Geophysical characteristics of the Terror Rift, West Antarctica
-
摘要: 特拉裂谷是西南极裂谷系统在新生代发生张裂作用的最后地区,因此成为研究西南极裂谷系统构造活动的关键。文章利用中国南极科考采集的以及SDLS国际共享的地震数据,结合多个钻探计划的钻井等基础资料,统一了西罗斯海地区地震反射界面和地震层序。将研究区的断层组合样式分为同沉积断层、层间断层和负花状断层三类,并进一步划分了区内新生代断层活动的期次,圈定了特拉裂谷的影响范围。研究发现,每期断层活动具有明显的继承性,活动时间由北部阿黛尔盆地向南部特拉裂谷越来越新,呈递变性,这是裂谷作用从北向南逐渐传递的结果。为了更加全面地揭示研究区的综合地球物理特征,利用基于弹性板模型下的Fan小波相关技术获得了研究区有效弹性厚度的空间变化特征。结果显示,横贯南极山脉前缘的异常低值条带与晚新生代的裂谷活动和伴生的岩浆作用有关,并指示了西罗斯海的拉张区域。Abstract: In this paper, we investigated the Terror Rift where the last stage of Cenozoic rifting in the West Antarctic Rift System (WARS) took place. The International published and domestic sampled during CHARE seismic reflection profiles are utilized. Combining with drilling data, all the stratigraphic reflections are identified and unified in the entire study area for the subsequent interpretation. The rift fault patterns in the study area can be divided into syn-sedimentary faults, intra-layer faults and negative flower structure. According to faulting, we delineated the east and north boundary of the Terror Rift. Moreover, Cenozoic faulting activities are divided into three stages with strongly inheritance between each one of them. The timing of faulting activities gradually becomes younger from the Adare Basin in the north to the Terror Rift in the south, which is attributable to the transmission of rifting from north to south. In order to further reveal the geophysical characteristics of the study area, we investigated effective elastic thickness (EET) based on the fan wavelet transform technique. The anomalously low EET anomalies observed in the front of the Transantarctic Mountains(TAMs) is related to the rifting and magmatism in the late Cenozoic, probably indicating the extensional area of the western Ross Sea.
-
Key words:
- West Antarctica /
- Terror Rift /
- seismic reflection profiles /
- faulting /
- effective elastic thickness
-
图 1 西罗斯海构造区划图、火山岩露头和主要沉积盆地分布(据Salvini et al., 1997; Davey and De Santis, 2006; Damaske et al., 2008修改)
Figure 1. Tectonic framework of the western Ross Sea illustrating the distribution of igneous rocks and major sediment basins(modified after Salvini et al., 1997; Davey and De Santis, 2006; Damaske et al., 2008)
图 3 西罗斯海钻孔岩芯地质年代和地震地层框架(据Cooper et al., 2008; Granot et al., 2010修改)
Figure 3. Stratigraphic sequence histogram of the western Ross Sea (modified after Cooper et al., 2008; Granot et al., 2010)
图 8 SDLS公开数据阐释断层活动
a—特拉裂谷地震剖面(断层活动时间较晚,上新世之后才开始活跃);b—阿黛尔盆地地震剖面(断层活动时间较早,主要在中新世)
Figure 8. Seismic line from SDLS illustrating faulting activity
(a) Seismic profile in the Terror Rift. The timing of fault activity is even later, and is still active after the Pliocene; (b) Seismic profile in the Adare Basin. The timing of fault activity is earlier, mostly from the Miocene.
图 9 特拉裂谷影响范围(水深图据徐泽等,2018修改)
Figure 9. Scale of the influence of the Terror Rift(Bathymetric map after Xu et al., 2018)
-
BEHRENDT J C, COOPER A K, 1991. Evidence of rapid Cenozoic uplift of the shoulder escarpment of the Cenozoic West Antarctic rift system and a speculation on possible climate forcing[J], Geology, 19: 315-319. doi: 10.1130/0091-7613(1991)019<0315:EORCUO>2.3.CO;2 COOPER A K, BRANCOLINI G, ESCUTIA C, et al., 2008. Cenozoic climate history from seismic reflection and drilling studies on the Antarctic continental margin[M]//FLORINDO F, SIEGERT M. Antarctic climate evolution. Elsevier. CANDE S C, STOCK J M, MVLLER R D, et al., 2000. Cenozoic motion between East and West Antarctica[J]. Nature, 404(6774): 145-150. doi: 10.1038/35004501 CARTWRIGHT J A, DEWHURST D N, 1998. Layer-bound compaction faults in fine-grained sediments[J]. GSA Bulletin, 110(10): 1242-1257. doi: 10.1130/0016-7606(1998)110<1242:LBCFIF>2.3.CO;2 COOPER A K, DAVEY F J, BEHRENDT J C, 1987. Seismic stratigraphy and structure of the Victoria Land basin, western Ross Sea, Antarctica[M]//COOPER A K, DAVEY F J. The Antarctic continental margin: geology and geophysics of the western Ross Sea. Houston: Circum-Pacific Council for Energy and Mineral Resources. DAMASKE D, LÄUFER A L, GOLDMANN F, et al., 2008. Magnetic anomalies northeast of Cape Adare, northern Victoria Land (Antarctica), and their relation to onshore structures[C]//International symposium on Antarctica earth science proceedings. California: University of California, Santa Barbara. DAVEY F J, BRANCOLINI G, 1995. The late Mesozoic and Cenozoic structural setting of the Ross Sea region[M]//COOPER A K, BARKER P F, BRANCOLINI G. Geology and seismic stratigraphy of the Antarctic margin. Washington: American Geophysical Union. DAVEY F J, DE SANTIS L, 2006. A multi-phase rifting model for the Victoria Land Basin, western Ross Sea[M]//FVTTERER D K, DAMASKE D, KLEINSCHMIDT G, et al. Antarctica: contributions to global earth sciences. New York: Springer. FERRACCIOLI F, ARMADILLO E, JORDAN T, et al., 2009. Aeromagnetic exploration over the East Antarctic ice sheet: a new view of the Wilkes Subglacial Basin[J]. Tectonophysics, 478(1-2): 62-77. doi: 10.1016/j.tecto.2009.03.013 FIELDING C R, HENRYS S A, WILSON T J, 2006. Rift history of the western victoria land basin: a new perspective based on integration of cores with seismic reflection data[M]//FVTTERER D K, DAMASKE D, KLEINSCHMIDT G, et al. Antarctica: contributions to global earth sciences. Berlin: Springer: 309-318. FIELDING C R, WHITTAKER J, HENRYS S A, et al., 2008. Seismic facies and stratigraphy of the Cenozoic succession in McMurdo Sound, Antarctica: Implications for tectonic, climatic and glacial history[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 260(1-2): 8-29. doi: 10.1016/j.palaeo.2007.08.016 FITZGERALD P G, 2002. Tectonics and landscape evolution of the Antarctic plate since the breakup of Gondwana, with an Emphasis on the West Antarctic Rift system and the Transantarctic Mountains[J]. The Royal Society of New Zealand, 35: 453-469. http://www.researchgate.net/publication/285076236_Tectonics_and_landscape_evolution_of_the_Antarctic_plate_since_the_breakup_of_Gondwana_with_an_emphasis_on_the_West_Antarctic_Rift_System_and_the_Transantarctic_Mountains FORSYTH D W, 1985. Subsurface loading and estimates of the flexural rigidity of continental lithosphere[J]. Journal of Geophysical Research, 90(B14): 12623-12632. doi: 10.1029/JB090iB14p12623 GRANOT R, CANDE S C, STOCK J M, et al., 2010. Postspreading rifting in the Adare Basin, Antarctica: regional tectonic consequences[J]. Geochemistry, Geophysics, Geosystems, 11(8): Q08005. http://www.gps.caltech.edu/~clay/PDF/Granot2010.pdf GRAW J H, ADAMS A N, HANSEN S E, et al., 2016. Upper mantle shear wave velocity structure beneath northern Victoria Land, Antarctica: Volcanism and uplift in the northern Transantarctic Mountains[J]. Earth and Planetary Science Letters, 449: 48-60. doi: 10.1016/j.epsl.2016.05.026 ALL J, WILSON T, HENRYS S, 2007. Structure of the central Terror Rift, western Ross Sea, Antarctica[C]//Proceedings for the 10th international symposium on Antarctic earth sciences. California: University of California, Santa Barbara. HENRYS S, WILSON T, WHITTAKER J M, et al., 2008. Tectonic history of mid-Miocene to present southern Victoria Land Basin, inferred from seismic stratigraphy in McMurdo Sound, Antarctica[C]//Proceedings of the 10th international symposium on Antarctica earth science. California: University of California, Santa Barbara. HUERTA A D, HARRY D L, 2007. The transition from diffuse to focused extension: Modeled evolution of the West Antarctic Rift system[J]. Earth and Planetary Science Letters, 255(1-2): 133-147. doi: 10.1016/j.epsl.2006.12.011 JI F, GAO J Y, LI F, et al., 2017. Variations of the effective elastic thickness over the Ross Sea and Transantarctic Mountains and implications for their structure and tectonics[J]. Tectonophysics, 717: 127-138. doi: 10.1016/j.tecto.2017.07.011 JI F, LI F, ZHANG Q, et al., 2019. Crustal density structure of the Antarctic continent from constrained 3-D gravity inversion[J]. Chinese Journal of Geophysics, 62(3): 849-863. (in Chinese with English abstract) KIRBY J F, SWAIN C J, 2011. Improving the spatial resolution of effective elastic thickness estimation with the fan wavelet transform[J]. Computers & Geosciences, 37(9): 1345-1354. http://www.onacademic.com/detail/journal_1000035033362010_4fe0.html KYLE P R, MCINTOSH W C, M Schmidt-Thomé, et al., 1990. A. McMurdo Volcanic Group Western Ross embayment[M]. American Geophysical Union. LAWRENCE J F, WIENS D A, NYBLADE A A, 2006. Upper mantle thermal variations beneath the Transantarctic Mountains inferred from teleseismic S-wave attenuation[J]. Geophysical Research Letters, 33(3): L03303. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.832.7838&rep=rep1&type=pdf LI S Z, CAO X Z, WANG G Z, et al., 2019. Meso-Cenozoic tectonic evolution and plate reconstruction of the Pacific plate[J]. Journal of Geomechanics, 25(5): 642-677. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTotal-DZLX201905005.htm LOWRY A R, SMITH R B, 1995. Strength and rheology of the western U.S. Cordillera[J]. Journal of Geophysical Research, 100(B9): 17947-17963. doi: 10.1029/95JB00747 NARDINI I, ARMIENTI P, ROCCHI S, et al., 2009. Sr-Nd-Pb-He-O isotope and geochemical constraints on the genesis of Cenozoic magmas from the West Antarctic rift[J]. Journal of Petrology, 50(7): 1359-1375. doi: 10.1093/petrology/egn082 PÉREZ-GUSSINYÉ M, LOWRY A R, WATTS A B, 2007. Effective elastic thickness of South America and its implications for intracontinental deformation[J]. Geochemistry, Geophysics, Geosystems, 8(5): Q05009. http://www.researchgate.net/profile/A_Watts/publication/241356480_Effective_elastic_thickness_of_South_America_and_its_implications_for_Intracontinental_deformation/links/0deec5259a6a59e8b6000000 QIAN W H, 1997. On the formation and splitting of Gondwanaland[J]. Journal of Geomechanics, 3(1): 21-29. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZLX701.002.htm REN J S, NIU B G, ZHAO L, et al., 2019. Basic ideas of the multisphere tectonics of Earth system[J]. Journal of Geomechanics, 25(5): 607-612. (in Chinese with English abstract) SALVINI F, BRANCOLINI G, BUSETTI M, et al., 1997. Cenozoic geodynamics of the Ross Sea region, Antarctica: crustal extension, intraplate strike-slip faulting, and tectonic inheritance[J]. Journal of Geophysical Research, 102(B11): 24669-24696. doi: 10.1029/97JB01643 SIDDOWAY C S, BALDWIN S L, FITZGERALD P G, et al., 2004. Ross Sea mylonites and the timing of intracontinental extension within the West Antarctic rift system[J]. Geology, 32(1): 57-60. doi: 10.1130/G20005.1 TESSENSOHN F, WÖRNER G, 1991. The Ross Sea rift system, Antarctica: structure, evolution and analogues[M]. Cambridge: Cambridge University Press. WANG X S, FANG J, XU Z H, et al., 2012. Density structure of the lithosphere beneath North China craton[J]. Chinese Journal of Geophysics, 55(4): 1154-1160. (in Chinese with English abstract) WATSON T, NYBLADE A, WIENS D A, et al., 2006. P and S velocity structure of the upper mantle beneath the Transantarctic Mountains, East Antarctic craton, and Ross Sea from travel time tomography[J]. Geochemistry, Geophysics, Geosystems, 7(7): Q07005. doi: 10.1029/2005GC001238/full WÖRNER G, 1999. Lithospheric dynamics and mantle sources of alkaline magmatism of the Cenozoic West Antarctic Rift System[J]. Global and Planetary Change, 23(1-4): 61-77. doi: 10.1016/S0921-8181(99)00051-X WU Z H, 1995. New evidence for correlation between global tectonic movement and Earth's rotation[J]. Journal of Geomechanics, 1(3): 46-54. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZLX503.006.htm XU Z, GAO J Y, YANG C G, et al., 2018. A new high-resolution digital bathymetric model of the Ross Sea, Antarctica[J]. Chinese Journal of Polar Research, 30(4): 360-369. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTotal-JDYZ201804002.htm YANG W C, HOU Z Z, YU C Q, 2015. Three-dimensional density structure of the Tibetan plateau and crustal mass movement[J]. Chinese Journal of Geophysics, 58(11): 4223-4234. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTotal-DQWX201511029.htm ZHANG H, ZHAO D P, JU C H, et al., 2020. Upper mantle deformation of the Terror Rift and northern Transantarctic Mountains in Antarctica: Insight from P wave anisotropic tomography[J]. Geophysical Research Letters, 47(9): e2019GL086511. doi: 10.1029/2019GL086511 纪飞, 李斐, 张峤, 等, 2019. 基于约束三维重力反演的南极大陆地壳密度结构研究[J]. 地球物理学报, 62(3): 849-863. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201903004.htm 李三忠, 曹现志, 王光增, 等, 2019. 太平洋板块中-新生代构造演化及板块重建[J]. 地质力学学报, 25(5): 642-677. https://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?flag=1&file_no=20190504&journal_id=dzlxxb 钱维宏, 1997. 试论冈瓦纳古陆的形成和裂解[J]. 地质力学学报, 3(1): 21-29. https://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?flag=1&file_no=19970103&journal_id=dzlxxb 任纪舜, 牛宝贵, 赵磊, 等, 2019. 地球系统多圈层构造观的基本内涵[J]. 地质力学学报, 25(5): 607-612. https://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?flag=1&file_no=20190502&journal_id=dzlxxb 吴珍汉, 1995. 全球构造运动与地球自转相关性的新证据[J]. 地质力学学报, 1(3): 46-54. https://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?flag=1&file_no=19950332&journal_id=dzlxxb 徐泽, 高金耀, 杨春国, 等, 2018. 南极罗斯海高分辨率数字水深模型[J]. 极地研究, 30(4): 360-369. https://www.cnki.com.cn/Article/CJFDTOTAL-JDYZ201804002.htm