. doi: 10.1016/j.tecto.2011.12.016 FANG S N, ZHANG Z S, WANG Z, et al., 2020. Principal Slip Zone determination in the Wenchuan earthquake Fault Scientific Drilling project-hole 1: considering the Bayesian discriminant function[J]. Acta Geophysica, 68(6): 1595-1607. doi: 10.1007/s11600-020-00496-z FIDANI C, 2010. The earthquake lights (EQL) of the 6 April 2009 Aquila earthquake, in Central Italy[J]. Natural Hazards and Earth System Sciences, 10(5): 967-978. doi: 10.5194/nhess-10-967-2010 FINKELSTEIN D, POWELL, J. 1970. Earthquake lightning. Nature, 228(5273), 759-760. doi: 10.1038/228759a0 FINKELSTEIN D, HILL R D, POWELL J R, 1973. The Piezoelectric Theory of earthquake lightning[J]. Journal of Geophysical Research, 78(6): 992-993. doi: 10.1029/JC078i006p00992 FITTERMAN D V, 1978. Electrokinetic and magnetic anomalies associated with dilatant regions in a layered Earth[J]. Journal of Geophysical Research: Solid Earth, 83(B21): 5923-5928. GAO J Y, LIU X F, YAN R, 2020. Time-frequency analysis of seismic records generated by natural earthquakes, blasts, and collapses near Pingmei mine based on STFT[J]. Seismological and Geomagnetic Observation and Research, 41(3): 67-74. (in Chinese with English abstract) GAO X, WANG K L, 2017. Rheological separation of the megathrust seismogenic zone and episodic tremor and slip[J]. Nature, 543(7645): 416-419. doi: 10.1038/nature21389 GILAT A, VOL A, 2005. Primordial hydrogen-helium degassing, an overlooked major energy source for internal terrestrial processes[J]. HAIT Journal of Science & Engineering B, 2(1-2): 125-167. http://www.researchgate.net/publication/241587405_Primordial_hydrogen-helium_degassing_an_overlooked_major_energy_source_for_internal_terrestrial_processes GOMBERG J, BODIN P, LARSON K, et al., 2004. Earthquake nucleation by transient deformations caused by the M=7.9 Denali, Alaska, earthquake[J]. Nature, 427(6975): 621-624. doi: 10.1038/nature02335 HAO J G, 1988. Near earth surface anomalies of the atmospheric electric field and earthquakes[J]. Acta Seisemologica Sinica, 10(2): 206-212. (in Chinese with English abstract) HARMS U. 1994. New achievements of (KTB) in 7 km ultra-deep drilling in Germany-fluids in the Variscan basement and their passageways. Geological science translation cluster, 11(2): 91-93. (in Chinese) HE B Z, QIAO X F, 2015. Advances and overview of the study on paleo-earthquake events: a review of seismites[J]. Acta Geologica Sinica (English Edition), 89(5): 1702-1746. doi: 10.1111/1755-6724.12575 HEINICKEA J, STEPHAN T, ALEXANDRAKIS C, et al., 2019. Alteration as possible cause for transition from brittle failure to aseismic slip: the case of the NW-Bohemia/Vogtland earthquake swarm region. Journal of Geodynamics, 124: 79-92. doi: 10.1016/j.jog.2019.01.010 HONDA H, 1962. Earthquake Mechanism and Seismic Waves[J]. Journal of Physics of the Earth, 10(2): 1-97. doi: 10.4294/jpe1952.10.2_1 HU X G, 2018. Secondary microseisms of North Atlantic windstorms in Central Eurasia-an understanding of an anomalously big bulge of seismic noise before the 2001 November 14 Mw 7.8 Kunlun earthquake[J]. Geophysical Journal International, 214(3): 2084-2097. doi: 10.1093/gji/ggy237 HUBBARD J, SHAW J H, 2009. Uplift of the Longmen Shan and Tibetan plateau, and the 2008 Wenchuan (M=7.9) earthquake[J]. Nature, 458(7235): 194-197. doi: 10.1038/nature07837 HUENGES E, ERZINGER J, KVCK J, et al., 1997. The permeable crust: geohydraulic properties down to 9101 m depth[J]. Journal of Geophysical Research: Solid Earth, 102(B8): 18255-18265. doi: 10.1029/96JB03442 JAMTVEIT B, BEN-ZION Y, RENARD F, et al., 2018. Earthquake-induced transformation of the lower crust[J]. Nature, 556(7702): 487-491. doi: 10.1038/s41586-018-0045-y JONES L M, HAN W B, HAUKSSON E, et al., 1984. Focal mechanisms and aftershock locations of the Songpan earthquakes of August 1976 in Sichuan, China[J]. Journal of Geophysical Research: Solid Earth, 89(B9): 7697-7707. doi: 10.1029/JB089iB09p07697 KORSUNOVA L P, KHEGAI V V, MIKHAILOV Y M, et al., 2013. Regularities in the manifestation of earthquake precursors in the ionosphere and near-surface atmospheric electric fields in Kamchatka[J]. Geomagnetism and Aeronomy, 53(2): 227-233. doi: 10.1134/S0016793213020084 KURZ J H, JAHR T, JENTZSCH G, 2004. Earthquake swarm examples and a look at the generation mechanism of the vogtland/western bohemia earthquake swarms[J]. Physics of the Earth and Planetary Interiors, 142(1-2): 75-88. doi: 10.1016/j.pepi.2003.12.007 LENG J G, YANG K M, YANG Y, 2011. Relationship between natural gas accumulation and overpressure in Xujiahe formation, Xiaoquan-Fenggu structural belt, western Sichuan depression[J]. Petroleum Geology and Experiment, 33(6): 574-579, 586. http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYSD201106006.htm LI M J, ZHOU J, LU Y, et al., 2017. Limit drainage radius for different types of wells in a shale reservoir[J]. Chemistry and Technology of Fuels and Oils, 53(4): 548-556. doi: 10.1007/s10553-017-0835-1 LI T, CAI M F, ZHANG S Q, et al., 2015. Mining-induced seimicity in China[J]. Seismological Research of Northeast China, 21(3): 1-26. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-DDYJ200503000.htm LI X T, SHI W R, GUO M Y, et al., 2014. Characteristics of marine shale gas reservoirs in Jiaoshiba area of Fuling shale gas field[J]. Journal of Oil and Gas Technology, 36(11): 11-15. (in Chinese with English abstract) http://www.cnki.com.cn/Article/CJFDTotal-JHSX201411003.htm LI Y D, ZHANG L, ZHANG K, et al., 2017. Research on the atmospheric electric field abnormality near the ground surface before ""5.12"" Wenchuan earthquake[J]. Plateau and Mountain Meteorology Research, 37(1): 49-53. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTotal-SCCX201701008.htm LIANG G H, 2016. Summary of research on earthquake and metallogenic process[J]. Gold Science and Technology, 24(6): 8-14. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTotal-HJKJ201606003.htm LIANG G H, 2017. Preliminary study of the relationship between cryptoexplosion and ore-forming process from Wenchuan earthquake[J]. Acta Petrologica Sinica, 33(2): 326-338. (in Chinese with English abstract) http://www.researchgate.net/publication/319077599_Preliminary_study_of_the_relationship_between_cryptoexplosion_and_ore-forming_process_from_Wenchuan_earthquake LIU B J, QU G S, SUN M X, et al., 2011. Crustal structures and tectonics of Tangshan earthquake area: results from deep seismic reflection profiling[J]. Seismology and Geology, 33(4): 901-912. (in Chinese with English abstract) http://www.researchgate.net/publication/289119221_Crustal_structures_and_tectonics_of_Tangshan_earthquake_area_Results_from_deep_seismic_reflection_profiling LIU W P, ZHANG C L, GAO G D, et al., 2017. Controlling factors and evolution laws of shale porosity in Longmaxi Formation, Sichuan Basin[J]. Acta Petrolei Sinica, 38(2): 175-184. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYXB201702005.htm LIU W Y, LI L H, WU J H. 1996. Discussion on the Genesis of the Tangshan Earthquake of MS 7.8 in 1978 from the Geochemical Perspective[J]. Geochemistry, 5: 66-69. (in Chinese with English abstract) LV Z Y, QIU X L, LV J S, et al., 2020. Crustal structure beneath the east side of Pearl River Estuary from onshore-offshore seismic experiment[J]. International Geology Review, 62(7-8): 1057-1069. doi: 10.1080/00206814.2018.1553114 MA X H, YANG Y, WEN L, et al., 2019. Distribution and exploration direction of medium-and large-sized marine carbonate gas fields in Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 46(1): 1-15. doi: 10.1016/S1876-3804(19)30001-1 MANDAL P, 2019. A possible origin of intraplate earthquakes in the Kachchh rift zone, India, since the 2001 Mw7.7 Bhuj earthquake[J]. Journal of Asian Earth Sciences, 170: 56-72. doi: 10.1016/j.jseaes.2018.10.006 MARAPULETS Y, RULENKO O. 2019. Joint Anomalies of High-Frequency Geoacoustic Emission and Atmospheric Electric Field by the Ground-Atmosphere Boundary in a Seismically Active Region (Kamchatka)[J]. Atmosphere, 10(5): 267-282. doi: 10.3390/atmos10050267 MARZOCCHI W, LOMBARDI A M, CASAROTTI E, 2014. The establishment of an operational earthquake forecasting system in Italy[J]. Seismological Research Letters, 85(5): 961-969. doi: 10.1785/0220130219 OHTSUKI O Y H, 2005. Earthquake light: 1995 Kobe earthquake in Japan[J]. Atmospheric Research, 76: 438-444. doi: 10.1016/j.atmosres.2004.11.018 OLSEN K M, BANGS N L, TRÉHU A M, et al., 2020. Thick, strong sediment subduction along south-central Chile and its role in great earthquakes[J]. Earth and Planetary Science Letters, 538: 116195. doi: 10.1016/j.epsl.2020.116195 PINKSTON F W M, FLEMINGS P B, 2019. Overpressure at the Macondo Well and its impact on the Deepwater Horizon blowout[J]. Scientific Reports, 9(1): 7047. doi: 10.1038/s41598-019-42496-0 POPE M C, READ J F, BAMBACH R, et al., 1997. Late Middle to Late Ordovician seismites of Kentucky, southwest Ohio and Virginia: sedimentary recorders of earthquakes in the Appalachian basin[J]. GSA Bulletin, 109(4): 489-503. doi: 10.1130/0016-7606(1997)109<0489:LMTLOS>2.3.CO;2 REYNERS M, EBERHART-PHILLIPS D, STUART G, 2007. The role of fluids in lower-crustal earthquakes near continental rifts[J]. Nature, 446(7139): 1075-1078. doi: 10.1038/nature05743 RUIZ S, KLEIN E, CAMPO F D, et al., 2016. The seismic sequence of the 16 September 2015 Mw8.3 Illapel, Chile, earthquake[J]. Seismological Research Letters, 87(4): 789-799. doi: 10.1785/0220150281 SHANG Y J, LIU J Q, LIU D A, et al., 2015. Observation of explosion pits and test results of ejecta above a rock avalanche triggered by the Wenchuan earthquake, China[J]. Geomorphology, 231: 162-168. doi: 10.1016/j.geomorph.2014.11.025 SOKOS E, GALLOVIČ F, EVANGELIDIS C P, et al., 2020. The 2018 Mw6.8 Zakynthos, Greece, earthquake: Dominant strike-slip faulting near subducting slab[J]. Seismological Research Letters, 91(2A): 721-732. doi: 10.1785/0220190169 TETTEH J T, CUDJOE S E, ARYANA S A, et al., 2021. Investigation into fluid-fluid interaction phenomena during low salinity waterflooding using a reservoir-on-a-chip microfluidic model[J]. Journal of Petroleum Science and Engineering, 196: 108074. doi: 10.1016/j.petrol.2020.108074 TINGAY M, HEIDBACH O, DAVIES R, et al., 2008. Triggering of the Lusi mud eruption: Earthquake versus drilling initiation[J]. Geology, 36(8): 639-642. doi: 10.1130/G24697A.1 VAN LOON A J, PISARSKA-JAMROŻY M, NARTIŠS M, et al., 2016. Seismites resulting from high-frequency, high-magnitude earthquakes in Latvia caused by Late Glacial glacio-isostatic uplift[J]. Journal of Palaeogeography, 5(4): 363-380. doi: 10.1016/j.jop.2016.05.002 VAROTSOS P, ALEXOPOULOS K, 1984. Physical properties of the variations of the electric field of the earth preceding earthquakes. Ⅱ. Determination of epicenter and magnitude[J]. Tectonophysics, 110(1-2): 99-125. doi: 10.1016/0040-1951(84)90060-X WANG B S, GE H K, YANG W. 2012. Transmitting seismic station monitors fault zone at depth[J]. Eos Transactions American Geophysical Union, 93(5): 49-50. doi: 10.1029/2012EO050001 WANG H, LI H B, SI J L, et al., 2015. Progress in the study of the Wenchuan earthquake faulting[J]. Acta Geoscientica Sinica, 36(3): 257-269. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQXB201503001.htm WANG S X, JIANG F Y, HAO M, et al., 2013. Investigation of features of present 3D crustal movement in eastern edge of Tibet plateau[J]. Chinese Journal of Geophysics, 56(10): 3334-3345. (in Chinese with English abstract) WU H Z, YE T R, ZHAO D, et al., 2015. Fine characterization technique and its application to channel sandstone in continental tight gas reservoirs of western Sichuan Depression[J]. Oil & Gas Geology, 36(2): 230-239. (in Chinese with English abstract) http://www.cnki.com.cn/Article/CJFDTotal-SYYT201502008.htm WURMSTICH B, MORGAN F D, 1994. Modeling of streaming potential responses caused by oil well pumping[J]. Geophysics, 59(1): 46-56. doi: 10.1190/1.1443533 XU T J, CHENG B J, YIAN L I, et al., 2017. Reservoir brittleness and fracture prediction of Member 4, Leikoupo Formation in Jinma-Yazihe nappe tectonic belt, Longmen Mountain[J]. Petroleum geophysical exploration, 2017, 52(3): 562-572. http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYDQ201703020.htm YE J Q, SU J R, CHEN H, 2008. Predominant period of the Wenchuan Ms 8.0 earthquake motion[J]. Journal of Seismological Research, 31(S1): 498-504. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZYJ2008S1015.htm YUAN S Y, RAN Q Q, XU Z S, et al., 2007. Strategy of high-efficiency development for volcanic gas reservoirs[J]. Acta Petrolei Sinica, 28(1): 73-77. (in Chinese with English abstract) doi: 10.1111/j.1745-7254.2007.00475.x YUE Z Q, 2013. Cause and mechanism of highly compressed and dense methane gas mass for Wenchuan earthquake and associated rock-avalanches and surface co-seismic ruptures[J]. Earth Science Frontiers, 20(6): 15-20. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXQY201306003.htm ZHANG M, WEN L X, 2015. Seismological evidence for a low-yield nuclear test on 12 May 2010 in North Korea[J]. Seismological Research Letters, 86(1): 138-145. doi: 10.1785/02201401170 ZHANG Y N, DENG J R, KE B, et al., 2018. Experimental study on explosion pressure and rock breaking characteristics under liquid carbon dioxide blasting[J]. Advances in Civil Engineering, 2018: 7840125. http://www.researchgate.net/publication/327266753_Experimental_Study_on_Explosion_Pressure_and_Rock_Breaking_Characteristics_under_Liquid_Carbon_Dioxide_Blasting ZHAO D P, KANAMORI H, NEGISHI H, et al., 1996. Tomography of the source area of the 1995 Kobe earthquake: Evidence for fluids at the hypocenter[J]. Science, 274(5294): 1891-1894. doi: 10.1126/science.274.5294.1891 ZHAO L F, XIE X B, WANG W M, et al., 2014. The 12 February 2013 North Korean underground nuclear test[J]. Seismological Research Letters, 85(1): 130-134. doi: 10.1785/0220130103 ZHAO Z W, XIE J R, LI N, et al., 2013. Gas exploration potential of the 1st, 3rd and 5th members of Xujiahe Fm reservoirs in the Sichuan Basin[J]. Natural Gas Industry, 33(6): 23-28. (in Chinese with English abstract) Harms U, 1994. 德国7公里超深钻(KTB)的新成果: 华力西基底中的流体及其通道[J]. 程小久, 译. 地质科学译丛, (2): 91-93. 陈涛, 张效信, 张学民, 等, 2021. 利用区域大气静电场监测网临震预估地震灾害[J]. 地球物理学报, 64(4): 1045-1054. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX202104002.htm 高家乙, 刘晓锋, 闫睿, 2020. 河南平顶山平煤矿区天然地震、爆破、塌陷时频特征分析[J]. 地震地磁观测与研究, 67-74. https://www.cnki.com.cn/Article/CJFDTOTAL-DZGJ202003009.htm 郝建国, 1988. 近地表大气电场异常与地震[J]. 地震学报, 10(2): 206-212. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXB198802008.htm 冷济高, 杨克明, 杨宇, 2011. 川西坳陷孝泉-丰谷构造带须家河组超压与天然气成藏关系研究[J]. 石油实验地质, 33(6): 574-579, 586. doi: 10.3969/j.issn.1001-6112.2011.06.004 李铁, 蔡美峰, 张少泉, 等, 2005. 我国的采矿诱发地震[J]. 东北地震研究, 21(3): 1-26. doi: 10.3969/j.issn.1674-8565.2005.03.001 李湘涛, 石文睿, 郭美瑜, 等, 2014. 涪陵页岩气田焦石坝区海相页岩气层特征研究[J]. 石油天然气学报, 36(11): 11-15. doi: 10.3969/j.issn.1000-9752.2014.11.004 李一丁, 张亮, 张琨, 等, 2017. ""5.12""汶川地震前近地面大气电场异常研究[J]. 高原山地气象研究, 37(1): 49-53. https://www.cnki.com.cn/Article/CJFDTOTAL-SCCX201701008.htm 梁光河, 2017. 从汶川地震探讨隐爆与成矿过程[J]. 岩石学报, 33(2): 326-338. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201702002.htm 刘保金, 曲国胜, 孙铭心, 等, 2011. 唐山地震区地壳结构和构造: 深地震反射剖面结果[J]. 地震地质, 33(4): 902-912. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDZ201104016.htm 刘文平, 张成林, 高贵冬, 等, 2017. 四川盆地龙马溪组页岩孔隙度控制因素及演化规律[J]. 石油学报, 38(2): 175-184. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201702005.htm 刘武英, 李龙海, 吴建华, 等, 1996. 从地球化学角度讨论1976年唐山7.8级地震的成因[J]. 地质地球化学, (5): 66-69. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDQ199605020.htm 王焕, 李海兵, 司家亮, 等, 2015. 汶川地震断裂作用研究新认识[J]. 地球学报, 36(3): 257-269. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB201503001.htm 王双绪, 蒋锋云, 郝明, 等, 2013. 青藏高原东缘现今三维地壳运动特征研究[J]. 地球物理学报, 56(10): 3334-3345. doi: 10.6038/cjg20131010 武恒志, 叶泰然, 赵迪, 等, 2015. 川西坳陷陆相致密气藏河道砂岩储层精细刻画技术及其应用[J]. 石油与天然气地质, 36(2): 230-239. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201502008.htm 徐天吉, 程冰洁, 闫丽丽, 等. 2017. 龙门山金马-鸭子河推覆构造带雷四段储层脆性与裂缝预测[J]. 石油地球物理勘探, 52(3): 562-572. https://www.cnki.com.cn/Article/CJFDTOTAL-SYDQ201703020.htm 叶建庆, 苏金蓉, 陈慧, 2008. 汶川8.0级地震动卓越周期分析[J]. 地震研究, 31(S1): 498-504. https://www.cnki.com.cn/Article/CJFDTOTAL-DZYJ2008S1015.htm 袁士义, 冉启全, 徐正顺, 等, 2007. 火山岩气藏高效开发策略研究[J]. 石油学报, 28(1): 73-77. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB200701013.htm 岳中琦, 2013. 汶川地震与山崩地裂的极高压甲烷天然气成因和机理[J]. 地学前缘, 20(6): 15-20. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201306003.htm 赵正望, 谢继容, 李楠, 等, 2013. 四川盆地须家河组一、三、五段天然气勘探潜力分析[J]. 天然气工业, 33(6): 23-28. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201306005.htm