留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

花岗伟晶岩型稀有金属矿床流体成矿机制研究进展

郑范博 王国光 倪培

郑范博, 王国光, 倪培, 2021. 花岗伟晶岩型稀有金属矿床流体成矿机制研究进展. 地质力学学报, 27 (4): 596-613. DOI: 10.12090/j.issn.1006-6616.2021.27.04.050
引用本文: 郑范博, 王国光, 倪培, 2021. 花岗伟晶岩型稀有金属矿床流体成矿机制研究进展. 地质力学学报, 27 (4): 596-613. DOI: 10.12090/j.issn.1006-6616.2021.27.04.050
ZHENG Fanbo, WANG Guoguang, NI Pei, 2021. Research progress on the fluid metallogenic mechanism of granitic pegmatite-type rare metal deposits. Journal of Geomechanics, 27 (4): 596-613. DOI: 10.12090/j.issn.1006-6616.2021.27.04.050
Citation: ZHENG Fanbo, WANG Guoguang, NI Pei, 2021. Research progress on the fluid metallogenic mechanism of granitic pegmatite-type rare metal deposits. Journal of Geomechanics, 27 (4): 596-613. DOI: 10.12090/j.issn.1006-6616.2021.27.04.050

花岗伟晶岩型稀有金属矿床流体成矿机制研究进展

doi: 10.12090/j.issn.1006-6616.2021.27.04.050
基金项目: 

国家重点研发计划 2018YFA0702704

详细信息
    作者简介:

    郑范博(1995-), 男, 硕士研究生, 研究方向为花岗伟晶岩型锂矿。E-mail: 2915449730@qq.com

    通讯作者:

    王国光(1983-), 男, 副教授, 研究方向为地质流体与成矿作用。E-mail: ggwang@nju.edu.cn

  • 中图分类号: P59;P611

Research progress on the fluid metallogenic mechanism of granitic pegmatite-type rare metal deposits

Funds: 

the State Key Research and Development Program 2018YFA0702704

  • 摘要: 随着战略性新兴产业的快速发展,稀有金属等关键金属资源的地位日益不可或缺。花岗伟晶岩是最重要的稀有金属矿床成因类型,该类型矿床的成矿流体特征和成因机制是矿床学的热门研究话题。文章主要对花岗伟晶岩型矿床的成矿流体特征和成矿机制进行了探讨。花岗伟晶岩型稀有金属矿床成矿流体普遍富集挥发分(B、P、F和H2O)和成矿元素,具有低黏度、低成核率、强元素溶解能力和强迁移性。花岗伟晶岩型稀有金属矿床成矿流体形成温压条件存在争议,部分研究者认为形成于高温高压条件,也有研究者认为可能形成于过冷却条件下,温度可能低至350℃。花岗质岩浆高度结晶分异演化和富成矿元素地壳物质小比例深熔是形成成矿花岗伟晶岩的两种主要机制。流体不混溶和组成带纯化是岩浆热液演化过程中稀有金属进一步富集的重要手段。中国规模最大的甲基卡花岗伟晶岩型锂矿是研究该类矿床的理想实验室。

     

  • 图  1  典型稀有金属花岗伟晶岩的文象结构(样品为新疆大红柳滩锂矿手标本)

    Qtz—石英;Kfs—钾长石

    Figure  1.  Representative photo of rare metal pegmatites showing graphic texture(The sample is a hand specimen from the Dahongliutan lithium deposit, Xinjiang)

    Qtz-quartz; Kfs-K-feldspar

    图  2  美国加利福尼亚州圣迭戈县帕洛马山附近一条完整的伟晶岩岩脉部分(29 cm厚;London,2018)

    UST(unidirectional solidification texture)—单向固结组构,位于中间带

    Figure  2.  A complete section of a pegmatite dike from near Palomar Mountain, San Diego County, California, USA(29 cm-thickness; London, 2018)

    UST-unidirectional solidification texture, located in the intermediate zone

    图  3  花岗伟晶岩型锂矿锂辉石中典型的包裹体照片

    VCO2—气相二氧化碳;LCO2—液相二氧化碳;LH2O—液相水;S—固相;V—气相
    a—甲基卡锂辉石中的富晶体包裹体; b—甲基卡锂辉石中富CO2 FIA (Fluid Inclusion Assemblage, 流体包裹体组合); c—甲基卡锂辉石中的富晶体FIA; d—大红柳滩锂辉石中的富晶体FIA

    Figure  3.  Typical inclusions in the spodumene from the granitic pegmatite-type lithium-bearing ore. (a) Crystal-rich inclusion hosted in the spodumene from Jiajika; (b) CO2-rich Fluid Inclusion Assemblage hosted in the spodumene from Jiajika; (c) Crystal-rich Fluid Inclusion Assemblage hosted in the spodumene from Jiajika; (d) Crystal-rich Fluid Inclusion Assemblage hosted in the spodumene from Dahongliutan

    VCO2-Gas phase carbon dioxide; LCO2-Liquid phase carbon dioxide; LH2O-Liquid phase water; S-Solid phase; V-Gas phase

    图  4  假二元硅酸盐熔体-H2O系统的温度-H2O浓度图(Thomas and Davidson, 2016)

    a—Ehrenfriedersdorf花岗岩-伟晶岩系统石英中熔体包裹体中Be质量浓度-H2O浓度图;b—Ehrenfriedersdorf花岗岩-伟晶岩系统石英中熔体包裹体中CA浓度-H2O浓度图(该图表明在临界条件下,某些元素在超临界流体或熔体中的溶解度非常高);c—假二元硅酸盐熔体-H2O系统中A型和B型熔体包裹体温度-H2O浓度图;d—5个不同伟晶岩石英中熔体包裹体的结果绘制的假二元溶线
    CA代表Be、Sn、As、P、Cl、Ta;CA-crit代表在临界H2O浓度下的CA浓度;H2O-crit代表临界H2O浓度);TC代表临界温度

    Figure  4.  Temperature versus H2O concentration plot of the pseudo-binary silicate melt-H2O system (Thomas and Davidson, 2016).

    (a) Be concentration versus H2O concentration plot in melt inclusions in the Ehrenfriedersdorf granite-pegmatite system. (b)CAversus H2O concentration plot in melt inclusions hosted in quartz in the Ehrenfriedersdorf granite-pegmatite system. (c) Relationship of type-A and type-B melt in clusions in a temperature versus H2O concentration plot of the pseudo-binary silicate melt-H2O system. (d)Results of melt inclusions in quartz of five different pegmatites plot a pseudo-binary solvus(The figure b shows that certain elements have very high solubility in supercritical fluids or melts under critical conditions; CA represents Be, Sn, As, P, Cl, Ta; CA-crit represents the concentration of CA at the critical H2O concentration; H2O-critre represents critical H2O concentration; TC represents critical temperature)

    图  5  世界主要伟晶岩矿床形成的温压条件

    Figure  5.  Temperature and pressure conditions of main pegmatite deposits in the world

    图  6  花岗岩和花岗伟晶岩关系示意图(London,2008)

    Figure  6.  Schematic diagram of the relationship between granite and granitic pegmatite (London, 2008)

    图  7  花岗伟晶岩浆组成带纯化示意图(London, 2014, 2018)

    a—在组成带纯化作用时,相容的组分从大块熔体中溶解,通过边界层附着在成岩矿物的表面上;b—由于挥发分降低了固相温度,增强了组分的混相性,被排除的稀有金属组分在边界层液体中富集;c—一旦熔体的成分被耗尽,边界层液体就会发生结晶,导致在生长的矿物(云母、电气石)的成分发生突变

    Figure  7.  Schematic diagram of the constitutional zone refining of granitic pegmatite magma(London, 2014, 2018). (a) During the constitutional zone refining, the compatible components dissolve from the bulk melt and attach to the surface of the diagenetic mineral through the boundary layer. (b) Because the volatiles decrease the solid temperature and enhance the miscibility of the components, the excluded rare metal components are enriched in the boundary layer liquid. (c) Once the composition of the melt is exhausted, the boundary layer liquid will crystallize, resulting in a mutation in the composition of the growing minerals (mica, tourmaline)

    图  8  世界主要锂矿床分布图

    1—甲基卡;2—可尔因;3—阿尔泰;4—大红柳滩;5—Zavitskoye;6—Goltsovoer;7—Tastyq;8—Vishnvakovskoe;9—Lakha;10—Ural mining;11—Ullava lantta;12—Minade Barroso;13—Guarda;14—Zinnwald;15—Winneba;16—Manono-Kitolo;17—Kamativi;18—Bikita;19—Cape Cross-Brandberg-Uis;20—Rubicon Mine;21—Greenbushes;22—MountCaitlin;23—Mount Marion;24—Kemerton;25—Tanco;26—Quebec;27—Kings Mtn;28—Aracuai;29—Sao Joaodel Rei;30—扎布耶碳酸盐型盐湖;31—西台吉乃尔硫酸盐型盐湖;32—东台吉乃尔硫酸盐型盐湖;33—Salton sea;34—Silver Peak;35—Searles;36—Uyuni;37—Atacama;38—Jadar;39—Mcdermitt

    Figure  8.  Distribution of major lithium deposits in the world

    1-Jiajika; 2-Keryin; 3-Altay; 4-Dahongliutan; 5-Zavitskoye; 6-Goltsovoer; 7-Tastyq; 8-Vishnvakovskoe; 9-Lakha; 10-Ural mining; 11-Ullava lantta; 12-Minade Barroso; 13-Guarda; 14-Zinnwald; 15-Winneba; 16-Manono-Kitolo; 17-Kamativi; 18-Bikita; 19-Cape Cross-Brandberg-Uis; 20-Rubicon Mine; 21-Greenbushes; 22-MountCaitlin; 23-Mount Marion; 24-Kemerton; 25-Tanco; 26-Quebec; 27-Kings Mtn; 28-Aracuai; 29-Sao Joaodel Rei; 30-Zabuye carbonate-type salt lake; 31-West Taiji'naier sulfate-type salt lake; 32-East Taiji'naier sulfate-type salt lake; 33-Salton sea; 34-Silver Peak; 35-Searles; 36-Uyuni; 37-Atacama; 38-Jadar; 39-Mcdermitt

    图  9  甲基卡稀有金属矿田地质简图(Huang et al., 2020)

    Figure  9.  Geological sketch of the Jiajika rare metal ore field(Huang et al., 2020)

  • ACKERMAN L, ZACHARIAS J, PUDILOVÁ M, 2007. P-T and fluid evolution of barren and lithium pegmatites from Vlastějovice, Bohemian Massif, Czech Republic. International Journal of Earth Sciences, 96(4): 623-638. doi: 10.1007/s00531-006-0133-3
    AUDÉTAT A, KEPPLER H, 2004. Viscosity of fluids in subduction zones[J]. Science, 303(5657): 513-516. doi: 10.1126/science.1092282
    BADANINA E V, VEKSLER I V, THOMAS R, et al., 2004. Magmatic evolution of Li-F, rare-metal granites: a case study of melt inclusions in the Khangilay complex, Eastern Transbaikalia (Russia)[J]. Chemical Geology, 210(1-4): 113-133. doi: 10.1016/j.chemgeo.2004.06.006
    BAKER D R, 1998. The escape of pegmatite dikes from granitic plutons; constraints from new models of viscosity and dike propagation[J]. The Canadian Mineralogist, 36(2): 255-263. http://www.researchgate.net/publication/277747582_The_escape_of_pegmatite_dikes_from_granitic_plutons_Constraints_from_new_models_of_viscosity_and_dike_propagation
    BALLOUARD C, ELBURG M A, TAPPE S, et al., 2020. Magmatic-hydrothermal evolution of rare metal pegmatites from the Mesoproterozoic Orange River pegmatite belt (Namaqualand, South Africa)[J]. Ore Geology Reviews, 116: 103252. doi: 10.1016/j.oregeorev.2019.103252
    BARROS R, KAETER D, MENUGE J F, et al., 2020. Controls on chemical evolution and rare element enrichment in crystallising albite-spodumene pegmatite and wallrocks: Constraints from mineral chemistry[J]. Lithos, 352-353: 105289. doi: 10.1016/j.lithos.2019.105289
    BENSON T R, COBLE M A, RYTUBA J J, et al., 2017. Lithium enrichment in intracontinental rhyolite magmas leads to Li deposits in caldera basins[J]. Nature Communications, 8(1): 270. doi: 10.1038/s41467-017-00234-y
    BODNAR R J, SAMSON I, ANDERSON A, et al., 2003. Reequilibration of fluid inclusions[J]. Fluid inclusions: Analysis and interpretation, 32: 213-230.
    BORISOVA A Y, THOMAS R, SALVI S, et al., 2012. Tin and associated metal and metalloid geochemistry by femtosecond LA-ICP-QMS microanalysis of pegmatite-leucogranite melt and fluid inclusions: new evidence for melt-melt-fluid immiscibility[J]. Mineralogical Magazine, 76(1): 91-113. doi: 10.1180/minmag.2012.076.1.91
    BOWELL R J, LAGOS L, HOYOS C R D L, et al., 2020. Classification and characteristics of natural lithium resources[J]. Elements, 16(4): 259-264. doi: 10.2138/gselements.16.4.259
    BRADLEY D C, MCCAULEY A D, STILLINGS L L, 2017. Mineral-deposit model for lithium-cesium-tantalum pegmatites[R]. US Geological Survey.
    CAMERON E N, 1949. Internal structure of granitic pegmatites[J]. Econ. Geol., Monograph, 2: 115.
    ČERNÝ P, 1989. Contrasting geochemistry of two pegmatite fields in Manitoba: products of juvenile Aphebian crust and polycyclic Archean evolution[J]. Precambrian Research, 45(1-3): 215-234. doi: 10.1016/0301-9268(89)90041-7
    ČERNÝ P P, 1991a. Rare-element granitic pegmatites. Part Ⅱ: Regional to global environments and petrogenesis[J]. Geoscience Canada, 18(2): 68-81. http://www.researchgate.net/publication/285711507_rare-element_granitic_pegmatites_part_ii_regional_to_global_environments_and_petrogenesis
    ČERNÝ P P, 1991b. Rare-element granitic pegmatites. Part Ⅰ: anatomy and internal evolution of pegmatitic deposits[J]. Geoscience Canada, 18(2): 49-67. http://www.synergiescanada.org/browse/etc/gc/391/3722
    ČERNÝ P P, ERCIT T S, 2005. The classification of granitic pegmatites revisited[J]. The Canadian Mineralogist, 43(6): 2005-2026. doi: 10.2113/gscanmin.43.6.2005
    CHAKOUMAKOS B C, LUMPKIN G R, 1990. Pressure-temperature constraints on the crystallization of the Harding pegmatite, Taos County, New Mexico[J]. The Canadian Mineralogist, 28(2): 287-298. http://www.researchgate.net/publication/284877519_Pressure-temperature_constraints_on_the_crystallization_of_the_Harding_pegmatite_Taos_County_New_Mexico
    CHEN J, 2019. Supernormal enrichment and mineralization and high efficiency utilization of critical metals[J]. Science & Technology Review, 37(24): 1. (in Chinese)
    CUNEY M, BARBEY P, 2014. Uranium, rare metals, and granulite-facies metamorphism[J]. Geoscience Frontiers, 5(5): 729-745. doi: 10.1016/j.gsf.2014.03.011
    CHEN Y C, YE Q T, WANG J B, et al., 2003. Geology of ore deposits, metallogenic regularity and technoeconomic evaluation on the altay metallogenic belt, Xinjiang Area, China[M]. Beijing: Geological Publishing House. (in Chinese)
    DAI H Z, WANG D H, LIU L J, 2018. Geochronology, geochemistry and their geological significances of No. 308 pegmatite vein in the Jiajika deposit, western Sichuan, China[J]. Earth Science, 43(10): 3664-3681. (in Chinese with English abstract)
    DEVEAUD S, MILLOT R, VILLAROS A, 2015. The genesis of LCT-type granitic pegmatites, as illustrated by lithium isotopes in micas[J]. Chemical Geology, 411: 97-111. doi: 10.1016/j.chemgeo.2015.06.029
    DINGWELL D B, HESS K U, KNOCHE R, 1996. Granite and granitic pegmatite melts: volumes and viscosities[J]. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 87(1-2): 65-72. doi: 10.1017/S0263593300006489
    FAN J J, TANG G J, WEI G J, et al., 2020. Lithium isotope fractionation during fluid exsolution: Implications for Li mineralization of the Bailongshan pegmatites in the West Kunlun, NW Tibet[J]. Lithos, 352-253: 105236. http://www.sciencedirect.com/science/article/pii/s0024493719303950
    FU X F, HOU L W, WANG D H, et al., 2014. Achievements in the investigation and evaluation of spodumene resources at Jiajika in Sichuan, China[J]. Geological Survey of China, 1(3): 37-43. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZDC201403007.htm
    FU X F, HOU L W, LIANG B, 2017. Jiajika-type granitic pegmatite type lithium deposit: metallogenic model and three-dimensional prospecting model[M]. Beijing: Science Press. (in Chinese)
    FUCHSLOCH W C, NEX P A M, KINNAIRD J A, 2018. Classification, mineralogical and geochemical variations in pegmatites of the Cape Cross-Uis pegmatite belt, Namibia[J]. Lithos, 296-299: 79-95. doi: 10.1016/j.lithos.2017.09.030
    GOURCEROL B, GLOAGUEN E, MELLETON J, et al., 2019. Re-assessing the European lithium resource potential-A review of hard-rock resources and metallogeny[J]. Ore Geology Reviews, 109: 494-519. doi: 10.1016/j.oregeorev.2019.04.015
    HAO X F, FU X F, LIANG B, et al., 2015. Formation ages of granite and X03 pegmatite vein in Jiajika, western Sichuan, and their geological significance[J]. Mineral Deposits, 34(6): 1199-1208. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-KCDZ201506009.htm
    HARLAUX M, MERCADIER J, BONZI W M E, et al., 2017. Geochemical signature of magmatic-hydrothermal fluids exsolved from the Beauvoir rare-metal granite (Massif Central, France): Insights from LA-ICPMS analysis of primary fluid inclusions[J]. Geofluids, 2017, 2017: 1925817. http://www.researchgate.net/publication/322307809_Geochemical_signature_of_rare-metal_magmatic_fluids_exsolved_from_the_Beauvoir_granite_Massif_Central_France_revealed_by_LA-ICPMS_analysis_of_primary_fluid_inclusions
    HOU Z Q, CHEN J, ZHAI M G, 2020. Current status and frontiers of research on critical mineral resources[J]. Chinese Science Bulletin, 65(33): 3651-3652. (in Chinese with English abstract) doi: 10.1360/TB-2020-1417
    HUANG T, FU X F, GE L Q, et al., 2020. The genesis of giant lithium pegmatite veins in Jiajika, Sichuan, China: Insights from geophysical, geochemical as well as structural geology approach[J]. Ore Geology Reviews, 124: 103557. doi: 10.1016/j.oregeorev.2020.103557
    HUANG Y S, ZHANG H, LV Z H, et al., 2016. Research on emplacement depths of Permian and Triassic pegmatites in Altay, Xinjiang, China: indications from fluid inclusions[J]. Acta Mineralogica Sinica, 36(4): 571-585. (in Chinese with English abstract)
    HULSBOSCH N, HERTOGEN J, DEWAELE S, et al., 2014. Alkali metal and rare earth element evolution of rock-forming minerals from the Gatumba area pegmatites (Rwanda): Quantitative assessment of crystal-melt fractionation in the regional zonation of pegmatite groups[J]. Geochimica et Cosmochimica Acta, 132: 349-374. doi: 10.1016/j.gca.2014.02.006
    JAHNS R H, BURNHAM C W, 1969. Experimental studies of pegmatite genesis; l, A model for the derivation and crystallization of granitic pegmatites[J]. Economic Geology, 64(8): 843-864. doi: 10.2113/gsecongeo.64.8.843
    JIANG S Y, WEN H J, XU C, et al., 2019. Earth sphere cycling and enrichment mechanism of critical metals: major scientific issues for future research[J]. Bulletin of National Natural Science Foundation of China, 33(2): 112-118. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTotal-ZKJJ201902003.htm
    KESLER S E, GRUBER P W, MEDINA P A, et al., 2012. Global lithium resources: Relative importance of pegmatite, brine and other deposits[J]. Ore Geology Reviews, 48: 55-69. doi: 10.1016/j.oregeorev.2012.05.006
    KNOLL T, SCHUSTER R, HUET B, et al., 2018. Spodumene pegmatites and related leucogranites from the Austroalpine Unit (eastern Alps, central Europe): field relations, petrography, geochemistry, and geochronology[J]. The Canadian Mineralogist, 56(4): 489-528. doi: 10.3749/canmin.1700092
    KONTAK D J, DOSTAL J, KYSER T K, et al., 2002. A petrological, geochemical, isotopic and fluid-inclusion study of 370 Ma pegmatite-aplite sheets, Peggys Cove, Nova Scotia, Canada[J]. The Canadian Mineralogist, 40(5): 1249-1286. doi: 10.2113/gscanmin.40.5.1249
    KONTAK D J, CREASER R A, HEAMAN L M, et al., 2005. U-Pb tantalite, Re-Os molybdenite, and 40Ar/39Ar muscovite dating of the Brazil Lake pegmatite, Nova Scotia: a possible shear-zone related origin for an LCT-type pegmatite[J]. Atlantic Geology, 41(1): 17-29. http://www.freepatentsonline.com/article/137012360.html
    KONZETT J, SCHNEIDER T, NEDYALKOVA L, et al., 2018. Anatectic granitic pegmatites from the eastern alps: a case of variable rare-metal enrichment during high-grade regional metamorphism-i: mineral assemblages, geochemical characteristics, and emplacement ages[J]. The Canadian Mineralogist, 56(4): 555-602. doi: 10.3749/canmin.1800008
    LI J K, 2006. Mineralizing mechanism and continental geodynamics of typical pegmatite deposits in Western Sichuan, China[D]. Beijing: China University of Geosciences (Beijing). (in Chinese with English abstract)
    LI J K, ZOU T R, LIU X F, et al., 2015. The metallogenetic regularities of lithium deposits in China[J]. Acta Geologica Sinica (English Edition), 89(2): 652-670. doi: 10.1111/1755-6724.12453
    LI J K, CHOU I M, 2017. Homogenization experiments of crystal-rich inclusions in spodumene from Jiajika Lithium Deposit, China, under elevated external pressures in a hydrothermal diamond-anvil cell[J]. Geofluids, 2017: 1-12. http://www.researchgate.net/publication/321066859_Homogenization_Experiments_of_Crystal-Rich_Inclusions_in_Spodumene_from_Jiajika_Lithium_Deposit_China_under_Elevated_External_Pressures_in_a_Hydrothermal_Diamond-Anvil_Cell
    LI J K, CHOU I M, LIU Y C, et al., 2019. Crystallization experiments of rare metal minerals in aqueous solution in a hydrothermal diamond-anvil cell[J]. The Canadian Mineralogist, 57(5): 761-763. doi: 10.3749/canmin.AB00015
    LI X F, TIAN S H, WANG D H, et al., 2020. Genetic relationship between pegmatite and granite in Jiajika lithium deposit in western Sichuan: Evidence from zircon U-Pb dating, Hf-O isotope and geochemistry[J]. Mineral Deposits, 39(2): 273-304. (in Chinese with English abstract)
    LIANG B, FU X F, TANG Y, et al., 2016. Granite geochemical characteristics in Jiajika rare metal deposit, western Sichuan[J]. Journal of Guilin University of Technology, 36(1): 42-49. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTotal-GLGX201601007.htm
    LIAO Z H, ZHOU Z G, ZHANG H P, 2019. Evidence for the geochemical characteristics of liquid immiscibility in the Keryin rare metal deposit[J]. Acta Geologica Sichuan, 39(S1): 60-69. (in Chinese)
    LINNEN R L, LICHTERVELDE M V, ČERN Ý P, 2012. Granitic pegmatites as sources of strategic metals[J]. Elements, 8(4): 275-280. doi: 10.2113/gselements.8.4.275
    LIU L J, WANG D H, LIU X F, et al., 2017. The main types, distribution features and present situation of exploration and development for domestic and foreign lithium mine[J]. Geology in China, 44(2): 263-278. (in Chinese with English abstract) http://www.researchgate.net/publication/320189362_The_main_types_distribution_features_and_present_situation_of_exploration_and_development_for_domestic_and_foreign_lithium_mine
    LIU S B, YANG Y Q, WANG D H, et al., 2019. Discovery and significance of granite type lithium industrial orebody in Jiajika orefield, Sichuan province[J]. Acta Geologica Sinica, 93(6): 1309-1320. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTotal-DZXE201906011.htm
    LONDON D, 1986. Magmatic-hydrothermal transition in the Tanco rare-element pegmatite: Evidence from fluid inclusions and phase-equilibrium experiments[J]. American Mineralogist, 71(3-4): 376-395. http://www.researchgate.net/publication/277746309_Magmatic-hydrothermal_transition_in_the_Tanco_rare-element_pegmatite_evidence_from_fluid_inclusions_and_phase-equilibrium_experiments
    LONDON D, MORGAN G B, HERVIG R L, 1989. Vapor-undersaturated experiments with Macusani glass+H2O at 200 MPa, and the internal differentiation of granitic pegmatites[J]. Contributions to Mineralogy and Petrology, 102(1): 1-17. doi: 10.1007/BF01160186
    LONDON D, 1992. The application of experimental petrology to the genesis and crystallization of granitic pegmatites[J]. The Canadian Mineralogist, 30(3): 499-540. http://www.researchgate.net/publication/279544747_The_application_of_experimental_petrology_to_the_genesis_and_crystallization_of_granitic_pegmatites
    LONDON D, 2008. Pegmatites: the canadian mineralogist special publication 10[J]. Mineralogical Association of Canada, Quebec, Canada, 347. http://econgeol.geoscienceworld.org/content/103/8/1730.extract
    LONDON, D., 2009. The origin of primary textures in granitic pegmatites[J]. Can. Mineral. 47, 697-724. doi: 10.3749/canmin.47.4.697
    LONDON D, KONTAK D J, 2012. Granitic pegmatites: scientific wonders and economic bonanzas[J]. Elements, 8(4): 257-261. doi: 10.2113/gselements.8.4.257
    LONDON D, 2014. A petrologic assessment of internal zonation in granitic pegmatites[J]. Lithos, 184-187: 74-104. doi: 10.1016/j.lithos.2013.10.025
    LONDON D, 2015. Reply to Thomas and Davidson on ""A petrologic assessment of internal zonation in granitic pegmatites"" (London, 2014a)[J]. Lithos, 212-215: 469-484. doi: 10.1016/j.lithos.2014.11.025
    LONDON D, MORGAN G B, 2017. Experimental crystallization of the Macusani obsidian, with applications to lithium-rich granitic pegmatites[J]. Journal of Petrology, 58(5): 1005-1030. doi: 10.1093/petrology/egx044
    LONDON D, 2018. Ore-forming processes within granitic pegmatites[J]. Ore Geology Reviews, 101: 349-383. doi: 10.1016/j.oregeorev.2018.04.020
    LU H Z, 2004. Fluid inclusion[M]. Beijing: Science Press. (in Chinese)
    LU H Z, 2019. Geofluids and across earth sphere structures[J]. Journal of Geomechanics, 25(6): 1003-1012. (in Chinese with English abstract)
    LV Z H, ZHANG H, TANG Y, et al, 2018. Petrogenesis of syn-orogenic rare metal pegmatites in the Chinese Altai: Evidences from geology, mineralogy, zircon U-Pb age and Hf isotope[J]. Ore Geology Reviews, 95: 161-181. doi: 10.1016/j.oregeorev.2018.02.022
    MÜLLER A, ROMER R L, PEDERSEN R B, 2017. The Sveconorwegian pegmatite province-thousands of pegmatites without parental granites[J]. The Canadian Mineralogist, 55(2): 283-315. doi: 10.3749/canmin.1600075
    MANETA V, BAKER D R, 2014. Exploring the effect of lithium on pegmatitic textures: An experimental study[J]. American Mineralogist, 99(7): 1383-1403. doi: 10.2138/am.2014.4556
    MANETA V, BAKER D R, MINARIK W, 2015. Evidence for lithium-aluminosilicate supersaturation of pegmatite-forming melts[J]. Contributions to Mineralogy and Petrology, 170(1): 4. doi: 10.1007/s00410-015-1158-z
    MANNING D A C, 1981. The effect of fluorine on liquidus phase relationships in the system Qz-Ab-Or with excess water at 1 kb[J]. Contributions to Mineralogy and Petrology, 76(2): 206-215. doi: 10.1007/BF00371960
    MAO J W, YUAN S D, XIE G Q, et al., 2019. New advances on metallogenic studies and exploration on critical minerals of China in 21st century[J]. Mineral Deposits, 38(5): 935-969. (in Chinese with English abstract)
    MCCAULEY A, BRADLEY D C, 2014. The global age distribution of granitic pegmatites[J]. The Canadian Mineralogist, 52(2): 183-190. doi: 10.3749/canmin.52.2.183
    MELLETON J, GLOAGUEN E, FREI D, et al., 2012. How are the emplacement of rare-element pegmatites, regional metamorphism and magmatism interrelated in the Moldanubian domain of the Variscan Bohemian Massif, Czech Republic?[J]. The Canadian Mineralogist, 50(6): 1751-1773. doi: 10.3749/canmin.50.6.1751
    MORGAN G B, LONDON D, 1987. Alteration of amphibolitic wallrocks around the Tanco rare-element pegmatite, Bernic Lake, Manitoba[J]. American Mineralogist, 72(11-12): 1097-1121. http://ammin.geoscienceworld.org/content/72/11-12/1097
    MORGAN VI G B, LONDON D, 1999. Crystallization of the Little Three layered pegmatite-aplite dike, Ramona district, California[J]. Contributions to Mineralogy and Petrology, 136(4): 310-330. doi: 10.1007/s004100050541
    MULJA T, WILLIAMS-JONES A E, 2018. The physical and chemical evolution of fluids in rare-element granitic pegmatites associated with the Lacorne pluton, Québec, Canada[J]. Chemical Geology, 493: 281-297. doi: 10.1016/j.chemgeo.2018.06.004
    NABELEK P I, WHITTINGTON A G, SIRBESCU M L C, 2010. The role of H2O in rapid emplacement and crystallization of granite pegmatites: resolving the paradox of large crystals in highly undercooled melts[J]. Contributions to Mineralogy and Petrology, 160(3): 313-325. doi: 10.1007/s00410-009-0479-1
    NI P, CHI Z, PAN J Y, et al., 2018. The characteristics of ore-forming fluids and mineralization mechanism in hydrothermal deposits: a case study of some typical deposits in China[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 37(3): 369-394, 560. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTotal-KYDH201803001.htm
    NORTON J J, 1973. LITHIUM, CESIUM, AND RUBIDIUM[J]. Geological Survey Professional Paper, (820): 365.
    NORTON J J, 1983. Sequence of mineral assemblages in differentiated granitic pegmatites[J]. Economic Geology, 78(5): 854-874. doi: 10.2113/gsecongeo.78.5.854
    RAIMBAULT L, CUNEY M, AZENCOTT C, et al., 1995. Geochemical evidence for a multistage magmatic genesis of Ta-Sn-Li mineralization in the granite at Beauvoir, French Massif Central[J]. Economic Geology, 90(3): 548-576. doi: 10.2113/gsecongeo.90.3.548
    RAKOVAN J, 2008. NYF-Type Pegmatite[J]. Rocks & Minerals, 83(4): 351-353. http://www.degruyter.com/view/j/ammin.2008.93.issue-2-3/am.2008.2595/am.2008.2595.xml?format=INT
    RODA-ROBLES E, PESQUERA A, GIL-CRESPO P, et al., 2012. From granite to highly evolved pegmatite: A case study of the Pinilla de Fermoselle granite-pegmatite system (Zamora, Spain)[J]. Lithos, 153: 192-207. doi: 10.1016/j.lithos.2012.04.027
    RODA-ROBLES E, VILLASECA C, PESQUERA A, et al., 2018. Petrogenetic relationships between Variscan granitoids and Li-(F-P)-rich aplite-pegmatites in the Central Iberian Zone: Geological and geochemical constraints and implications for other regions from the European Variscides[J]. Ore Geology Reviews, 95: 408-430. doi: 10.1016/j.oregeorev.2018.02.027
    ROEDDER E, 1984. Fluid inclusions. Reviews in mineralogy[M]. Washington D C: Mineralogical Society of America, 644.
    ROEDDER E, 1992. Fluid inclusion evidence for immiscibility in magmatic differentiation[J]. Geochimica et Cosmochimica Acta, 56(1): 5-20. doi: 10.1016/0016-7037(92)90113-W
    SALVI S, FONTAN F, MONCHOUX P, et al., 2000. Hydrothermal mobilization of high field strength elements in alkaline igneous systems: evidence from the Tamazeght Complex (Morocco)[J]. Economic Geology, 95(3): 559-576. http://pangea.stanford.edu/research/ODEX/EG/papers/Abs95-3_files/salvi.pdf
    SHAW R A, GOODENOUGH K M, ROBERTS N M W, et al., 2016. Petrogenesis of rare-metal pegmatites in high-grade metamorphic terranes: A case study from the Lewisian Gneiss Complex of north-west Scotland[J]. Precambrian Research, 281: 338-362. doi: 10.1016/j.precamres.2016.06.008
    SIMMONS W B S, WEBBER K L, 2008. Pegmatite genesis: state of the art[J]. European Journal of Mineralogy, 20(4): 421-438. doi: 10.1127/0935-1221/2008/0020-1833
    SIMMONS W, FALSTER A, WEBBER K, et al., 2016. Bulk composition of Mt. Mica pegmatite, Maine, USA: implications for the origin of an LCT type pegmatite by anatexis[J]. The Canadian Mineralogist, 54(4): 1053-1070. doi: 10.3749/canmin.1600017
    SIRBESCU M L C, NABELEK P I, 2003. Crystallization conditions and evolution of magmatic fluids in the Harney Peak Granite and associated pegmatites, Black Hills, South Dakota-Evidence from fluid inclusions[J]. Geochimica et Cosmochimica Acta, 67(13): 2443-2465. doi: 10.1016/S0016-7037(02)01408-4
    SOWERBY J R, KEPPLER H, 2002. The effect of fluorine, boron and excess sodium on the critical curve in the albite-H2O system[J]. Contributions to Mineralogy and Petrology, 143(1): 32-37. doi: 10.1007/s00410-001-0334-5
    STEWART D B, 1978. Petrogenesis of lithium-rich pegmatites[J]. American Mineralogist, 63(9-10): 970-980. http://gateway.proquest.com/openurl?res_dat=xri:pqm&ctx_ver=Z39.88-2004&rfr_id=info:xri/sid:baidu&rft_val_fmt=info:ofi/fmt:kev:mtx:article&genre=article&jtitle=American%20Mineralogist&atitle=Petrogenesis%20of%20lithium-rich%20pegmatites
    STILLING A, ČERN Ý P, VANSTONE P J, 2006. The Tanco pegmatite at Bernic Lake, Manitoba. XVI. Zonal and bulk compositions and their petrogenetic significance[J]. The Canadian Mineralogist, 44(3): 599-623. doi: 10.2113/gscanmin.44.3.599
    SWANSON S E, 2012. Mineralogy of spodumene pegmatites and related rocks in the tin-spodumene belt of North Carolina and South Carolina, USA[J]. The Canadian Mineralogist, 50(6): 1589-1608. doi: 10.3749/canmin.50.6.1589
    THOMAS R, DAVIDSON P, BADANINA E, 2009. A melt and fluid inclusion assemblage in beryl from pegmatite in the Orlovka amazonite granite, East Transbaikalia, Russia: implications for pegmatite-forming melt systems[J]. Mineralogy and Petrology, 96(3): 129-140. doi: 10.1007/s00710-009-0053-6
    THOMAS R, DAVIDSON P, BEURLEN H, 2011a. Tantalite-(Mn) from the Borborema Pegmatite Province, northeastern Brazil: conditions of formation and melt-and fluid-inclusion constraints on experimental studies[J]. Mineralium Deposita, 46(7): 749-759. doi: 10.1007/s00126-011-0344-9
    THOMAS R, WEBSTER J D, DAVIDSON P, 2011b. Be-daughter minerals in fluid and melt inclusions: implications for the enrichment of Be in granite-pegmatite systems[J]. Contributions to Mineralogy and Petrology, 161(3): 483-495. doi: 10.1007/s00410-010-0544-9
    THOMAS R, DAVIDSON P, SCHMIDT C, 2011c. Extreme alkali bicarbonate-and carbonate-rich fluid inclusions in granite pegmatite from the Precambrian Rønne granite, Bornholm Island, Denmark[J]. Contributions to Mineralogy and Petrology, 161(2): 315-329. doi: 10.1007/s00410-010-0533-z
    THOMAS R, DAVIDSON P, 2012. Water in granite and pegmatite-forming melts[J]. Ore Geology Reviews, 46: 32-46. doi: 10.1016/j.oregeorev.2012.02.006
    THOMAS R, DAVIDSON P, 2016. Revisiting complete miscibility between silicate melts and hydrous fluids, and the extreme enrichment of some elements in the supercritical state-Consequences for the formation of pegmatites and ore deposits[J]. Ore Geology Reviews, 72: 1088-1101. doi: 10.1016/j.oregeorev.2015.10.004
    THOMAS R, DAVIDSON P, APPEL K, 2019. The enhanced element enrichment in the supercritical states of granite-pegmatite systems[J]. Acta Geochimica, 38(3): 335-349. doi: 10.1007/s11631-019-00319-z
    TKACHEV A V, 2011. Evolution of metallogeny of granitic pegmatites associated with orogens throughout geological time[J]. Geological Society, London, Special Publications, 350(1): 7-23. doi: 10.1144/SP350.2
    TKACHEV A V, RUNDQVIST D V, VISHNEVSKAYA N A, 2018. Comparison of supercontinent cycles in the metallogeny of rare earth elements[J]. Doklady Earth Sciences, 480(2): 730-734. doi: 10.1134/S1028334X18060302
    TIMOFEEV A, MIGDISOV A A, WILLIAMS-JONES A E, 2015. An experimental study of the solubility and speciation of niobium in fluoride-bearing aqueous solutions at elevated temperature[J]. Geochimica et Cosmochimica Acta, 158: 103-111. doi: 10.1016/j.gca.2015.02.015
    VEKSLER I V, THOMAS R, 2002. An experimental study of B-, P-and F-rich synthetic granite pegmatite at 0.1 and 0.2 GPa[J]. Contributions to Mineralogy and Petrology, 143(6): 673-683. doi: 10.1007/s00410-002-0368-3
    VEKSLER I V, 2004. Liquid immiscibility and its role at the magmatic-hydrothermal transition: a summary of experimental studies[J]. Chemical Geology, 210(1-4): 7-31. doi: 10.1016/j.chemgeo.2004.06.002
    VEKSLER I V, DORFMAN A M, DULSKI P, et al., 2012. Partitioning of elements between silicate melt and immiscible fluoride, chloride, carbonate, phosphate and sulfate melts, with implications to the origin of natrocarbonatite[J]. Geochimica et Cosmochimica Acta, 79: 20-40. doi: 10.1016/j.gca.2011.11.035
    WANG D H, FU X F, 2013. A breakthrough has been made in the prospecting of the peripheral lithium deposit in Jieka, Sichuan[J]. Rock and Mineral Analysis, 32(6): 987. (in Chinese)
    WANG D H, WANG C H, SUN Y, et al., 2017. New progresses and discussion on the survey and research of Li, Be, Ta ore deposits in China[J]. Geological Survey of China, 4(5): 1-8. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZDC201705001.htm
    WANG G G, NI P, PAN J Y, 2020. Fluid characteristics of granite-related ore forming systems[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 39(3): 463-471. (in Chinese with English abstract)
    WANG L K, WANG H F, HUANG Z L, 1999. The geochemical indicatrixes of the REE in Li-F granite liquid segregation[J]. Acta Petrologica Sinica, 15(2): 170-180. (in Chinese with English abstract)
    WANG L K, WANG H F, HUANG Z L, 2000. Geochemical indicators of trace element in Li-F granite liquid segregation[J]. Acta Petrologica Sinica, 16(2): 145-152. (in Chinese with English abstract) http://www.researchgate.net/publication/287695835_Geochemical_indicators_of_trace_element_in_Li-F_granite_liquid_segregation
    WANG Q S, 2016. Analysis of global lithium resources exploration and development, supply and demand situation[J]. China Mining Magazine, 25(3): 11-15, 24. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZGKA201603002.htm
    WANG R C, WU B, XIE L, et al., 2021. Global tempo-spatial distribution of rare-metal mineralization and continental evolution[J]. Acta Geologica Sinica, 95(1): 182-193. (in Chinese with English abstract)
    WARREN B E, PINCUS A G, 1940. Atomic consideration of immiscibility in glass systems[J]. Journal of the American Ceramic Society, 23(10): 301-304. doi: 10.1111/j.1151-2916.1940.tb14194.x
    WEBSTER J D, THOMAS R, RHEDE D, et al., 1997. Melt inclusions in quartz from an evolved peraluminous pegmatite: Geochemical evidence for strong tin enrichment in fluorine-rich and phosphorus-rich residual liquids[J]. Geochimica et Cosmochimica Acta, 61(13): 2589-2604. doi: 10.1016/S0016-7037(97)00123-3
    WU C N, ZHU J C, LIU C S, et al., 1994. A study on the inclusions in Spodumenes from Altai pegmatite, Xinjiang[J]. Geotectonica et Metallogenia, 18(4): 353-362. (in Chinese with English abstract)
    WU F Y, LIU Z C, LIU X C, et al., 2015. Himalayan leucogranite: Petrogenesis and implications to orogenesis and Plateau uplift[J]. Acta Petrologica Sinica, 31(1): 1-36. (in Chinese with English abstract) http://www.researchgate.net/publication/279331756_Himalayan_leucogranite_Petrogenesis_and_implications_to_orogenesis_and_plateau_uplift
    XU X W, NIU L, HONG T, et al., 2019. Tectonic dynamics of fluids and metallogenesis[J]. Journal of Geomechanics, 25 (1): 1-8. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTotal-DZLX201901002.htm
    XIONG X, LI J K, WANG D H, et al., 2019. Fluid characteristics and evolution of the Zhawulong granitic pegmatite lithium deposit in the Ganzi-Songpan region, Southwestern China[J]. Acta Geologica Sinica (English Edition), 93(4): 943-954. doi: 10.1111/1755-6724.13851
    XIONG X, LI J K, WANG D H, et al., 2019. A study of solid minerals in melt inclusions and fluid inclusions from the Jiajika pegmatite-type lithium deposit[J]. Acta Petrologica et Mineralogica, 38(2): 241-253. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTotal-YSKW201902008.htm
    XU Z Q, WANG R C, ZHAO Z B, et al., 2018. On the Structural Backgrounds of the Large-scale ""Hard-rock Type"" Lithium Ore Belts in China[J]. Acta Geologica Sinica, 92(6): 1091-1106. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/ http://search.cnki.net/down/default.aspx?filename=DZXE201806001&dbcode=CJFD&year=2018&dflag=pdfdown
    XU Z Q, FU X F, ZHAO Z B, et al., 2019. Discussion on relationships of gneiss dome and Metallogenic regularity of pegmatite-type lithium deposits[J]. Earth Science, 44(5): 1452-1463. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201905004.htm
    XU Z Q, WANG R C, ZHU W B, et al, 2020. Scientific drilling project of granite-pegmatite-type lithium deposit in western Sichuan: scientific problems and significance[J]. Acta Geologica Sinica, 94(8): 2177-2189. (in Chinese with English abstract)
    YU F, WANG D H, YU Y, et al., 2019. The distribution and exploration status of domestic and foreign sedimentary-type lithium deposits[J]. Rock and Mineral Analysis, 38(3): 354-364. (in Chinese with English abstract) http://www.researchgate.net/publication/342765571_The_Distribution_and_Exploration_Status_of_Domestic_and_Foreign_Sedimentary-type_Lithium_Deposits
    ZARAISKY G P, KORZHINSKAYA V, KOTOVA N, 2010. Experimental studies of Ta2O5 and columbite-tantalite solubility in fluoride solutions from 300 to 500℃ and 50 to 100 MPa[J]. Mineralogy and Petrology, 99(3): 287-300. doi: 10.1007/s00710-010-0112-z
    ZHAI M G, WU F Y, HU R Z, et al., 2019. Critical metal mineral resources: current research status and scientific issues[J]. Bulletin of National Natural Science Foundation of China, 33(2): 106-111. (in Chinese with English abstract)
    ZHANG H, LV Z H, TANG Y, 2019. Metallogeny and prospecting model as well as prospecting direction of pegma-tite-type rare metal ore deposits in Altay orogenic belt, Xinjiang[J]. Mineral Deposits, 38(4): 792-814. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTotal-KCDZ201904008.htm
    ZHANG H J, TIAN S H, WANG D H, et al., 2021. Lithium isotope behavior during magmatic differentiation and fluid exsolution in the Jiajika granite-pegmatite deposit, Sichuan, China[J]. Ore Geology Reviews, 134: 104139. doi: 10.1016/j.oregeorev.2021.104139
    ZOU T R, LI Q C, 2006. Rare and rare earth metallic deposits in Xinjiang, China[M]. Beijing: Geological Publishing House. (in Chinese)
    陈骏, 2019. 关键金属超常富集成矿和高效利用[J]. 科技导报, 37(24): 1.
    陈毓川, 叶庆同, 王京彬等, 2003. 中国新疆阿尔泰成矿带矿床地质、成矿规律与技术经济评价[M]. 北京: 地质出版社.
    代鸿章, 王登红, 刘丽君, 等, 2018. 川西甲基卡308号伟晶岩脉年代学和地球化学特征及其地质意义[J]. 地球科学, 43(10): 3664-3681. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201810027.htm
    付小方, 侯立玮, 王登红, 等, 2014. 四川甘孜甲基卡锂辉石矿矿产调查评价成果[J]. 中国地质调查, 1(3): 37-43. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDC201403007.htm
    付小方, 侯立玮, 梁斌, 2017. 甲基卡式花岗伟晶岩型锂矿床: 成矿模式与三维勘查找矿模型[M]. 北京: 科学出版社.
    郝雪峰, 付小方, 梁斌, 等, 2015. 川西甲基卡花岗岩和新三号矿脉的形成时代及意义[J]. 矿床地质, 34(6): 1199-1208. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ201506009.htm
    侯增谦, 陈骏, 翟明国, 2020. 战略性关键矿产研究现状与科学前沿[J]. 科学通报, 65(33): 3651-3652.
    黄永胜, 张辉, 吕正航, 等, 2016. 新疆阿尔泰二叠纪、三叠纪伟晶岩侵位深度研究: 来自流体包裹体的指示[J]. 矿物学报, 36(4): 571-585. https://www.cnki.com.cn/Article/CJFDTOTAL-KWXB201604018.htm
    蒋少涌, 温汉捷, 许成, 等, 2019. 关键金属元素的多圈层循环与富集机理: 主要科学问题及未来研究方向[J]. 中国科学基金, 33(2): 112-118.
    李建康, 2006. 川西典型伟晶岩型矿床的形成机理及其大陆动力学背景[D]. 北京: 中国地质大学(北京).
    李贤芳, 田世洪, 王登红, 等, 2020. 川西甲基卡锂矿床花岗岩与伟晶岩成因关系: U-Pb定年、Hf-O同位素和地球化学证据[J]. 矿床地质, 39(2): 273-304. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ202002005.htm
    梁斌, 付小方, 唐屹, 等, 2016. 川西甲基卡稀有金属矿区花岗岩岩石地球化学特征[J]. 桂林理工大学学报, 36(1): 42-49. doi: 10.3969/j.issn.1674-9057.2016.01.007
    廖芝华, 周中国, 张洪平, 2019. 可尔因稀有金属矿床液态不混溶作用的地球化学特征证据[J]. 四川地质学报, 39(S1): 60-69. https://www.cnki.com.cn/Article/CJFDTOTAL-SCDB2019S1014.htm
    刘丽君, 王登红, 刘喜方, 等, 2017. 国内外锂矿主要类型、分布特点及勘查开发现状[J]. 中国地质, 44(2): 263-278.
    刘善宝, 杨岳清, 王登红, 等, 2019. 四川甲基卡矿田花岗岩型锂工业矿体的发现及意义[J]. 地质学报, 93(6): 1309-1320. doi: 10.3969/j.issn.0001-5717.2019.06.011
    卢焕章, 2004. 流体包裹体[M]. 北京: 科学出版社.
    卢焕章, 2019. 地球中的流体和穿越层圈构造[J]. 地质力学学报, 25(6): 1003-1012. https://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?flag=1&file_no=20190601&journal_id=dzlxxb
    毛景文, 袁顺达, 谢桂青, 等, 2019. 21世纪以来中国关键金属矿产找矿勘查与研究新进展[J]. 矿床地质, 38(5): 935-969.
    倪培, 迟哲, 潘君屹, 等, 2018. 热液矿床的成矿流体与成矿机制: 以中国若干典型矿床为例[J]. 矿物岩石地球化学通报, 37(3): 369-394, 560. https://www.cnki.com.cn/Article/CJFDTOTAL-KYDH201803001.htm
    王登红, 付小方, 2013. 四川甲基卡外围锂矿找矿取得突破[J]. 岩矿测试, 32(6): 987. doi: 10.3969/j.issn.0254-5357.2013.06.023
    王国光, 倪培, 潘君屹, 2020. 花岗质岩石相关成矿系统的流体作用[J]. 矿物岩石地球化学通报, 39(3): 463-471.
    王联魁, 王慧芬, 黄智龙, 1999. Li-F花岗岩液态分离的稀土地球化学标志[J]. 岩石学报, 15(2): 170-180. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB902.002.htm
    王联魁, 王慧芬, 黄智龙, 2000. Li-F花岗岩液态分离的微量元素地球化学标志[J]. 岩石学报, 16(2): 145-152.
    王秋舒, 2016. 全球锂矿资源勘查开发及供需形势分析[J]. 中国矿业, 25(3): 11-15, 24. doi: 10.3969/j.issn.1004-4051.2016.03.003
    王汝成, 邬斌, 谢磊, 等, 2021. 稀有金属成矿全球时空分布与大陆演化[J]. 地质学报, 95(1): 182-193.
    吴长年, 朱金初, 刘昌实, 等, 1994. 阿尔泰伟晶岩锂辉石中包裹体研究[J]. 大地构造与成矿学, 18(4): 353-362.
    吴福元, 刘志超, 刘小驰, 等, 2015. 喜马拉雅淡色花岗岩[J]. 岩石学报, 31(1): 1-36. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201501001.htm
    熊欣, 李建康, 王登红, 等, 2019. 川西甲基卡花岗伟晶岩型锂矿床中熔体、流体包裹体固相物质研究[J]. 岩石矿物学杂志, 38(2): 241-253. doi: 10.3969/j.issn.1000-6524.2019.02.008
    徐兴旺, 牛磊, 洪涛, 等, 2019. 流体构造动力学与成矿作用[J]. 地质力学学报, 25(1): 1-8. https://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?flag=1&file_no=20190101&journal_id=dzlxxb
    许志琴, 王汝成, 赵中宝, 等, 2018. 试论中国大陆""硬岩型""大型锂矿带的构造背景[J]. 地质学报, 92(6): 1091-1106. doi: 10.3969/j.issn.0001-5717.2018.06.001
    许志琴, 付小方, 赵中宝, 等, 2019. 片麻岩穹窿与伟晶岩型锂矿的成矿规律探讨[J]. 地球科学, 44(5): 1452-1463.
    许志琴, 王汝成, 朱文斌, 等, 2020. 川西花岗-伟晶岩型锂矿科学钻探: 科学问题和科学意义[J]. 地质学报, 94(8): 2177-2189. doi: 10.3969/j.issn.0001-5717.2020.08.001
    于沨, 王登红, 于扬, 等, 2019. 国内外主要沉积型锂矿分布及勘查开发现状[J]. 岩矿测试, 38(3): 354-364.
    翟明国, 吴福元, 胡瑞忠, 等, 2019. 战略性关键金属矿产资源: 现状与问题[J]. 中国科学基金, 33(2): 106-111. https://www.cnki.com.cn/Article/CJFDTOTAL-ZKJJ201902002.htm
    张辉, 吕正航, 唐勇, 2019. 新疆阿尔泰造山带中伟晶岩型稀有金属矿床成矿规律、找矿模型及其找矿方向[J]. 矿床地质, 38(4): 792-814. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ201904008.htm
    邹天人, 李庆昌, 2006. 中国新疆稀有及稀土金属矿床[M]. 北京: 地质出版社.
  • 加载中
图(9)
计量
  • 文章访问数:  1252
  • HTML全文浏览量:  445
  • PDF下载量:  138
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-30
  • 修回日期:  2021-06-25
  • 刊出日期:  2021-08-28

目录

    /

    返回文章
    返回