留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

中国岩浆铜镍钴硫化物矿床成矿理论创新和找矿突破

李文渊

吕宝凤, 吴琼, 杨永强, 2019. 塔里木盆地中央隆起带东段“帚状构造”特征及其形成动力学机制. 地质力学学报, 25 (6): 1025-1035. DOI: 10.12090/j.issn.1006-6616.2019.25.06.085
引用本文: 李文渊,2022. 中国岩浆铜镍钴硫化物矿床成矿理论创新和找矿突破[J]. 地质力学学报,28(5):793−820 doi: 10.12090/j.issn.1006-6616.20222810
LYU Baofeng, WU Qiong, YANG Yongqiang, 2019. CHARACTERISTICS OF THE 'BRUSH STRUCTURE SYSTEM' AND A PRIMARY ANALYSIS ON ITS FORMATION DYNAMIC MECHANISM IN THE EASTERN CENTRAL UPLIFT BELT, TARIM BASIN. Journal of Geomechanics, 25 (6): 1025-1035. DOI: 10.12090/j.issn.1006-6616.2019.25.06.085
Citation: LI W Y,2022. Study of ore-forming theoretical innovation and prospecting breakthrough of magmatic copper–nickel–cobalt sulfide deposits in China[J]. Journal of Geomechanics,28(5):793−820 doi: 10.12090/j.issn.1006-6616.20222810

中国岩浆铜镍钴硫化物矿床成矿理论创新和找矿突破

doi: 10.12090/j.issn.1006-6616.20222810
基金项目: 国家重点研发计划课题(2019YFC0605201)
详细信息
    作者简介:

    李文渊(1962—),男,博士,研究员,博士生导师,主要从事岩浆硫化物矿床和区域成矿学研究工作。E-mail:xalwenyuan@126.com

  • 中图分类号: P618.2

Study of ore-forming theoretical innovation and prospecting breakthrough of magmatic copper–nickel–cobalt sulfide deposits in China

Funds: The research is financially supported by the National Key Research and Development Program of China (Grant 2019YFC0605201)
More Information
    Author Bio:

    李文渊,中国地质调查局西安地质调查中心二级研究员、中国地质科学院博士生导师。2021年获得第17次李四光地质科学奖野外奖。现任自然资源部岩浆作用成矿与找矿重点实验室主任、中国–上海合作组织地学合作研究中心首席科学家。长期从事岩浆铜镍硫化物矿床和区域成矿学研究。出版专著15部(第一作者或独著9部),发表论文139篇(第一作者或独著48篇)。荣获国家科技进步奖二等奖1项(R6),新疆自治区人社厅、新疆自治区国土厅优秀成果特等奖1项(R1),部省一等奖4项(R4、R5、R7、R8)、二、三等奖各1项(R2、R1)。享受国务院政府特殊津贴,入选国家百千万人才工程、自然资源部国土资源科技领军人才计划,自然资源部岩浆作用成矿与找矿科技创新团队带头人,陕西省有突出贡献专家

  • 摘要: 中国岩浆铜镍钴硫化物矿床是国家镍、钴、铂族元素等战略性关键金属资源的主要来源,是需要特别关注的具有未来价值的重要矿床类型。该类矿床来源于上地幔,特别是软流圈的部分熔融形成的镁铁质、超镁铁质岩浆,硫化物液相−硅酸盐熔体的不混溶(熔离)作用是成矿的主要机制。它们主要形成于两种背景:大陆裂谷和造山带中的伸展环境。中国是岩浆铜镍钴硫化物矿床的产出大国,但与国外相比,形成背景和成矿动力学机制比较独特。世界上绝大多数岩浆铜镍钴硫化物矿床都形成于古老的克拉通,是地幔柱地球动力作用的结果,太古代—早元古代的科马提岩镍钴硫化物矿床是鲜明的产出特点。中国缺少古老的科马提岩有关的镍钴硫化物矿床,成矿时代相对较晚,主要形成于新元古代、晚古生代早期和晚期三个时期,新元古代以镍金属资源量居世界第三的金川超大型矿床为代表,晚古生代早期以近年来找矿突破发现的夏日哈木超大型矿床为代表。夏日哈木矿床也是迄今世界上特提斯造山带中发现的唯一一例超大型岩浆铜镍钴硫化物矿床。中国学者基于中国找矿实际提出的“大岩浆−深部熔离−贯入”表现为“小岩体成大矿”的成矿理论,广泛为野外地质勘查工作者接受并应用,取得了重要的找矿突破性成果,同时为国外同行认可,改变了岩浆铜镍钴硫化物矿床传统的成矿认识。造山带中岩浆铜镍钴硫化物矿床的广泛分布是中国该类矿床的一个重要特色,按形成造山带演化和成矿历史的不同,可分为特提斯型和中亚型两种重要的类型。特提斯型以夏日哈木矿床为代表,它是特提斯构造转换,原特提斯造山后,古特提斯裂解的产物;中亚型以中亚造山带中东天山−北山、阿尔泰分布的大批晚古生代晚期早二叠世岩浆铜镍钴硫化物矿床为代表,是板块构造和地幔柱双重地球动力学机制作用的结果。中国岩浆铜镍钴硫化物矿床找矿潜力巨大,金川矿床作为水平的“岩床”被推覆至地表呈倾斜的“岩墙”产出的结果,深边部仍具有重要找矿潜力,目前已在含矿岩体两端发现了重要的新矿体;夏日哈木矿床所在的东昆仑及其邻区已发现十余处新的矿床(点)。区域上,塔里木陆块东南缘、塔里木陆块北缘、扬子陆块西缘和华北陆块东北缘是亟待加强勘查的找矿远景区,而扬子陆块北缘、华北陆块北缘是急需调查的找矿新区。

     

  • 塔里木盆地是青藏高原北部东西向构造带里面的一个大致呈东西向展布的高原型多期叠合的含油气盆地,1984年9月22日沙参2井发现的塔北油田开辟了我国古生代海相油气勘探的新纪元,成为中国油气勘探史上的重要里程碑, 三十多年勘探、研究的光辉历程,让塔里木盆地为我国的石油工业作出了重大贡献[1-3]

    由于塔里木盆地地球动力学背景十分复杂,与其相关的构造形迹及其形成演化的动力学机制一直是地质学家研究的热点和难点,不同的学者从不同的理论出发、或依据不同的资料基础曾对塔里木盆地构造格局及其断裂系统进行了卓有成效的研究,取得了大量成果,这为之后的学者深入研究盆地球动力学背景、古生代以来的地质过程及盆内油气资源的勘探开发奠定了坚实的基础。

    目前,大量研究表明,塔里木盆地周边发育北部天山、西南部西昆仑山及东南部阿尔金山三大褶皱山系,从早古生代(Z-O)加里东构造旋回开始,不同地质时期它们分别具有不同的区域地球动力学背景、盆-山耦合关系,盆内不同区域构造应力场、断裂及其相关褶皱等构造变形的方式等都存在多期性和明显的区域性差异,三大褶皱山系的相互影响与改造对盆地发展演化、盆地构造格局有着重要的控制作用,塔中隆起带的形成和演化对盆内构造变形样式及油气藏的形成和分布具有重要意义,然而从地质力学及构造体系的观点系统分析研究塔里木盆地中央隆起带东段断裂变形特征的报道相对不多,本文试图从地质力学及构造体系的理论出发、结合近年来有关盆地构造变形的几何学、运动学、盆地动力学过程、断层活动等方面研究的新数据、新资料探讨塔里木盆地中央隆起带东段断裂构造体系特征及其形成演化的动力学机制与地球动力学模型。

    塔里木盆地位于中国大陆西部, 夹持于天山、西昆仑山和阿尔金山三大褶皱山系之间, 是中国大陆面积最大的含油气沉积盆地,是中国中西部地区环青藏高原统一的、规模巨大的东西向盆山构造体系中的一员[4-5],盆地面积56×104 km2,震旦系—第四系沉积层序发育齐全,最大厚度达16000 m,但不同地区的地层的沉积相、沉积厚度差别很大。

    已有研究认为:塔里木板块是一个具有前震旦系克拉通结晶基底的、自元古代超大陆裂解出来的古生代独立古陆块,塔里木盆地是塔里木板块的核心稳定区,是一个经历了加里东期、海西期、印支期、燕山期和喜马拉雅期等多旋回构造演化、由多期、多类型盆地叠加而成的大型复合含油气盆地[1-3, 6]。由于塔里木板块特殊的构造位置(图 1),自新元古代晚期以来,先后经历了古亚洲洋盆和特提斯洋盆的开启、俯冲、增生以及微陆块多次碰撞造山,发生了多期构造运动[6-12]、岩浆活动及成矿作用[13]

    图  1  塔里木盆地与周缘造山系卫星影像图(据文献[11]修改)
    Figure  1.  Satellite image of the Tarim basin and its surrounding orogens(modified after reference [11])

    伴随着板块运动及特提斯洋的演化,塔里木盆地及其邻区的演化可概括为三个一级“伸展-聚敛”的开合构造旋回[3, 6, 10-13](表 1),即震旦纪—中泥盆世开合旋回、晚泥盆世—三叠纪开合旋回、侏罗纪—第四纪开合旋回。从时间演化序列看,在这三大开合旋回中,塔里木盆地的演化可进一步划分为六个大的盆地阶段:即①震旦纪—早奥陶世(加里东早期)为克拉通内裂陷盆地阶段, ②中奥陶世—中泥盆世(晚加里东—早海西期)为克拉通内挤压盆地阶段, ③晚泥盆世—早二叠世(晚海西期)为弧后裂陷盆地阶段, ④晚二叠世—三叠纪(印支期)为弧后前陆盆地阶段, ⑤侏罗纪—古近纪(燕山期)为前陆盆地阶段, ⑥新近纪—第四纪(喜马拉雅期)为复合前陆盆地发育阶段。塔里木盆地不同阶段之盆地性质的演化序列使塔里木盆地的构造应力场性质在不同演化阶段具有拉张-挤压交替转化的特征,可总结为“三次拉张和三次挤压”, 三次拉张分别发生在加里东早期(震旦—早奥陶纪)、海西中晚期(晚泥盆—二叠纪)和燕山—喜山早期(侏罗—古近纪), 三次挤压分别发生在加里东晚期—早海西期(晚奥陶—泥盆纪)、印支期(二叠纪末—三叠纪)、喜马拉雅晚期(新近纪—第四纪),最终形成现在的构造格局。

    表  1  塔里木盆地层序格架与构造旋回综合划分表(据文献[6]修编)
    Table  1.  Sequence stratigraphic framework and tectonic cycle in the Tarim basin(modified after reference[6])
    下载: 导出CSV 
    | 显示表格

    构造体系的概念是老一代地质学家李四光教授于二十世纪二十年代提出的,意指具有成生联系的各项不同形态、不同等级、不同性质、不同序次的结构要素所组成的构造带、构造带之间所夹的岩块(或地块)以及受这些地质构造制约的各种地质作用(沉积作用、岩相建造、变质作用、岩浆活动、成矿作用等)和各种地质现象(地震、火山、温泉、地热、地貌等)组合而成的总体,是一定方式的区域构造运动的产物,反映着一定类型的区域地质应力状态及其作用结果。构造体系不仅是分析构造运动的方式、方向及其动力学机制的直接见证,还是进行区域地质调查、矿产资源勘探与开发、工程地质、水文地质、地震地质等方面工作所依据的重要因素[14],所以构造体系研究一直是构造地质学研究的永恒的话题。

    “帚状构造”是一种“旋扭构造”,它由一系列“压扭性”或“张扭性”的断裂面组成,这些断裂向一侧收敛、向另一侧撒开,形成“帚状”,根据组成“帚状构造”的断层性质及其扭动方向,可将其分为“压扭性帚状构造”和“张扭性帚状构造”,由于构成“帚状构造”断层的“旋扭性的活动”,在“旋扭面”的侧翼会因托拽作用而分别形成低序次的压扭性或张扭性小断层或节理[14](图 2)。

    图  2  典型“帚状构造”组成及其次生低序次构造匹配关系[14]
    Figure  2.  The composition of typical "brush structure" and its matching relation of lower order structures[14]

    塔里木盆地在经历了早古生代以来不同性质盆地的叠加和多期次构造运动的改造之后,发育了数百条不同序次、不同级别、不同性质的断裂(图 3)[15-19]。在这众多的断裂中,有隐伏的基底断裂,有盖层断裂,但还有大量的多期活动断裂,它们的断穿层位、剖面产状、分布区域以及平面和剖面的组合特征各异,它们的发生及其演化过程在控制盆地的沉积沉降、隆坳格局、圈闭方式、储集体的类型以及油气藏的形成与分布等方面都起着重要作用[20-24]

    图  3  塔里木盆地断裂分布与帚状构造位置[6, 16]
    ①—喀拉玉儿滚断裂;②—库姆格列木断裂;③—秋里塔格断裂;④—亚南断裂;⑤—轮台断裂;⑥—乌什断裂;⑦—沙井子断裂;⑧—阿恰断裂;⑨—土木休克断裂;⑩—卡拉沙依断裂;⑪—色力布亚断裂;⑫—海米罗斯断裂;⑬—玛扎塔格断裂;⑭—乔硝而盖断裂;⑮—古董山断裂;⑯—柯坪塔格断裂;⑰—皮羌断裂;⑱—塔中Ⅰ号断裂;⑲—卡塔克南缘断裂;⑳—塔中10号断裂;㉑—塔中Ⅱ号断裂;㉒—塘南断裂;㉓—孔雀河断裂;㉔—群克断裂;㉕—尉犁断裂;㉖—龙口断裂;㉗—塔东断裂;㉘—铁克里克断裂;㉙—和田断裂;㉚—康苏米亚断裂;㉛—阿尔金断裂;㉜—车儿臣断裂;㉝—民丰断裂;㉞—若羌断裂
    Figure  3.  Faults distribution and the position of the "brush structure system" in the Tarim basin[6, 16]

    塔中隆起带东部,自北向南依次发育塔中Ⅰ号断裂、塔中10号断裂、塔中Ⅱ号断裂和卡塔克南缘断裂,南侧为塘南断裂和车尔臣走滑断裂(表 2图 3图 4),它们特征分别如下:

    表  2  塔中隆起东部地区主干断裂要素表[6]
    Table  2.  Elements of main faults in central area of the Tarim basin[6]
    断裂名称 性质 走向 倾向 断开层位 延伸距离/km
    塔中Ⅰ号断裂 先正后逆兼走滑 东西 南西 Z-S 240
    塔中10号断裂 先正后逆兼走滑 东西 北东 Z-S 90
    塔中Ⅱ号断裂 先正后逆兼走滑 东西 北东 Z-P 120
    卡塔克南断裂 先正后逆兼走滑 北西西 北东 Z-S 60
    车尔臣断裂 先正后逆兼走滑 北西西 北东 Z-Kz 140
    下载: 导出CSV 
    | 显示表格
    图  4  塔东“帚状”构造横剖面及其演化过程图[6, 16](剖面位置见图 3)
    Figure  4.  Profile of the "brush structure system" and its evolutionary process[6, 16] (location is shown in Fig. 3)

    塔中Ⅰ号断裂:是塔中隆起带东部最主要的断裂, 它们西起塔中49井—塔中64井一带, 向东延伸至塔中7井—塔中6井—塔中24井一带, 延伸达240 km,总体走向北西, 倾向南西, 平面基本都呈反“S”形舒缓波状延伸,断裂下切入基底,中东部向上切断T74消失于上奥淘统,西部向上切断T70进入志留系,剖面上呈现具有逆冲-走滑断层特征的“反Y”字形结构, 具有明显分段性,东部活动强度较大,断距最大可达2200 m, 向西活动强度逐渐减弱,断距一般500~1300 m,其形成时间应为加里东早期,主要活动期为奥陶纪晚期,海西早期(中泥盆世末)再次活动,并具有多期活动的迹象[25-26]

    塔中Ⅱ号断裂:位于塔中隆起东端轴部,东起TZ6井附近,向西延至T64井,全长120 km,整体呈北西—北西西向“S”形波状展布,断面倾向北东,与塔中Ⅰ号断裂呈背冲样式(图 4),东端垂直断距最大,可达900 m,西向垂直断距逐渐增小,断开层位向下深入基地,向上断开T60,进入石炭—二叠系,剖面呈现“Y”字型结构,呈出走滑逆冲的性质,开始活动于奥陶纪,主要活动期为海西早期,晚海西期再次活动[25-26]

    塔中10号断裂:位于塔中Ⅰ号断裂与塔中Ⅱ号断裂之间,整体呈北西西向展布,东起TZ161井附近,向西经TZ50井、TZ12井、TZ11井、TZ20井,延至TZ21井以西,全长约90 km,断面北倾,断裂向下切入基底,东段向上断开T70进入志留系,断距大于100 m,西段向上切断T60进入石炭系,断距逐渐减小,剖面上组合为“Y”字型结构[25-26]

    卡塔克南缘断裂:位于塔中低突起南缘边界,东起TZ60井区,西至BZ2井附近,全长约200 km,整体大致呈东西向展布,断面北倾,断裂向下切入基底,向上进入上奥淘统,断面北倾,自东向西,断距逐渐减小,剖面上组合为“Y”字型结构,指示其显著的走滑特征,主要活动期为晚奥陶世~志留世,石炭纪之后活动微弱。

    车尔臣断裂带:位于塔里木盆地东南部,西起克里雅河一带,向北东延伸至罗布泊地区,平面上总体呈现走向北东东向展布的呈舒缓波状, 长度约100 km,与阿尔金断裂带近似平行。地震资料显示,车尔臣断裂带向下深入基底,向上断穿新生界,总体呈现“(似)花状构造”,由多条产状接近、性质相同的断裂组成,绝大部分断层为南倾,只是不同区段的剖面断层组合特征略有不同,西段构造样式以叠瓦状逆冲席为主, 地层破碎严重,中部古城地区构造变形更为强烈, 主要发育较典型的叠瓦式双重构造, 东段沉积地层塑性强, 以单一的逆断裂为主,进一步显示其显著的走滑特征。

    相关研究结果显示[27-28],车尔臣深断裂具有多期活动特征,其过程大致经历了五个阶段:震旦—奥陶纪(加里东早期运动)稳定的拉张-走滑阶段,奥陶纪末的加里东中期运动使本区的应力状态发生改变, 由伸展作用转变为挤压-走滑作用,志留—泥盆纪一期挤压-走滑阶段(加里东晚期—海西早期)、石炭—二叠纪舒缓-走滑阶段(海西中、晚期)、三叠—白垩纪二次挤压-走滑阶段(印支晚期—燕山早期)、新生代第三纪(喜山期)逆冲-走滑阶段。

    卡塔克南缘断裂与车尔臣断裂带产生于同一应力场,属于同一断裂系统,在时空上构成后展式断裂构造组合样式。

    上述这些主要断裂深入基底,断裂断开层位由震旦系到下二叠统,主要活动期为晚奥陶世-志留世,石炭纪之后活动微弱。剖面上,这些断裂基本都为“Y”字型结构,整体表现为一个由逆冲走滑断裂所组成的大型复式背形冲起构造(表 2图 4),平面上向西撒开、向东收敛,具有明显的成生联系活动的同一性,它们组合在一起共同构成塔东“帚状”构造体系[16, 18, 25-26, 29]。区域构造演化剖面图(图 4)显示这个“帚状”构造体系于加里东运动早期为张扭性,加里东运动晚期发生构造反转,并初具“大型复式背形冲起构造”雏形,海西运动晚期基本定型。

    塔里木盆地处于北侧天山、西南侧昆仑山、东南侧阿尔金山三类不同性质的造山带包围当中(图 1),三者分属三个不同的“盆-山”系统,盆地发展和演化是三大“盆-山”系统共同作用的结果,即塔里木盆地同时受到北侧天山造山带向南张合构造应力场、南侧昆仑山向北的张合构造应力场及东南侧阿尔金造山带的由东南向西北的张合构造应力场所形成的侧向走滑应力场的共同作用,三者的叠加所形成的叠加应力场应该是盆地的发育及盆内构造格局形成和演化的根本动力来源[30]。塔里木盆地的盆-山耦合是通过拉张(或挤压)与剪切作用的方式实现的,只是在不同地质时期拉张(或挤压)作用与剪切走滑作用所占份量可能有所不同,这种份量也决定了旁侧低序次压(张)性结构面(小断层或节理)的走向及其发育程度。

    塔里木盆地演化的不同阶段其盆地性质具有拉张-挤压交替转化的特征,使得塔中隆起东部地区的塔中Ⅰ号断裂、塔中10号断裂、塔中Ⅱ号断裂、卡塔克南缘断裂旋扭性活动,南侧的车儿臣断裂走滑活动,它们组合在一起具备形成形成“帚状构造体系”的区域应力场环境和断层条件,其动力学演化模式可概括为如下几个阶段:

    (1) 加里东早期(震旦—早奥陶纪,张扭性)

    受周缘古天山洋、古昆仑洋和阿尔金洋拉张裂解的影响,塔里木地块整体处于伸展走滑的构造环境,为克拉通内裂陷盆地阶段,塔中隆起东部地区处于张扭性的区域构造环境,形成张扭性应力场(图 5),塔中Ⅰ号、Ⅱ号、10号和卡塔克南缘断裂带以其南侧的塘南-孔雀河断裂构成“张性帚状构造体系”,受区域张扭性应力影响,在Ⅰ号断裂东侧的古城墟地区形成北东向的低序次张性小断裂(或节理)(图 5)。

    图  5  塔东隆起东部帚状构造张扭阶段动力学模型
    Figure  5.  Dynamic model of tenso-shear stage of the "brush structure system" in eastern Tarim basin

    (2) 加里东晚期—早海西期(晚奥陶—早、中泥盆纪,第一次挤压)

    加里东中期(中、晚奥陶世—早、中泥盆世)为古昆仑洋俯冲消减及古阿尔金洋的俯冲消减阶段,经受自南往北的强烈挤压和走滑作用,塔里木盆地南侧转化为主动陆缘,阿尔金断裂系此时也大幅度左行压扭活动,塔里木盆地整体处于强烈挤压走滑环境中,克拉通内挤压盆地开始形成,盆内加里东早期的“张扭性应力场”逐渐转为“压扭性应力场”,完成盆地形成后的第一个开合旋回,这一过程中,塔中东部地区的Ⅰ号断裂、塔中10号断裂、塔中Ⅱ号断裂和卡塔克南缘断裂于中奥陶世发生反转,并以左行“压扭走滑”为主要活动方式,南侧为塘南断裂和车尔臣断裂左行走滑性活动,完成该区第一次“张扭性帚状构造”向“压扭性帚状构造”的转变(图 6),在Ⅰ号断裂东侧的古城墟地区北东向的低序次张性小断裂(或节理)发生反转,形成北东向的低序次次级压性小断裂(或节理)(图 6)。这组北东向的压性小断裂(或节理)将北西向主断裂带切割破碎,使得塔中隆起断裂更加复杂[31]

    图  6  塔东隆起东部帚状构造压扭阶段动力学模型
    Figure  6.  Dynamic model of the compresso-shear stage of the "brush structure system" in eastern Tarim basin

    (3) 海西中晚期(晚泥盆—三叠纪,第二次伸展-挤压阶段)

    晚泥盆世—早二叠世(海西早期)为弧后裂陷盆地阶段,晚二叠世—三叠纪(海西晚期)为弧后前陆盆地阶段,区内构造活动重复了上述过程,完成第二个“张扭性帚状构造”向“压扭性帚状构造”的转变,北东向和北东东向的次级断裂也完成了第二次的构造反转,只是由于盆地北缘南天山洋自东向西“剪刀式”闭合[25]的影响,较上次压扭,此次区域性压扭的方向发生顺时针转向,致使在Ⅰ号断裂东侧的古城墟地区形成一组北东东向的低序次次级压性小断裂(或节理),但总体断裂格局基本没有发生大的改变,并基本完成“帚状构造”的构造格局。

    (4) 印支运动—燕山运动—喜山早期,研究区进入一个较长时间的构造平静期和剥蚀期,总体构造格局没有发生大的改变。

    (5) 新近纪—第四纪,喜马拉雅造山作用的远程效应,导致亚洲大陆发生陆内挤压和侧向构造逃逸作用,塔里木盆地属于塔里木前陆盆地性质,处于“压扭性”构造应力场, 南天山造山带在此过程中重新活动,发生陆内造山作用,在盆缘造山带和周缘隆起带,表现为强烈的断裂活动和逆冲推覆作用,受天山和昆仑山造山带的屏蔽作用,塔东隆起带东部断裂总体不太发育或活动性较弱,新生界展布平缓[32],地层连续性好,研究区总体构造格局没有发生大的改变,并最终定型。

    (1) 塔里木盆地演化过程中拉张-挤压交替转化特征,使得塔中隆起东部地区的塔中Ⅰ号断裂、塔中10号断裂、塔中Ⅱ号断裂、卡塔克南缘断裂张(压)扭性活动,南侧的塘南断裂和车儿臣断裂走滑活动,他们组合在一起形成形成了张(压)扭性“帚状构造体系”。

    (2) 塔里木盆地中央隆起带东段“帚状构造”随盆地第一、第二个开合旋回,经历了加里东早期张扭性→加里东晚期—早海西期压扭性→海西中晚期张扭性→印支期压扭性的演化历程,并于海西运动晚期基本定型。

  • 图  1  中国岩浆铜镍钴硫化物矿床地质分布图(据李文渊,1996修改;中国地图轮廓据自然资源部GS(2016)1552号)

    Figure  1.  Geological distribution of magmatic copper–nickel–cobalt sulfide deposits in China(modified from Li,1996; Map of China outline according to the Ministry of Natural Resources, PRC, GS (2016) 1552)

    图  2  金川超大型岩浆铜镍钴硫化物矿床深部熔离–贯入成矿及就位模式图(据李文渊,19962007修改)

    Figure  2.  Deep immiscibility–injection mineralization and displacement mode diagram of the Jinchuan super-large magma copper-nickel-cobalt sulfide deposit(modified from Li, 1996, 2007

    图  3  金川含矿超镁铁岩Nb/Yb–Th/Yb图解(据Tang et al.,2013修改)

    Figure  3.  Nb/Yb–Th/Yb diagram of the Jinchuan ore-bearing ultramafic intrusions (modified from Tang et al., 2013

    图  4  金川含矿超镁铁岩体立体形态及主要横断面示意图(据李文渊,1996修改)

    Figure  4.  Schematic diagram of the stereoscopic morphology and main cross sections of the Jinchuan ore-bearing ultramafic rock body(modified from Li, 1996

    图  5  金川矿床东、西部岩浆房成矿模式图解(据李文渊,19962007修改)

    Figure  5.  Mineralization pattern diagram of the east section and west section of the magma chambers of the Jinchuan deposit(modified from Li, 1996, 2007

    图  6  夏日哈木含矿镁铁–超镁铁岩Sr-Nd同位素对比图解(据Zhang et al.,2021修改)

    Figure  6.  Comparison of the Sr–Nd isotope of the Xiarihamu ore-bearing mafic-ultramafic intrusions(modified from Zhang et al., 2021

    图  7  东昆仑古特提斯裂谷构造–岩浆–成矿事件示意图(据李文渊等,2021修改)

    Figure  7.  Schematic diagram of the rift formation–magma–metallogenic event of Paleo-Tethys in East Kunlun (modified from Li et al.,2021

    图  8  东天山–北山含矿镁铁–超镁铁质侵入岩分布图(Xiao et al.,2004Su et al.,2011

    Figure  8.  Distribution of ore-bearing mafic-ultramafic intrusions in the Eastern Tianshan–Beishan region(Xiao et al.,2004Su et al.,2011

    图  9  东天山–北山含铜镍钴镁铁–超镁铁岩Nb/Yb–Th/Yb和Nb/Yb–TiO2/Yb图解(底图据Pearce,2008;数据来自尤敏鑫,2022修改)

    a—Nb/Yb–Th/Yb图解;b—Nb/Yb–TiO2/Yb图解

    Figure  9.  Nb/Yb–Th/Yb diagram and Nb/Yb–TiO2/Yb diagram of ore-bearing mafic-ultramafic intrusions in the Eastern Tianshan–Beishan region(Base map after Pearce,2008; data modified from You,2022

    (a) Nb/Yb–Th/Yb diagram; (b) Nb/Yb–TiO2/Yb diagram

    图  10  东天山–北山含铜镍钴镁铁–超镁铁岩Sr-Nd同位素对比图解(据Zhou et al.,2008尤敏鑫,2022修改)

    Figure  10.  Comparison of the Sr–Nd isotope of the ore-bearing mafic-ultramafic intrusions from the Eastern Tianshan–Beishan region (modified from Zhou et al., 2008; You, 2022)

    图  11  金川和夏日哈木矿床PGE配分曲线(据韩一筱,2021修改)

    Figure  11.  Partitioning of PGE between Jinchuan and Xiarihamu magmatic Ni–Cu–Co sulfide deposits(modified from Han,2021

    图  12  金川岩体磁异常及深边部隐伏岩矿体地质解释图(据李文渊,1996修改)

    Figure  12.  Diagram of magnetic anomalies and geological interpretation of hidden rock ore bodies in the deep side of the Jinchuan ore-bearing intrusive rock(modified from Li, 1996

    图  13  东昆仑及其邻区古特提斯构造带岩浆铜镍钴硫化物矿床找矿靶区分布图

    Figure  13.  Distribution of prospecting targets for magmatic nickel–copper–cobalt sulfide deposits in the Paleotethys tectonic belt of East Kunlun and its adjacent areas

    图  14  中国岩浆铜镍钴硫化物矿床找矿远景区示意图(中国地图轮廓据自然资源部GS(2016)1552号)

    Figure  14.  Sketch map of prospecting potential area of magmatic copper–nickel–cobalt sulfide deposits in China(Map of China outline according to the Ministry of Natural Resources, PRC, GS (2016) 1552)

    表  1  中国岩浆铜镍钴硫化物矿床成矿特征及类型一览表

    Table  1.   Schedule of mineralization characteristics and types of magmatic Ni–Cu–Co sulfide deposits in China

    成矿背景典型矿床主要岩石类型成矿元素矿床规模测年方法和成矿时代文献来源





    大陆
    边缘
    裂谷
    金川 二辉橄榄岩、纯橄榄岩 Ni、Cu、Co、PGE 超大型 SHRIMP锆石U–Pb,827 ± 8 Ma Li et al., 2005b
    兴地 辉长岩、二辉岩、二辉橄榄岩 Ni、Cu 小型 锆石U–Pb,760 ± 6 Ma Zhang et al., 2011
    大坡岭 变辉橄岩、变辉石岩、辉长辉绿岩 Ni、Cu、Co、PGE 小型 SHRIMP锆石U–Pb,828 ± 7 Ma 葛文春等,2001
    周庵 二辉橄榄岩、橄榄辉石岩 Ni、Cu、PGE 大型 锆石U–Pb,641.5 ± 3.7 Ma 闫海卿等,2010
    桃科 变橄榄辉长苏长岩、变辉长苏长岩 Ni、Cu、PGE 小型 锆石U–Pb,2715 ± 16 Ma 孙涛等,2016
    铜硐子 蚀变辉长-辉绿岩 Ni、Cu 小型 元古代?
    赤柏松 辉长辉绿岩、二辉橄榄岩 Ni、Cu、Co、PGE 小型 SHRIMP锆石U–Pb,134 ± 7 Ma 裴福萍等,2005
    大火
    成岩
    力马河 单辉橄榄岩、辉长-闪长岩 Ni、Cu 小型 SHRIMP锆石U–Pb,263 ±3 Ma Zhou et al., 2008
    白马寨 橄榄岩、橄辉岩、辉石岩、辉长岩 Ni、Cu、Co、PGE 小型 SHRIMP锆石U–Pb,258.5 ± 3.5 Ma Wang,2006
    金宝山 蚀变单辉橄榄岩、辉长辉绿岩 PGE、Ni、Cu、Co 大型 SHRIMP锆石U–Pb,260.6 ± 3.5 Ma Tao et al., 2015
    杨柳坪 二辉橄榄岩、辉石岩、辉长岩 PGE、Ni、Cu 大型 晚二叠纪?






    特提
    斯造
    山带
    夏日哈木 二辉岩、辉长岩、橄榄岩 Ni、Cu、Co 超大型 锆石U–Pb,411.6 ± 2.4 Ma Li et al., 2015
    拉水峡 蚀变橄榄岩 Ni、Cu、Co、PGE 小型
    煎茶岭 蛇纹岩、滑镁岩、菱镁岩 Ni、Co 大型 硫化物Re–Os等时线,878 ± 27 Ma 王瑞廷等,2003
    中亚
    造山
    黄山东 角闪橄榄辉长岩、辉长橄榄岩 Ni、Cu、Co、PGE 大型 SHRIMP锆石U–Pb,274 ± 3 Ma 韩宝福等,2004
    图拉尔根 角闪橄榄岩、辉石岩、辉长岩 Ni、Cu、Co、PGE 大型 SHRIMP锆石U–Pb,300.5 ± 3.2 Ma 三金柱等,2010
    坡一 角闪辉长岩、橄榄辉石岩 Ni、Cu 大型 TIMS锆石U–Pb,274 ± 4 Ma 秦克章等,2007
    菁布拉克 闪长岩、橄榄辉长岩、橄榄岩 Ni、Cu 小型 SHRIMP锆石U–Pb,434.4 ± 6.2 Ma 张作衡等,2007
    黑山 斜长角闪橄榄岩、辉长岩 Ni、Cu 大型 SHRIMP锆石U–Pb,356.4 ± 0.6 Ma Xie et al., 2012
    小南山 蚀变辉长岩 Ni、Cu、Co、PGE 小型 锆石U–Pb,272.7 ± 2.9 Ma 党智财,2015
    喀拉通克型 方辉橄榄岩、辉长苏长岩 Ni、Cu、PGE 大型 SHRIMP锆石U–Pb,287 ± 5 Ma 韩宝福等,2004
    红旗岭型 斜方辉石岩、橄榄岩、辉长岩 Ni、Cu、Co 大型 SHRIMP锆石U–Pb,239.6 ± 2.6 Ma 郝立波等,2013
    五星 辉长岩、辉石岩、橄榄辉石岩 Ni、Cu、Co、PGE 小型 SHRIMP锆石U–Pb,37.79 ± 0.76 Ma 李光辉等,2010
    下载: 导出CSV

    表  2  玄武质岩浆RN因子估算与Co的丰度值

    Table  2.   The Co concentration and calculated R and N factors for basaltic magmas

    XisilDisilR/NYisul(Co,×10−6
    4468187/87
    446810422/447
    4468501293/1579
    44681001799/2315
    446810002804/2992
    4468100002972/2992
    Williams-Jones and Vasyukova,2022
    下载: 导出CSV

    表  3  地球不同圈层中的PGE丰度(10−9

    Table  3.   The PGE concentration in different layers of the earth(10−9

    位置PtPdOsIrRuRh∑PGE
    地核135.582.616348.1
    下地幔0.20.120.050.050.10.020.54
    上地幔0.20.090.050.050.10.020.51
    地壳0.0450.010.0010.0010.0010.0010.059
    (据黎彤,1976Mcdonough and Sun,1995修改)
    下载: 导出CSV
  • [1] ARNDT N T, CZAMANSKE G K, WALKER R J, et al. , 2003. Geochemistry and origin of the intrusive hosts of the Noril'sk-TalnakhCu-Ni-PGE sulfide deposits[J]. Economic Geology, 98(3): 495-515.
    [2] BARNES S J, LIGHTFOOT P C, 2005. Formation of magmatic nickel sulfide deposits and processes affecting their copper and platinum group element contents[M]//HEDENQUIST J W, THOMPSON J F H, GOLDFARB R J, et al. One hundredth anniversary volume. Littleton: Society of Economic Geologists: 179-213.
    [3] BARNES S J, MUNGALL J E, MAIER W D, 2015. Platinum group elements in mantle melts and mantle samples[J]. Lithos, 232: 395-417. doi: 10.1016/j.lithos.2015.07.007
    [4] BÉDARD J H, 2005. Partitioning coefficients between olivine and silicate melts[J]. Lithos, 83(3-4): 394-419. doi: 10.1016/j.lithos.2005.03.011
    [5] BÉDARD J H, 2007. Trace element partitioning coefficients between silicate melts and orthopyroxene: parameterizations of D variations[J]. Chemical Geology, 244(1-2): 263-303. doi: 10.1016/j.chemgeo.2007.06.019
    [6] BÉDARD J H, 2014. Parameterizations of calcic clinopyroxene-melt trace element partition coefficients[J]. Geochemistry, Geophysics, Geosystems, 15(2): 303-336. doi: 10.1002/2013GC005112
    [7] BEZMEN N I, ASIF M, BRÜGMANN G E, et al. , 1994. Distribution of Pd, Rh, Ru, Jr, Os, and Au between sulfide and silicate metals[J]. Geochimica et Cosmochimica Acta, 58(4): 1251-1260. doi: 10.1016/0016-7037(94)90379-4
    [8] BOUGAULT H, DMITRIEV L, SCHILLING J G, et al. , 1988. Mantle heterogeneity from trace elements: MAR triple junction near 14 N[J]. Earth and Planetary Science Letters, 88(1-2): 27-36. doi: 10.1016/0012-821X(88)90043-X
    [9] CARROLL M R, RUTHERFORD M J, 1988. Sulfur speciation in hydrous experimental glasses of varying oxidation state; results from measured wavelength shifts of sulfur X-rays[J]. American Mineralogist, 73(7-8): 845-849.
    [10] CRAIG J R, 1979. Geochemical aspects of the origins of ore deposits[M]//SIEGEL F F. Review of research on modern problems in geochemistry. Paris: UNESCO Earth Sciences: 225-271.
    [11] DANG Z C, 2015. Petrology, geochemistry, ages and ore-bearing property evaluation of the mafic-ultramafic intrusions, the middle segment of Inner Mongolia[D]. Beijing: Chinese Academy of Geological Sciences: 1-116. (in Chinese with English abstract)
    [12] DUAN J, LI C S, QIAN Z Z, et al. , 2016. Multiple S isotopes, zircon Hf isotopes, whole-rock Sr-Nd isotopes, and spatial variations of PGE tenors in the Jinchuan Ni-Cu-PGE deposit, NW China[J]. Mineralium Deposita, 51(4): 557-574. doi: 10.1007/s00126-015-0626-8
    [13] FLEET M E, CROCKET J H, STONE W E, 1996. Partitioning of platinum-group elements (Os, Ir, Ru, Pt, Pd) and gold between sulfide liquid and basalt melt[J]. Geochimica et Cosmochimica Acta, 60(13): 2397-2412. doi: 10.1016/0016-7037(96)00100-7
    [14] FRISH W, MESCHEDE M, BLAKEY R C, 2011. Platetectonics-continental driftand mountain building[M]. Heidelberg: Springer: 1-212.
    [15] GE W C, LI X H, LIANG X R, et al. , 2001. Geochemistry and geological implications of mafic-ultramafic rocks with the age of~ Ma in Yuanbaoshan-Baotan area of northern Guangxi[J]. Geochimica, 30(2): 123-130. (in Chinese with English abstract)
    [16] HAN B F, JI J Q, SONG B, et al. , 2004. SHRIMP zircon U-Pb ages of Kalatongke No. 1 and Huangshandong Cu-Ni-bearing mafic-ultramafic complexes, North Xinjiang, and geological implications[J]. Chinese Science Bulletin, 49(22): 2424-2429.
    [17] HAN Y X, 2021. The comparative study on platinum group elements in Jinchuan and Xiarihamu magmatic Cu-Ni sulfide deposits[D]. Xi’an: Chang’an University: 1-180. (in Chinese with English abstract)
    [18] HAO L B, SUN L J, ZHAO Y Y, et al. , 2013. SHRIMP zircon U-Pb dating of Chajian mafic-ultramafic rocks in Hongqiling mine field, Jilin Province, and its implications[J]. Earth Science—Journal of China University of Geosciences, 38(2): 233-240. (in Chinese with English abstract) doi: 10.3799/dqkx.2013.024
    [19] HORAN M F, WALKER R J, FEDORENKO V A, et al. , 1995. Osmium and neodymium isotopic constraints on the temporal and spatial evolution of Siberian flood basalt sources[J]. Geochimica et Cosmochimica Acta, 59(24): 5159-5168. doi: 10.1016/0016-7037(96)89674-8
    [20] JIANG C Y, GUO N X, XIA M Z, et al. , 2012. Petrogenesis of the Poyi mafic-ultramafic layered intrusion, NE Tarim Plate[J]. Acta Petrologica Sinica, 28(7): 2209-2223. (in Chinese with English abstract)
    [21] JIANG CY, LING J L, ZHOU W, et al. , 2015. Petrogenesis of the Xiarihamu Ni-bearing layered mafic-ultramafic intrusion, East Kunlun: implications for its extensional island arc environment[J]. ActaPetrologica Sinica, 31(4): 1117-1136. (in Chinese with English abstract)
    [22] JUGO P J, LUTH R W, RICHARDS J P, 2005. An experimental study of the sulfur content in basaltic melts saturated with immiscible sulfide or sulfate liquids at 1300 °C and 1·0 GPa[J]. Journal of Petrology, 46(4): 783-798.
    [23] KEAYS R R, 1995. The role of komatiitic and picritic magmatism and S-saturation in the formation of ore deposits[J]. Lithos, 34(1-3): 1-18. doi: 10.1016/0024-4937(95)90003-9
    [24] KEAYS R R, 1997. Requirements for the formation of giant Ni-Cu-PGE sulfide deposits: the role of magma generation[J]. EosTransactions American Geophysical Union, 78: F799.
    [25] LARSEN L M, PEDERSEN A K, 2000. Processes in high-Mg, high-T magmas: evidence from olivine, chromite and glass in palaeogene picrites from West Greenland[J]. Journal of Petrology, 41(7): 1071-1098. doi: 10.1093/petrology/41.7.1071
    [26] LI C S, RIPLEY E M, 2011. The giant Jinchuan Ni-Cu-(PGE) deposit: tectonic setting, magma evolution, ore genesis, and exploration implications[M]//LI C S, RIPLEY E M. Magmatic Ni-Cu and PGE deposits: geology, geochemistry, and genesis. Toronto: Society of Economic Geologists: 163-180.
    [27] LI C S, ZHANG Z W, LI W Y, et al. , 2015. Geochronology, petrology and Hf-S isotope geochemistry of the newly-discovered Xiarihamu magmatic Ni-Cu sulfide deposit in the Qinghai-Tibet plateau, western China[J]. Lithos, 216-217: 224-240. doi: 10.1016/j.lithos.2015.01.003
    [28] LI G H, SUN J G, HUANG Y W, et al. , 2010. Zircon U-Pb age of mineral-bearing rock body from Wuxing Pt-Pd deposit in Jidong, Heilongjiang Province and its geological significance[J]. Global Geology, 29(1): 28-33. (in Chinese with English abstract)
    [29] LI H Q, CHEN F W, MEI Y P, et al. , 2006. Isotopic ages of No. 1intrusive body in Pobei mafic-ultramaficbelt of Xinjiang and their geological significance[J]. Mineral Deposits, 25(4): 463-469. (in Chinese with English abstract)
    [30] LI L X, WANG D H, SONG Q H, et al. , 2009. Study on the age of ore-bearing intrusion of Chibosong copper-nickel sulfide deposit in Tonghua, Jilin Province[J]. Acta Mineralogica Sinica, 29(S1): 55-56 (in Chinese).
    [31] LI S J, SUN F Y, GAO Y W, et al. , 2012. The Theoretical guidance and the practice of small Intrusions forming large deposits-the enlightenment and significance for searching breakthrough of Cu-Ni sulfide deposit in Xiarihamu, East Kunlun, Qinghai[J]. Northwestern Geology, 45(4): 185-191. (in Chinese with English abstract)
    [32] LI T, 1976. Chemical element abundances in the earth and it’s major shells[J]. Geochimica(3): 167-174. (in Chinese with English abstract)
    [33] LI W Y, 1995. Characteristics and exploration countermeasures of copper-nickel sulfide deposit in China[C]//Proceedings of the 2nd annual youth academic conference of China association for science and technology (basic science volume). Beijing: China Press of Science and Technology: 180-190. (in Chinese)
    [34] LI W Y, 1996. Metallogenic series and geochemistry of nickel-copper sulfide deposits in China[M]. Xi'an: Xi'an Map Publishing House: 1-228. (in Chinese)
    [35] LI W Y, 1999. Remote metallogenic effect of Continent-Continentcollision in the North Qilian Mountains: positioning and structural hydrothermal transformation of deep ore bodies in Longshoushan area[C]//Proceedings of continental structure and inland deformation and the sixth national geomechanics symposium. Beijing: Geological Society of China: 166-169. (in Chinese)
    [36] LI W Y, WANG W, GUO Z P, 2005a. Magmatic Ni-Cu-PGE deposits in the Qilian-Longshou mountains, Northwest China-part of a Proterozoic large igneous province[C]//Eighthmineral deposit research: meeting the global challenge. Berlin: Springer: 429-431.
    [37] LI W Y, 2006a. Mineralization and prospection of metallic sulfide deposit associated with the magmatic activity of Qilian mountain. northwest China[M]. Beijing: Geological Publishing House: 1-208. (in Chinese)
    [38] LI W Y, 2006b. Mineral potential of mineral resources in Northwest China[M]. Beijing: Geological Publishing House: 1-438. (in Chinese)
    [39] LI W Y, 2007. The current status and prospect on magmatic Ni-Cu-PGE deposits[J]. Northwestern Geology, 40(2): 1-28. (in Chinese with English abstract)
    [40] LI W Y, 2012. Active global tectonics and ore-forming processes[J]. Northwestern Geology, 45(2): 27-42. (in Chinese with English abstract)
    [41] LI W Y, NIU Y L, ZHANG Z W, et al. , 2012a. Geodynamic setting and further exploration of magmatism-related mineralization concentrated in the Late Paleozoic in the northern Xinjiang autonomous region[J]. Earth Science Frontiers, 19(4): 41-50. (in Chinese with English abstract)
    [42] LI W Y, TANG L Z, ZHANG Z W, et al. , 2012b. The concept of mineralization of the small rock mass and prospecting significance[J]. Northwestern Geology, 45(4): 61-68. (in Chinese with English abstract)
    [43] LI W Y, 2013. The continental growth and ore-forming processes[J]. Northwestern Geology, 46(1): 1-10. (in Chinese with English abstract)
    [44] LI W Y, 2015. Metallogenic geological characteristics and newly discovered orebodies in Northwest China[J]. Geology in China, 42(3): 365-380. (in Chinese with English abstract)
    [45] LI W Y, ZHANG Z W, CHEN B, 2015. The theory on small intrusions forminglarge deposits and its explorationsignificance: taking for magmatic Ni-Cu sulfidedeposits example in the northwestern of China[J]. Engineering Sciences, 17(2): 29-34. (in Chinese with English abstract)
    [46] LI W Y, 2018. The Primary discussion on the relationship between Paleo-Asian Ocean and Paleo-Tethys Ocean[J]. Acta Petrologica Sinica, 34(8): 2201-2210. (in Chinese with English abstract)
    [47] LI W Y, ZHANG Z W, WANG Y L, et al. , 2019a. Study on the relationship between large-scale magma and metallization in Late Paleozoic in Northern Xinjiang[M]. Beijing: Science Press: 1-324. (in Chinese)
    [48] LI W Y, HONG J, CHEN B, et al. , 2019b. Distribution regularity and main scientific issues of strategic mineral resources in Central Asia and Adjacent Regions[J]. Bulletin of National Natural Science Foundation of China, 33(2): 119-124. (in Chinese with English abstract)
    [49] LI W Y, WANG Y L, QIAN B, et al. , 2020. Discussion on the formation of magmatic Cu-Ni-Co sulfide deposits in Margin of Tarim Block[J]. Earth Science Frontiers, 27(2): 276-293. (in Chinese with English abstract)
    [50] LI W Y, ZHANG Z W, GAO Y B, et al. , 2021. Tectonic transformation the Kunlun orogen of Paleo-Tethys, North China, and the metallization of critical mineral resource’s nickel, cobalt, manganese and lithium[J]. Geology in China, [2021-11-18].https://kns.cnki.net/kcms/detail/11.1167.P.20211118.0847.002.html. (in Chinese with English abstract)
    [51] LI W Y, ZHANG Z W, WANG Y L, et al. , 2022. Tectonic transformation of Proto- and Paleo-Tethys and the metallization of magmatic Ni-Cu-Co sufide deposits in Kunlun orogen, Northwest China[J]. Journal of Earth Sciences and Environment, 44(1): 1-19. (in Chinese with English abstract)
    [52] LI X H, SU L, CHUNG S L, et al. , 2005. Formation of the Jinchuan ultramafic intrusion and the world's third largest Ni-Cu sulfide deposit: associated with the ∼825 Ma south China mantle plume?[J]. Geochemistry, Geophysics, Geosystems, 6(11): Q11004.
    [53] LI Y, AUDÉTATA, 2015. Effects of temperature, silicate melt composition, and oxygen fugacity on the partitioning of V, Mn, Co, Ni, Cu, Zn, As, Mo, Ag, Sn, Sb, W, Au, Pb, and Bi between sulfide phases and silicate melt[J]. Geochimica et Cosmochimica Acta, 162: 25-45. doi: 10.1016/j.gca.2015.04.036
    [54] LIGHTFOOT P C, HAWKESWORTH C J, HERGT J, et al. , 1993. Remobilisation of the continental lithosphere by a mantle plume: major-, trace-element, and Sr-, Nd-, and Pb-isotope evidence from picritic and tholeiitic lavas of the Noril'sk District, Siberian Trap, Russia[J]. Contributions to Mineralogy and Petrology, 114(2): 171-188. doi: 10.1007/BF00307754
    [55] LIGHTFOOT P C, HAWKESWORTH C J, OLSHEFSKY K, et al. , 1997. Geochemistry of Tertiary tholeiites and picrites from Qeqertarssuaq (Disko Island) and Nuussuaq, West Greenland with implications for the mineral potential of comagmatic intrusions[J]. Contributions to Mineralogy and Petrology, 128(2): 139-163.
    [56] LIGHTFOOT P C, NALDRETT A J, 1999. Geological and geochemical relationships in the Voisey’s Bay intrusion, Nain plutonic suite, Labrador, Canada[M]//KEAYS R R, LESHER C M, LIGHTFOOT P C, et al. Dynamic processes in magmatic ore deposits and their application to mineral exploration. Toronto: Geological Association of Canada Short Course Notes, 13: 1-30.
    [57] LIU Y G, LÜ X B, WU C M, et al. , 2016. The migration of Tarim plume magma toward the northeast in Early Permian and its significance for the exploration of PGE-Cu-Ni magmatic sulfide deposits in Xinjiang, NW China: as suggested by Sr-Nd-Hf isotopes, sedimentology and geophysical data[J]. Ore Geology Reviews, 72: 538-545. doi: 10.1016/j.oregeorev.2015.07.020
    [58] LIU Y G, LI W Y, LÜ X B, et al. , 2017. The Pobei Cu-Ni and Fe ore deposits in NW China are comagmatic evolution products: evidence from ore microscopy, zircon U-Pb chronology and geochemistry[J]. Geologica Acta, 15(1): 37-50.
    [59] LIU Y G, LI W Y, JIA Q Z, et al. , 2018. The dynamic sulfide saturation process and a possible slab break-off model for the giant xiarihamu magmatic nickel ore deposit in the east kunlun orogenic belt, Northern Qinghai-Tibet Plateau, China[J]. Economic Geology, 113(6): 1383-1417. doi: 10.5382/econgeo.2018.4596
    [60] LIU Y G, CHEN Z G, LI W Y, et al. , 2019. The Cu-Ni mineralization potential of the Kaimuqi mafic-ultramafic complex and the indicators for the magmatic Cu-Ni sulfide deposit exploration in the East Kunlun Orogenic Belt, Northern Qinghai-Tibet Plateau, China[J]. Journal of Geochemical Exploration, 198: 41-53. doi: 10.1016/j.gexplo.2018.12.002
    [61] MAIER W D, GROVES D I, 2011. Temporal and spatial controls on the formation of magmatic PGE and Ni-Cu deposits[J]. Mineralium Deposita, 46(8): 841-857. doi: 10.1007/s00126-011-0339-6
    [62] MAO J W, YANG J M, QU W J, et al. , 2002. Re-Os dating of Cu-Ni sulfide ores from huangshandong deposit in Xinjiang and its geodynamic significance[J]. Mineral Deposits, 21(4): 323-330. (in Chinese with English abstract)
    [63] MAVROGENES J A, O’NEILL H S C, 1999. The relative effects of pressure, temperature and oxygen fugacity on the solubility of sulfide in mafic magmas[J]. Geochimica et Cosmochimica Acta, 63(7-8): 1173-1180. doi: 10.1016/S0016-7037(98)00289-0
    [64] MCDONOUGH W F, SUN S S, 1995. The composition of the Earth[J]. Chemical Geology, 120(3-4): 223-253. doi: 10.1016/0009-2541(94)00140-4
    [65] MCKENZIE D, BICKLE M J, 1988. The volume and composition of melt generated by extension of the lithosphere[J]. Journal of Petrology, 29(3): 625-679. doi: 10.1093/petrology/29.3.625
    [66] MITCHELL A H G, GARSON M S, 1981. Mineral deposits and global tectonic settings[M]. London: Academic Press: 1-457.
    [67] MOUNTAIN B W, WOOD S A, 1988. Chemical controls on the solubility, transport and deposition of platinum and palladium in hydrothermal solutions; a thermodynamic approach[J]. Economic Geology, 83(3): 492-510. doi: 10.2113/gsecongeo.83.3.492
    [68] MUDD G M, JOWITT S M, 2014. A detailed assessment of global nickel resource trends and endowments[J]. Economic Geology, 109(7): 1813-1841. doi: 10.2113/econgeo.109.7.1813
    [69] NALDRETT A J, 1989. Magmatic sulfide deposits[M]. Oxford: Oxford University Presss: 1-196.
    [70] NALDRETT A J, 2004. Magmatic sulfide deposits: geology, geochemistry and exploration[M]. Berlin: Springer: 1-727.
    [71] PALME H, O'NEILL H S, 2014. Cosmochemical estimates of mantle composition[M]//RUDNICK R L. Treatise on geochemistry. 2nd ed. Oxford: Elsevier: 1-39.
    [72] PEACH C L, MATHEZ E A, KEAYS R R, 1990. Sulfide melt-silicate melt distribution coefficients for noble metals and other chalcophile elements as deduced from MORB: implications for partial melting[J]. Geochimica et Cosmochimica Acta, 54(12): 3379-3389. doi: 10.1016/0016-7037(90)90292-S
    [73] PEARCE J A, 2008. Geochemical fingerprinting of oceanic basalts with applications to ophiolite classification and the search for Archean oceanic crust[J]. Lithos, 100(1-4): 14-48. doi: 10.1016/j.lithos.2007.06.016
    [74] PEI F P, XU W L, YAN D B, et al. , 2005. SHRIMP zircon U-Pb dating and its geological significance of Chibaisong gabbro in Tonghua area, Jilin Province, China[J]. Science in China Series D, 49(4): 368-374.
    [75] PIRAJNO F, 2000. Ore deposits and mantle plumes[M]. London: Springer: 1-540.
    [76] PIRAJNO F, 2013. The geology and tectonic settings of China’s mineral deposits[M]. Dordrecht: Springer: 1-679.
    [77] QIN K Z, DING K S, XU Y X, et al. , 2007. Ore potential of protoliths and modes of Co-Ni occurrence in Tulargen and Baishiquan Cu-Ni-Co deposits, East Tianshan, Xinjiang[J]. Mineral Deposits, 26(1): 1-14. (in Chinese with English abstract)
    [78] QIN K Z, SU B X, SAKYI P A, et al. , 2011. SIMS zircon U-Pb geochronology and Sr-Nd isotopes of Ni-Cu-Bearing Mafic-Ultramafic Intrusions in Eastern Tianshan and Beishan in correlation with flood basalts in Tarim Basin (NW China): constraints on a ca. Ma mantle plume[J]. American Journal of Science, 311(3): 237-260. doi: 10.2475/03.2011.03
    [79] ROBB L, 2005. Introduction to ore-forming processes[M]. Oxford: Blackwell Science Ltd: 1-373.
    [80] RUDNICK R L, GAO S, 2014. Composition of the continental crust[M]//HOLLAND H D, TUREKIAN K K. Treatise on geochemistry. Oxford: Elsevier: 1-51.
    [81] SAN J Z, QIN K Z, TANG Z L, et al. , 2010. Precise zircon U-Pb age dating of two mafic-ultramafic complexes at Tulargen large Cu-Ni district and its geological implication[J]. Acta Petrologica Sinica, 26(10): 3027-3035. (in Chinese with English abstract)
    [82] SCHILLING J G, ZAJAC M, EVANS R, et al. , 1983. Petrologic and geochemical variations along the Mid-Atlantic ridge from 29 Degrees N to 73 Degrees N[J]. American Journal of Science, 283(6): 510-586. doi: 10.2475/ajs.283.6.510
    [83] SLACK J F, KIMBALL B E, SHEDD K B, 2017. Cobalt, chapter F[C]//SCHULZ K J, DE Y, J J H, et al. Critical mineral resources of the United States—Economic and environmental geology and prospects for future supply. Reston, VA: U. S. Geological Survey: 1-40.
    [84] SONG X Y, YI J N, CHEN L M, et al. , 2016. The Giant Xiarihamu Ni-Co sulfide deposit in the east Kunlun Orogenic Belt, Northern Tibet Plateau, China[J]. Economic Geology, 111(1): 29-55. doi: 10.2113/econgeo.111.1.29
    [85] SONG X Y, 2019. Current research status and important issues of magmatic sulfide deposits[J]. Mineral Deposits, 38(4): 699-710. (in Chinese with English abstract)
    [86] SU B X, QIN K Z, SAKYI P A, et al. , 2011. U-Pb ages and Hf-O isotopes of zircons from Late Paleozoic mafic-ultramafic units in the southern Central Asian Orogenic Belt: tectonic implications and evidence for an Early-Permian mantle plume[J]. Gondwana Research, 20(2-3): 516-531. doi: 10.1016/j.gr.2010.11.015
    [87] SUN S S, TATSUMOTO M, SCHILLING J G, 1975. Mantle plume mixing along the Reykjanes ridge axis: lead isotopic evidence[J]. Science, 190(4210): 143-147. doi: 10.1126/science.190.4210.143
    [88] SUN T, LI C, ZHANG Z Q, et al. , 2016. Mineralogical characteristics of Taoke Cu-Ni sulfide deposit in Shandong Provinceand its indications for metallogenic genesis[J]. Mineral Deposits, 35(4): 724-736. (in Chinese with English abstract)
    [89] SUN T, WANG D H, 2019. Geology of mineral resources in China-nickel mining volume[M]. Beijing: Geological Publishing House: 1-912. (in Chinese)
    [90] TANG Q Y, ZHANG M J, LI C S, et al. , 2013. The chemical compositions and abundances of volatiles in the Siberian large igneous province: constraints on magmatic CO2 and SO2 emissions into the atmosphere[J]. Chemical Geology, 339: 84-91. doi: 10.1016/j.chemgeo.2012.08.031
    [91] TANG Z L, REN D J, XUE Z R, et al. , 1989. Nickel deposit in China[M]//Editorial Board of China Mineral Deposits. China mineral deposit (the first volume). Beijing: Geology Press: 104-123. (in Chinese)
    [92] TANG Z L, YANG J D, XU S J, et al. , 1992. Sm-Nd dating of the Jinchuan ultramafic rock body, Gansu, China[J]. Chinese Science Bulletin, 37(23): 1988-1990.
    [93] TANG Z L, LI W Y, 1995. Mineralization mode and geological comparison of Jinchuan copper-nickel sulfide (including platinum) deposit[M]. Beijing: Geology Press: 1-209. (in Chinese)
    [94] TANG Z L, QIAN Z Z, JIANG C Y, et al. , 2006. Magmatic Ni-Cu-pge sulphide deposits and metallogenic prognosis in China[M]. Beijing: Geology Press: 1-304. (in Chinese)
    [95] TAO Y, MA Y S, MIAO L C, et al. , 2008. SHRIMP U-Pb zircon age of the Jinbaoshan ultramafic intrusion, Yunnan Province, SW China[J]. Chinese Science Bulletin, 54(1): 168-172.
    [96] TAO Y, PUTIRKA K, HU R Z, et al. , 2015. The magma plumbing system of the Emeishan large igneous province and its role in basaltic magma differentiation in a continental setting[J]. American Mineralogist, 100(11-12): 2509-2517. doi: 10.2138/am-2015-4907
    [97] The Sixth Geological Team of Gansu Provincial Bureau of Geology and Mineral Resources, 1984. Baijiazuizi copper and nickel sulfide deposit[M]. Beijing: Geological Publishing House: 1-198 (in Chinese)
    [98] TUCHSCHERER M G, SPRA J G, 2002. Geology, mineralization, and emplacement of the foy offset dike, sudbury impact structure[J]. Economic Geology, 97(7): 1377-1397.
    [99] VOGEL D C, KEAYS R R, 1997. The petrogenesis and platinum-group element geochemistry of the Newer Volcanic Province, Victoria, Australia[J]. Chemical Geology, 136(3-4): 181-204. doi: 10.1016/S0009-2541(96)00142-8
    [100] VOGT J H L, 1894. Beit rage zur Genet ischen Classificat ion der Durch Magmat ische Different iat ions Processe und der Durch Previnath loyse Entslandenen Erzvo skommen[J]. Z P rak t. Geo l. , 2: 381-399.
    [101] WANG G, 2014. Metallogenesis of nickel deposits in Eastern Kunlun orogenic belt, Qinghai Province[D]. Changchun: Jilin University: 1-214. (in Chinese with English abstract)
    [102] WANG H S, BAI W J, WAN C Y, 1978. A petro-chemical classification of basic and ultrabasic rocks[J]. Acta Geologica Sinica, 52(1): 33-39. (in Chinese with English abstract)
    [103] WANG M X, WANG Y, ZHAO J H, 2012. Zircon U/Pb dating and Hf-O isotopes of the Zhouan ultramafic intrusion in the northern margin of the YangtzeBlock, SW China: constraints on the nature of mantle source and timing of the supercontinent Rodinia breakup[J]. Chinese Science Bulletin, 58(7): 777-787. (in Chinese with Englishabstract)
    [104] WANG R T, HE Y, WANG D S, et al. , 2003. Re-Os isotope age and its application to the Jianchaling nickel-copper sulfide deposit, Lueyang, Shaanxi Province[J]. Geological Review, 49(2): 205-211. (in Chinese with Englishabstract)
    [105] WANG Y, 2006. Petrogenesis of Permian flood basalts and mafic-ultramafic intrusion in the Jinping(SW China) and Songda(Northern Vietnam)districts[D]. Hong Kong, China: University of Hong Kong.
    [106] WHITE W M, KLEIN E M, 2014. Composition of the oceanic crust[M]//RUDNICK R L. Treatise on geochemistry. 2nd ed. Oxford: Elsevier: 457-496.
    [107] WILLIAMS-JONES A E, VASYUKOVA O V, 2022. Constraints on the genesis of cobalt deposits: part I. Theoretical considerations[J]. Economic Geology, 117(3): 513-528. doi: 10.5382/econgeo.4895
    [108] WU F Y, WAN B, ZHAO L, et al. , 2020. Tethyan geodynamics[J]. Acta Petrologica Sinica, 36(6): 1627-1674. (in Chinese with English abstract) doi: 10.18654/1000-0569/2020.06.01
    [109] XIA L Q, XU X Y, XIA Z C, et al. , 2004. Petrogenesis of Carboniferous rift-related volcanic rocks in the Tianshan, northwestern China[J]. GSA Bulletin, 116(3-4): 419-433.
    [110] XIA M Z, JIANG C Y, LI C, et al. , 2013. Characteristics of a newly discovered Ni-Cu sulfide deposit hosted in the Poyi Ultramafic intrusion, Tarim Craton, NW China[J]. Economic Geology, 108(8): 1865-1878. doi: 10.2113/econgeo.108.8.1865
    [111] XIAO W J, WINDLEY B F, BADARCH G, et al. , 2004. Palaeozoic accretionary and convergent tectonics of the southern Altaids: implications for the growth of Central Asia[J]. Journal of the Geological Society, 161(3): 339-342. doi: 10.1144/0016-764903-165
    [112] XIAO W J, SONG D F, WINDLEY B F, et al. , 2020. Accretionary processes and metallogenesis of the Central Asian Orogenic Belt: advances and perspectives[J]. Science China Earth Sciences, 63(3): 329-361. doi: 10.1007/s11430-019-9524-6
    [113] XIAO X C, HE G Q, XU X, et al. , 2010. Crustal tectonic framework and geological evolution of Xinjiang uygur autonomous region of China[M]. Beijing: Geological Publishing House: 1-233. (in Chinese)
    [114] XIE W, SONG X Y, DENG Y Y, et al. , 2012. Geochemistry and petrogenetic implications of a Late Devonian mafic-ultramafic intrusion at the southern margin of the Central Asian Orogenic Belt[J]. Lithos, 144-145: 209-230. doi: 10.1016/j.lithos.2012.03.010
    [115] XU Y G, CHUNG S L, JAHN B M, et al. , 2001. Petrologic and geochemical constraints on the petrogenesis of Permian-Triassic Emeishan flood basalts in southwestern China[J]. Lithos, 58(3-4): 145-168. doi: 10.1016/S0024-4937(01)00055-X
    [116] YAKUBCHUK A, 2004. Architecture and mineral deposit settings of the Altaid orogenic collage: a revised model[J]. Journal of Asian Earth Sciences, 23(5): 761-779. doi: 10.1016/j.jseaes.2004.01.006
    [117] YAKUBCHUK A, 2017. Evolution of the Central Asian orogenic supercollage since Late Neoproterozoic revised again[J]. Gondwana Research, 47: 372-398. doi: 10.1016/j.gr.2016.12.010
    [118] YAN H Q, TANG Z L, WANG Y L, et al. , 2010. Zircon U-Pb age and geological significance of Zhouan ore-bearing ultramafic rocks in Henan province[J]. Mineral Deposits, 29(S1): 531-532. (in Chinese)
    [119] YANG S H, CHEN J F, QU W J, et al. , 2007. Re-Os “ages” of Jinchuan copper-nickel sulfide deposit and their significance[J]. Geochimica, 36(1): 27-36. (in Chinese with English abstract)
    [120] YOU M X, 2022. Origin and genetic mechanism of magmatic Ni-Cu sulfide deposits in the western part of Eastern Tianshan region, Xinjiang, China[D]. Beijing: Chinese Academy of Geological Sciences: 1-246. (in Chinese with English abstract)
    [121] ZHANG C L, YANG D S, WANG H Y, et al. , 2011. Neoproterozoic mafic-ultramafic layered intrusion in Quruqtagh of northeastern Tarim Block, NW China: two phases of mafic igneous activity with different mantle sources[J]. Gondwana Research, 19(1): 177-190. doi: 10.1016/j.gr.2010.03.012
    [122] ZHANG M J, KAMO S L, LI C S, et al. , 2010. Precise U-Pb zircon-baddeleyite age of the Jinchuan sulfide ore-bearing ultramafic intrusion, western China[J]. Mineralium Deposita, 45(1): 3-9. doi: 10.1007/s00126-009-0259-x
    [123] ZHANG M J, LIU Y G, CHEN A P, et al. , 2021. The tectonic links between Palaeozoic eclogites and mafic magmatic Cu-Ni-Co mineralization in East Kunlun orogenic belt, western China[J]. International Geology Review,doi: 10.1080/00206814.2021.1885504.
    [124] ZHANG Z B, 2016. Genetic significances from mineralogy of Xiarihamu Ni-Cu sulfide deposit, Eastern Kunlun orogenic belt[D]. Beijing: China University of Geosciences (Beijing): 1-150. (in Chinese with English abstract)
    [125] ZHANG Z C, MAHONEY J J, WANG F S, et al. , 2006. Geochemistry of picritic and associated basalt flows of the western Emeishan flood basalt province, China: evidence for a plume-head origin[J]. Acta Petrologica Sinica, 22(6): 1538-1552. (in Chinese with English abstract)
    [126] ZHANG Z H, WANG Z L, WANG Y B, et al. , 2007. Shrimp zircon U-Pb dating of diorite from Qingbulake basic complex in western Tianshan Mountains of Xinjiang and its geological significance[J]. Mineral Deposits, 26(4): 353-360. (in Chinese with English abstract)
    [127] ZHAO G C, WANG Y J, HUANG B C, et al. , 2018. Geological reconstructions of the East Asian blocks: from the breakup of Rodinia to the assembly of Pangea[J]. Earth-Science Reviews, 186: 262-286. doi: 10.1016/j.earscirev.2018.10.003
    [128] ZHENG Y F, CHEN Y X, DAI L Q, et al. , 2015. Developing plate tectonics theory from oceanic subduction zones to collisional orogens[J]. Science China Earth Science, 58(7): 1045-1069. doi: 10.1007/s11430-015-5097-3
    [129] ZHENG Y F, XU Z, CHEN L, et al. , 2020. Chemical geodynamics of mafic magmatism above subduction zones[J]. Journal of Asian Earth Sciences, 194: 104185. doi: 10.1016/j.jseaes.2019.104185
    [130] ZHOU M F, ARNDT N T, MALPAS J, et al. , 2008. Two magma series and associated ore deposit types in the Permian Emeishan large igneous province, SW China[J]. Lithos, 103(3-4): 352-368. doi: 10.1016/j.lithos.2007.10.006
    [131] 党智财, 2015. 内蒙古中部地区镁铁质—超镁铁质岩岩石学、地球化学、年代学及含矿性评价[D]. 北京: 中国地质科学院: 1-116.
    [132] 甘肃省地质矿产局第六地质队, 1984. 白家咀子硫化铜镍矿床地质[M]. 北京: 地质出版社: 1-198.
    [133] 葛文春, 李献华, 梁细荣, 等, 2001. 桂北元宝山宝坛地区约825Ma镁铁-超镁铁岩的地球化学及其地质意义[J]. 地球化学, 30(2): 123-130. doi: 10.3321/j.issn:0379-1726.2001.02.003
    [134] 韩宝福, 季建清, 宋彪, 等, 2004. 新疆喀拉通克和黄山东含铜镍矿镁铁-超镁铁杂岩体的SHRIMP锆石U-Pb年龄及其地质意义[J]. 科学通报, 49(22): 2324-2328. doi: 10.3321/j.issn:0023-074X.2004.22.012
    [135] 韩一筱, 2021. 金川与夏日哈木岩浆铜镍硫化物矿床铂族元素对比研究[D]. 西安: 长安大学: 1-180.
    [136] 郝立波, 孙立吉, 赵玉岩, 等, 2013. 吉林红旗岭镍矿田茶尖岩体锆石SHRIMP U-Pb年代学及其意义[J]. 地球科学—中国地质大学学报, 38(2): 233-240.
    [137] 姜常义, 郭娜欣, 夏明哲, 等, 2012. 塔里木板块东北部坡一镁铁质-超镁铁质层状侵入体岩石成因[J]. 岩石学报, 28(7): 2209-2223.
    [138] 姜常义, 凌锦兰, 周伟, 等, 2015. 东昆仑夏日哈木镁铁质-超镁铁质岩体岩石成因与拉张型岛弧背景[J]. 岩石学报, 31(4): 1117-1136.
    [139] 李光辉, 孙景贵, 黄永卫, 等, 2010. 黑龙江鸡东五星铂钯矿床含矿岩体的锆石U-Pb年龄及其地质意义[J]. 世界地质, 29(1): 28-33.
    [140] 李华芹, 陈富文, 梅玉萍, 等, 2006. 新疆坡北基性-超基性岩带Ⅰ号岩体Sm-Nd和SHRIMP U-Pb同位素年龄及其地质意义[J]. 矿床地质, 25(4): 463-469. doi: 10.3969/j.issn.0258-7106.2006.04.010
    [141] 李立兴, 王登红, 松权衡, 等, 2009. 吉林通化赤柏松铜镍硫化物矿床含矿岩体之时代研究[J]. 矿物学报, 29(S1): 55-56. doi: 10.3321/j.issn:1000-4734.2009.z1.031
    [142] 李世金, 孙丰月, 高永旺, 等, 2012. 小岩体成大矿理论指导与实践: 青海东昆仑夏日哈木铜镍矿找矿突破的启示及意义[J]. 西北地质, 45(4): 185-191. doi: 10.3969/j.issn.1009-6248.2012.04.017
    [143] 黎彤, 1976. 化学元素的地球丰度[J]. 地球化学(3): 167-174
    [144] 李文渊, 1995. 中国铜镍硫化物矿床特征及勘查对策[C]//中国科学技术协会第二届青年学术年会论文集(基础科学分册). 北京: 中国科学技术出版社: 180-190.
    [145] 李文渊, 1996. 中国铜镍硫化物矿床成矿系列与地球化学[M]. 西安: 西安地图出版社: 1-228.
    [146] 李文渊, 1999. 北祁连山陆-陆碰撞的远程成矿效应: 龙首山地区深成矿体定位及构造热液改造[C]//大地构造及陆内变形暨第六届全国地质力学学术讨论会论文集. 北京: 中国地质学会: 166-169.
    [147] 李文渊, 2006a. 祁连山岩浆作用有关金属硫化物矿床成矿与找矿[M]. 北京: 地质出版社: 1-208.
    [148] 李文渊, 2006b. 西北地区矿产资源找矿潜力[M]. 北京: 地质出版社: 1-438.
    [149] 李文渊, 2007. 岩浆Cu-Ni-PGE矿床研究现状及发展趋势[J]. 西北地质, 40(2): 1-28. doi: 10.3969/j.issn.1009-6248.2007.02.001
    [150] 李文渊, 2012. 超大陆旋回与成矿作用[J]. 西北地质, 45(2): 27-42. doi: 10.3969/j.issn.1009-6248.2012.02.002
    [151] 李文渊, 牛耀龄, 张照伟, 等, 2012a. 新疆北部晚古生代大规模岩浆成矿的地球动力学背景和战略找矿远景[J]. 地学前缘, 19(4): 41-50.
    [152] 李文渊, 汤中立, 张照伟, 等, 2012b. 对小岩体成矿的认识及其找矿意义[J]. 西北地质, 45(4): 61-68.
    [153] 李文渊, 2013. 大陆生长演化与成矿作用讨论[J]. 西北地质, 46(1): 1-10. doi: 10.3969/j.issn.1009-6248.2013.01.001
    [154] 李文渊, 2015. 中国西北部成矿地质特征及找矿新发现[J]. 中国地质, 42(3): 365-380. doi: 10.3969/j.issn.1000-3657.2015.03.001
    [155] 李文渊, 张照伟, 陈博, 2015. 小岩体成大矿的理论与找矿实践意义: 以西北地区岩浆铜镍硫化物矿床为例[J]. 中国工程科学, 17(2): 29-34 doi: 10.3969/j.issn.1009-1742.2015.02.004
    [156] 李文渊, 2018. 古亚洲洋与古特提斯洋关系初探[J]. 岩石学报, 34(8): 2201-2210.
    [157] 李文渊, 张照伟, 王亚磊, 等, 2019a. 新疆北部晚古生代大规模岩浆作用与成矿耦合关系研究[M]. 北京: 科学出版社: 1-324.
    [158] 李文渊, 洪俊, 陈博, 等, 2019b. 中亚及邻区战略性关键矿产的分布规律与主要科学问题[J]. 中国科学基金, 33(2): 119-123.
    [159] 李文渊, 王亚磊, 钱兵, 等, 2020. 塔里木陆块周缘岩浆Cu-Ni-Co硫化物矿床形成的探讨[J]. 地学前缘, 27(2): 276-293.
    [160] 李文渊, 张照伟, 高永宝, 等, 2021. 昆仑古特提斯构造转换与镍钴锰锂关键矿产成矿作用研究[J]. 中国地质, [2021-11-18]. https://kns.cnki.net/kcms/detail/11.1167.P.20211118.0847.002.html.
    [161] 李文渊, 张照伟, 王亚磊, 等, 2022. 东昆仑原、古特提斯构造转换与岩浆铜镍钴硫化物矿床成矿作用[J]. 地球科学与环境学报, 44(1): 1-19.
    [162] 毛景文, 杨建民, 屈文俊, 等, 2002. 新疆黄山东铜镍硫化物矿床Re-Os同位素测定及其地球动力学意义[J]. 矿床地质, 21(4): 323-330. doi: 10.3969/j.issn.0258-7106.2002.04.002
    [163] 裴福萍, 许文良, 杨德彬, 等, 2005. 吉林通化赤柏松辉长岩锆石SHRIMP U-Pb定年及其地质意义[J]. 中国科学D辑: 地球科学, 35(5): 393-398.
    [164] 秦克章, 丁奎首, 许英霞, 等, 2007. 东天山图拉尔根、白石泉铜镍钴矿床钴、镍赋存状态及原岩含矿性研究[J]. 矿床地质, 26(1): 1-14. doi: 10.3969/j.issn.0258-7106.2007.01.001
    [165] 三金柱, 秦克章, 汤中立, 等, 2010. 东天山图拉尔根大型铜镍矿区两个镁铁-超镁铁岩体的锆石U-Pb定年及其地质意义[J]. 岩石学报, 26(10): 3027-3035.
    [166] 宋谢炎, 2019. 岩浆硫化物矿床研究现状及重要科学问题[J]. 矿床地质, 38(4): 699-710. doi: 10.16111/j.0258-7106.2019.04.002
    [167] 孙涛, 李超, 张增奇, 等, 2016. 山东桃科铜镍矿床矿物学特征及其对矿床成因的指示[J]. 矿床地质, 35(4): 724-736. doi: 10.16111/j.0258-7106.2016.04.007
    [168] 孙涛, 王登红, 2019. 中国地质矿产志-镍矿卷[M]. 北京: 地质出版社: 1-912.
    [169] 汤中立, 任端进, 薛增瑞, 等, 1989. 中国镍矿床[M]//《中国矿床》编委会. 中国矿床-上册. 北京: 地质出版社: 104-123.
    [170] 汤中立, 杨杰东, 徐士进, 等, 1992. 金川含矿超铁镁岩的Sm-Nd定年[J]. 科学通报, 37(10): 918-920.
    [171] 汤中立, 李文渊, 1995. 金川铜镍硫化物(含铂)矿床成矿模式及地质对比[M]. 北京: 地质出版社: 1-209.
    [172] 汤中立, 钱壮志, 姜常义, 等, 2006. 中国镍铜铂岩浆硫化物矿床与成矿预测[M]. 北京: 地质出版社: 1-304.
    [173] 陶琰, 马言胜, 苗来成, 等, 2008. 云南金宝山超镁铁岩体锆石SHRIMP年龄[J]. 科学通报, 53(22): 2828-2832. doi: 10.3321/j.issn:0023-074X.2008.22.023
    [174] 王冠, 2014. 东昆仑造山带镍矿成矿作用研究[D]. 长春: 吉林大学: 1-214.
    [175] 王恒升, 白文吉, 宛传永, 1978. 基性岩与超基性岩的岩石化学分类[J]. 地质学报, 52(1): 33-39.
    [176] 王梦玺, 王焰, 赵军红, 2012. 扬子板块北缘周庵超镁铁质岩体锆石U/Pb年龄和Hf-O同位素特征: 对源区性质和Rodinia超大陆裂解时限的约束[J]. 科学通报, 57(34): 3283-3294.
    [177] 王瑞廷, 赫英, 王东生, 等, 2003. 略阳煎茶岭铜镍硫化物矿床Re-Os同位素年龄及其地质意义[J]. 地质论评, 49(2): 205-211. doi: 10.3321/j.issn:0371-5736.2003.02.014
    [178] 吴福元, 万博, 赵亮, 等, 2020. 特提斯地球动力学[J]. 岩石学报, 36(6): 1627-1674. doi: 10.18654/1000-0569/2020.06.01
    [179] 肖序常, 何国琪, 徐新, 等, 2010. 中国新疆地壳结构与地质演化[M]. 北京: 地质出版社: 1-233.
    [180] 闫海卿, 汤中立, 王亚磊, 等, 2010. 河南周庵含矿超镁铁岩体锆石U-Pb年龄及地质意义[J]. 矿床地质, 29(S1): 531-532. doi: 10.16111/j.0258-7106.2010.s1.271
    [181] 杨胜洪, 陈江峰, 屈文俊, 等, 2007. 金川铜镍硫化物矿床的Re-Os“年龄”及其意义[J]. 地球化学, 36(1): 27-36. doi: 10.3321/j.issn:0379-1726.2007.01.003
    [182] 尤敏鑫, 2022. 新疆东天山西段岩浆铜镍硫化物矿床岩浆起源与成矿机制[D]. 北京: 中国地质科学院: 1-246.
    [183] 张志炳, 2016. 东昆仑夏日哈木铜镍硫化物矿床矿物成因意义探讨[D]. 北京: 中国地质大学(北京): 1-150.
    [184] 张招崇, MAHONEY J J, 王福生, 等, 2006. 峨眉山大火成岩省西部苦橄岩及其共生玄武岩的地球化学: 地幔柱头部熔融的证据[J]. 岩石学报, 22(6): 1538-1552. doi: 10.3321/j.issn:1000-0569.2006.06.012
    [185] 张作衡, 王志良, 王彦斌, 等, 2007. 新疆西天山菁布拉克基性杂岩体闪长岩锆石SHRI MP定年及其地质意义[J]. 矿床地质, 26(4): 353-360. doi: 10.3969/j.issn.0258-7106.2007.04.001
  • 期刊类型引用(2)

    1. 孙永河,刘露,孟令箭,马妍. 南堡凹陷1号构造带帚状构造特征及其地质意义. 石油地球物理勘探. 2023(04): 983-992 . 百度学术
    2. 肖坤泽,童亨茂. 走滑断层研究进展及启示. 地质力学学报. 2020(02): 151-166 . 本站查看

    其他类型引用(6)

  • 加载中
图(14) / 表(3)
计量
  • 文章访问数:  2031
  • HTML全文浏览量:  584
  • PDF下载量:  321
  • 被引次数: 8
出版历程
  • 收稿日期:  2022-04-29
  • 修回日期:  2022-07-10
  • 录用日期:  2022-04-29
  • 预出版日期:  2022-11-02

目录

/

返回文章
返回