Tectonic transition and extension at the eastern and western ends of the Altyn Tagh fault: insights from triple junctions
-
摘要: 阿尔金断裂带作为青藏高原北缘的关键构造边界,其演化历史和构造转换机制对理解青藏高原的生长极为重要。阿尔金断裂带不同分段的构造环境与演化历程不同,其各自与祁连山造山带和祁曼塔格−东昆仑断裂带的构造转换研究也仍有不足之处。三联点分析是板块构造学中的重要分析方法,速度三角形反映了断裂属性,三联点稳定性则从运动学角度揭示了断裂的演化方向和历程。综合地质、地貌与地震资料,系统分析了阿尔金断裂带中段与东西段代表性的肃北与吐拉三联点的构造特征与活动历史;并借助三联点稳定性准则,构建了这2个三联点的演化模型。研究结果表明,野马河−大雪山断裂与祁曼塔格−东昆仑断裂带启动,不稳定三联点形成并向稳定三联点转化,促使阿尔金断裂带“截弯取直”,并在此基础上提出了分段破裂−双向扩展模型。这一结果为理解青藏高原北缘复杂的构造演化历史提供了新的视角。Abstract:
Objective The Altyn Tagh fault (ATF) is the largest left-lateral strike-slip fault on the northern margin of the Qinghai-Tibet Plateau, extending for about 1600 km. It accommodates a considerable portion of the India-Eurasia convergence and is widely regarded as a key tectonic boundary influencing the plateau’s uplift and outward growth. However, its mode of propagation remains debated. Resolving this debate requires clarifying how the ATF evolved into its present configuration and how it connects with adjacent structures such as the Qilian orogenic belt and the Qimantagh-Eastern Kunlun fault. In this study, we use the concept of triple junctions to investigate key transition zones at the eastern and western ends of the ATF—namely, the Subei and Tula triple junctions—to shed light on the fault’s Cenozoic segmented rupture and bidirectional extension. Methods Triple junction analysis, a fundamental method in plate tectonics, is utilized to assess fault properties and fault stability from a kinematic perspective. Additionally, GPS data and seismic source mechanism solutions are analyzed to characterize the current kinematic behaviors and movement directions of the faults. Results (1) Transition between ATF and Qilian orogenic belt: Subei triple junction. The central segment of the ATF was the earliest to become active during the Cenozoic, generating a compressional horsetail splay on its eastern termination. The Danghe Nanshan fault and Yemahe-Daxueshan fault emerged as part of this horsetail splay. As left-lateral strike-slip motion on the ATF accelerated in the Miocene, large offsets developed between the Tarim, Qaidam, and Qilian blocks, giving rise to a triple junction near Subei. Initially, this triple junction was unstable, and the Qilian block experienced extensional strain relative to the Tarim block, indicating a local stretching environment. To achieve stability, the ATF progressively “straightened” eastward, ultimately supplanting the Yemahe-Daxueshan fault. Its western segment was reoriented to run parallel to the ATF, while the Danghe Nanshan fault remained as the key boundary on the Qilian side. Consequently, a stable triple junction formed at the intersection of the ATF’s central and eastern segments with the Danghe Nanshan fault. At the present leading edge of the ATF’s eastward propagation, the Hongliuxia fault displays a similar evolutionary trajectory, suggesting that the ATF continues to extend by reconfiguring secondary faults. (2) Transition between ATF and Qimantagh-Eastern Kunlun fault: Tula triple junction. The ATF’s central segment spawned a tensional horsetail splay at its western termination, involving the Tula and Baiganhu faults. When large-scale activity on the Eastern Kunlun fault commenced in the Miocene, the Qaidam block began moving relative to the Eastern Kunlun block, producing an unstable triple junction in the Tula region. To achieve a stable configuration, the ATF propagated westward along a more linear path, gradually diminishing activity on the Baiganhu fault. As a result, the stable triple junction—involving the Tarim, Qaidam, and Eastern Kunlun blocks—ultimately localized where the ATF meets the Qimantagh-Eastern Kunlun fault. This westward “straightening” and the concurrent reduction in subsidiary fault activity have fashioned the current tectonic framework at the western end of the ATF. Conclusion (1) The ATF has undergone a segmented rupture–bidirectional extension process throughout the Cenozoic. (2) The Miocene activation of the Yemahe-Daxueshan, the Qimantagh-Eastern Kunlun and other fault systems led to the formation of two triple junctions at Subei and Tula, respectively. These junctions were initially unstable, prompting secondary faults to “shortcut” and realign and leading the ATF to straighten and extend farther east and west. [Significance] This study refines our understanding of how the Altyn Tagh fault expanded along the northern margin of the Qinghai-Tibet Plateau. By applying triple junction concepts to continental blocks, we illustrate how block interactions have governed the ATF’s segmentation and through-going evolution. The proposed segmented rupture–bidirectional extension framework reconciles geological observations of Cenozoic deformation along the ATF. It also underscores the importance of analyzing triple junctions in understanding large-scale tectonic reorganization. -
0. 引言
节理岩体的强度是岩体工程设计的重要参数, 柱状节理岩体作为一种具有柱状镶嵌结构的特殊节理岩体, 普遍发育于玄武岩中, 构成著名地质景观, 如图 1所示, 近年来逐渐作为水电工程的坝基岩体, 由于柱状节理在岩体中高密度发育, 对岩体强度的影响是工程中重点关注的问题。以往一般采用试验和理论的方法获取节理岩体的强度参数, 虽然原位试验是研究岩体强度的最直接方法, 但对柱状节理岩体而言, 匮乏相似的工程案例, 原位试验也不易进行, 而从现有的理论强度准则去揭示复杂节理岩体的强度特性, 或太多简化, 或公式复杂难以应用。因此, 如何利用现有地质信息及小型标准试样的室内试验资料, 对柱状节理岩体的宏观强度做出方便可靠的预测变得尤为重要。
自上世纪八十年代以来, Hoek和Brown发展了一种评价岩体强度参数的新方法———地质强度指标(Geological Strength Index, 简称GSI), 见Hoek和Brown (1980[1]和1988[2]), Hoek等(2002[3]), Hoek和Diederichs (2006[4]), Hoek和Marinos (2007[5])。广义Hoek-Brown经验准则认为:岩体质量的评定和岩体抗剪强度参数的确定是可以区分开的, 通过工程地质人员用定量指标合理地描述岩体的岩性、结构和不连续面条件等因素, 评价各种地质条件对岩体强度削弱程度, 对岩体质量进行量化评分和分级, 然后利用岩体质量指标值与岩体变形模量之间的经验关系来合理地描述岩体的强度参数。
从现有的文献上看, 国外在建筑工程、环境工程及核工程中已经成功地应用GSI法评估了柱状节理岩体的工程力学特性。Justo (2006)[6]采用GSI法评价了Tenerife Island的一座高达40层楼房的节理玄武岩地基的变形参数及强度参数。Schultz (1995)[7]采用GSI法合理估计了美国汉佛柱状节理岩体核废料储存工程(Basalt waste isolation project, 简称BWIP)的柱状节理岩体的强度参数, 但应用在国内水利工程柱状节理岩体强度评价中则较为少见。本文以白鹤滩水电工程为例, 结合最新的GSI法和Hoek-Brown强度准则对柱状节理岩体强度进行估算。
2. 白鹤滩水电站柱状节理岩体特征
白鹤滩水电站位于金沙江下游四川省宁南县和云南省巧家县境内, 上接乌东德梯级, 下邻溪洛渡梯级, 距离溪洛渡水电站195 km, 坝型为混凝土双曲拱坝, 坝高289m, 装机容量13050MW, 多年平均发电量584.84亿kW·h, 保证出力4335MW。是我国继三峡、溪洛渡之后开展前期工作的又一座千万千瓦级以上的水电站。白鹤滩水电站坝址区基岩以块状玄武岩为主, 地质构造相对简单, 具备修建高拱坝的地形地质条件。然而坝址区柱状节理发育, 岩心破碎, RQD值普遍较低, 完整性较差, 其强度指标相对较低, 尤其坝址区峨眉山玄武岩[8]第三层中部柱状节理密集发育, 柱体呈细长状, 柱面形状以五边形及四边形居多, 长度一般2 ~ 3m, 直径0.13 ~ 0.25m, 柱体平均倾角为15 ~ 25°, 节理线密度在13条m以上, 对拟建的白鹤滩双曲拱坝的变形、坝肩稳定、边坡稳定、地下洞室群围岩稳定都有一定的影响, 已成为该水电工程的主要岩石力学问题之一。
3. 柱状节理岩体强度的估算
Hoek等(2002)[3]修正的Hoek-Brown强度准则为:
(1) 式(1)中, σ1和σ3为岩体破坏时的最大和最小有效主应力, σci为完整岩块单轴抗压强度, mb、s和a为Hoek-Brown材料参数, 可查GSI表获取, 也可根据GSI值进行换算。S=1时代表完整岩块。D为岩体扰动因子, 其与爆破产生的损伤大小及岩体应力卸荷程度有关, 一般认为无扰动时为0, 部分扰动时为0.5, 严重扰动时为1。若由于小规模爆破导致岩体中等程度的破坏及应力释放引起某种岩体扰动, 当爆破良好时可取D=0.7, 爆破效果很差时取D=1.0;若由于大型生产爆破或者开挖上覆岩体而导致大型矿山边坡严重扰动时, 取D=1.0;软岩地区若采用撬挖或机械方式开挖, 边坡的破坏程度不高, 可取D=0.7。这里考虑开挖、爆破及施工等引起白鹤滩柱状节理岩体一定程度的扰动、损伤或破坏, 即D=0 ~ 1.0下岩体强度的变化区间。
(2) (3) (4) 令式(1)中的σ3和σ1分别等于0, 可得式(5)的岩体单轴抗压强度σc以及单轴抗拉强度σt。
(5) 至于抗剪强度参数, 则可以通过具有一定科学依据的经验准则来确定岩体质量指标值与岩体强度参数之间的经验关系。广义Hoek-Brown经验准则正是在基于大量原位资料及工程经验的基础上来确定岩体抗剪强度指标, 其所预测的强度包络线既符合室内对岩样所做三轴压缩试验, 又符合野外对节理岩体破坏的观察, 在工程应用中具有重要的意义。
由于大多数岩土软件中仍采用Mohr-Coulomb破坏准则, 因此很有必要建立Hoek-Brown破坏准则与Mohr-Coulomb破坏准则之间的联系, 由Hoek-Brown的最大和最小主应力关系曲线可以拟合得到等价的Mohr-Coulomb主应力关系直线, 其拟合得到的Mohr-Coulomb强度参数分别为:
(6) (7) (8) (9) (10) (11) (12) 式(10)和(11)中, σcm是等效Mohr-Coulomb破坏准则推求出的岩体抗压强度。σ3max是Hoek-Brown破坏准则与等效Mohr-Coulomb破坏准则围压上限值。H代表洞室埋深或边坡高度, 当地应力以水平方向最大时, 应用水平地应力代替γH。
由最大和最小主应力来表示法向应力和切向应力的公式为:
(13) (14) (15) 将等效Mohr-Coulomb破坏准则写成以最大和最小主应力表示的破坏准则为:
(16) 这里采用加拿大Rocscience公司开发的基于广义Hoek-Brown破坏准则的免费软件RocLab[9]来确定柱状节理岩体的强度参数及等效Mohr-Coulomb抗剪强度参数。根据白鹤滩柱状节理岩体的卸荷特征, 可分为柱状镶嵌块状结构和柱状镶嵌碎裂结构, 这里估算其在无扰动及爆破下的Hoek-Brown材料参数及抗剪强度参数。同时对比了Schultz (1995)采用GSI (1988)经验公式估算BWIP柱状节理玄武岩体的强度参数[7]。玄武岩体的材料参数mi为25 ±5, 这里采用美国能源部对BWIP柱状节理玄武岩体的试验值mi=22。σ3max的选取, 则根据白鹤滩河谷地应力场中柱状节理岩体位置处的小主应力的极大值估取。
由表 1整理的计算结果可知, 柱状镶嵌块状结构岩体的单轴抗压强度为14.00 ~ 25.00MPa, 单轴抗拉强度为0.30 ~ 0.64MPa; 爆破后的单轴抗压强度降低为4.00 ~ 11.00MPa, 单轴抗拉强度为0.01 ~ 0.35MPa。柱状镶嵌碎裂结构岩体的单轴抗压强度为2.50 ~ 4.60MPa, 单轴抗拉强度为0.04 ~ 0.08MPa; 爆破后的单轴抗压强度降低为0.50 ~ 1.10MPa, 单轴抗拉强度为0.01 ~ 0.03MPa。
表 1 基于GSI估算的白鹤滩水电站柱状节理玄武岩体强度Table 1. Strength parameters of columnar jointed basalt estimated by GSI at Baihetan hydropower station与摩尔—库仑强度包络线不同, Hoek-Brown破坏准则得到的强度包络线是一条非线性曲线, 其拟合的等效Mohr-Coulomb抗剪强度参数是与其围压有关。高围压下的岩体抗剪强度参数相应提高, 这与实际岩体揭示的情况相符。工程中普遍开展的直剪法试验, 在试验岩样制取时就无可避免地产生了一定程度的岩体扰动, 同时受试验条件限制无法考虑大尺度岩体及原岩应力, 在试验时仅单向受围压, 剪坏后则根据各剪切阶段特征点的剪应力和法向应力值, 并采用图解法或最小二乘法绘制剪应力与法向应力关系曲线并确定相应的摩尔—库仑抗剪强度参数。工程岩体实际剪破时的抗剪强度是考虑围压等多因素作用的强度, 因此直剪法试验其得到的岩体抗剪强度相对于Hoek-Brown破坏准则得到的强度参数偏低。比较中水顾问集团华东勘测设计研究院的现场岩体直剪试验①可知(表 2), 白鹤滩Ⅱ类岩体对应柱状镶嵌块状结构岩体, GSI法对摩擦角的估值接近现场直剪试验的值, 仅高出4.3 %, 凝聚力高出0.25 ~ 1.26MPa。现场岩体无Ⅳ类岩体直剪试验, Ⅲ1类岩体可视为产生一定卸荷松弛的Ⅱ类岩体即柱状镶嵌块状结构岩体。考虑爆破后的柱状镶嵌块状结构岩体GSI估值为:摩擦角53.4 ~ 57.66°, 凝聚力为0.90 ~ 1.54 MPa, 与Ⅲ1类岩体直剪试验成果相近。计算表明, 采用GSI估计柱状节理岩体的抗剪强度参数较为合理。
① 中水顾问集团华东勘测设计研究院.金沙江白鹤滩水电站柱状节理玄武岩工程地质研究报告[R].杭州, 2006.
表 2 岩体抗剪断试验成果Table 2. Shear test results of rock mass4. 结论
本文综述了基于GSI法的广义Hoek-Brown破坏准则在国内外柱状节理岩体强度估值中的应用, 并将该法应用于白鹤滩水电工程中, 估算了柱状镶嵌块状结构和柱状镶嵌碎裂结构的柱状节理玄武岩体的变形模量及强度参数, 并考虑了扰动岩体、不同爆破损伤岩体的变形模量及强度参数, 计算表明:
(1) 广义Hoek-Brown破坏准则是基于大量原位资料及工程经验的经验准则, 其所预测的柱状节理岩体变形模量及强度参数, 与白鹤滩水电站工程原位试验成果较为一致, 参数估值合理, 可以应用于类似的工程中。
(2) Hoek-Brown破坏准则得到的强度包络线为非线性曲线, 其拟合的等效Mohr-Coulomb抗剪强度参数是与围压有关, 能够更合理地描述不同应力状态下的岩体强度参数。
-
图 1 阿尔金断裂带构造简图
a—青藏高原主要走滑断裂分布图;b—阿尔金断裂带受阻双弯曲、三联点与邻区主要断裂的位置关系分布图(WATF、MATF、EATF分别代指阿尔金断裂带西段、中段与东段);c—阿尔金断裂带地貌学与大地测量学研究获得的左旋走滑速率分布图(修改自Wu et al.,2019b)
Figure 1. Simplified tectonic map of the Altyn Tagh fault (ATF)
(a) Distribution of major strike-slip faults on the Qinghai-Tibet Plateau; (b) Extension of the ATF and its spatial relationships with neighboring major faults; the double bending, triple junctions, and the positions of the western, central, and eastern segments of the Altyn Tagh fault (WATF, MATF, and EATF, respectively) are shown;(c) Distribution of left-lateral strike-slip rates obtained from geomorphological and geodetic studies of the Altyn Tagh fault (modified from Wu et al., 2019b)
图 2 三联点原理示意图
A、B、C代表不同的板块;红色实线代表板块边界,蓝色虚线ab、bc、ac则代表板块AB、板块BC和板块AC之间的边界辅助线;ab、bc共线或者ac、bc共线时稳定a—三联点稳定性辅助线作法示意图;b—以FFT型三联点为例,说明三联点速度三角形及辅助线的作法,修改自McKenzie and Morgan(1969);c—Mendocino三联点(FFT型)( Ingersoll,1982)
Figure 2. Schematic diagram of triple junction principles
(a) Schematic diagram illustrating the method of constructing auxiliary lines for triple junction stability; (b) An FFT-type triple junction is used as an example for the construction of the triple junction velocity triangle and auxiliary lines, adapted from McKenzie and Morgan (1969); (c) Mendocino triple junction (FFT-type) (Ingersoll, 1982) In (a) and (b), A, B, and C represent different tectonic plates; the red solid lines denote plate boundaries, while the blue dashed lines ab, bc, and ac represent auxiliary boundary lines between Plate AB, Plate BC, and Plate AC, respectively. The triple junction is stable when ab and bc are collinear or when ac and bc are collinear.
图 4 肃北三联点稳定性演化示意图
速度矢量三角形中tq、tql、qql分别代表塔里木地块与柴达木地块、塔里木地块与祁连地块、柴达木地块与祁连地块的辅助线
Figure 4. Diagram of the stability evolution of the Subei triple junction
In the velocity vector triangle, tq, tql, and qql represent auxiliary lines connecting the Tarim and Qaidam blocks, the Tarim and Qilian blocks, and the Qaidam and Qilian blocks, respectively.
图 6 吐拉三联点稳定性演化示意图
速度矢量三角形中tq、tk、kq分别代表塔里木地块与柴达木地块、塔里木地块与东昆仑地块、东昆仑地块与塔里木地块的辅助线
Figure 6. Diagram of the stability evolution of the Tula triple junction
In the velocity vector triangle, tq, tk, and kq represent auxiliary lines connecting the Tarim and Qaidam blocks, the Tarim and Eastern Kunlun blocks, and the Eastern Kunlun and Qaidam blocks, respectively.
图 7 阿尔金断裂带与三联点演化示意图
Figure 7. Diagram of the evolution of the Altyn Tagh fault and triple junctions
(a) Early Cenozoic segmental initiation of the Altyn Tagh Fault (ATF); (b) Miocene activity enhancement, leading to the formation of unstable triple junctions; (c) Post-Miocene shortcutting and through-going of the ATF.
-
[1] AVOUAC J P, TAPPONNIER P, 1993. Kinematic model of active deformation in Central Asia[J]. Geophysical Research Letters, 20(10): 895-898. doi: 10.1029/93GL00128 [2] BIE L D, RYDER I, 2014. Recent seismic and aseismic activity in the Ashikule stepover zone, NW Tibet[J]. Geophysical Journal International, 198(3): 1632-1643. doi: 10.1093/gji/ggu230 [3] CHEN Z L, GONG H L, LI L, et al., 2006. Cenozoic uplifting and exhumation process of the Altyn Tagh mountains[J]. Earth Science Frontiers, 13(4): 91-102. (in Chinese with English abstract [4] CHENG F, JOLIVET M, FU S T, et al., 2014. Northward growth of the Qimen Tagh Range: a new model accounting for the Late Neogene strike-slip deformation of the SW Qaidam Basin[J]. Tectonophysics, 632: 32-47. doi: 10.1016/j.tecto.2014.05.034 [5] CHENG F, GUO Z J, JENKINS H S, et al., 2015a. Initial rupture and displacement on the Altyn Tagh fault, northern Tibetan Plateau: constraints based on residual Mesozoic to Cenozoic strata in the western Qaidam Basin[J]. Geosphere, 11(3): 921-942. doi: 10.1130/GES01070.1 [6] CHENG F, JOLIVET M, DUPONT-NIVET G, et al., 2015b. Lateral extrusion along the Altyn Tagh Fault, Qilian Shan (NE Tibet): insight from a 3D crustal budget[J]. Terra Nova, 27(6): 416-425. doi: 10.1111/ter.12173 [7] CHENG X, FU S T, WANG H F, et al., 2015c. Geometry and kinematics of the Arlar strike-slip fault, SW Qaidam basin, China: new insights from 3-D seismic data[J]. Journal of Asian Earth Sciences, 98: 198-208. doi: 10.1016/j.jseaes.2014.09.039 [8] CLARK M K, 2012. Continental collision slowing due to viscous mantle lithosphere rather than topography[J]. Nature, 483(7387): 74-77. doi: 10.1038/nature10848 [9] CLUBB F J, MUDD S M, HURST M D, et al., 2020. Differences in channel and hillslope geometry record a migrating uplift wave at the Mendocino triple junction, California, USA[J]. Geology, 48(2): 184-188. doi: 10.1130/G46939.1 [10] DICKINSON W R, SNYDER W S, 1979. Geometry of triple junctions related to San Andreas Transform[J]. Journal of Geophysical Research: Solid Earth, 84(B2): 561-572. doi: 10.1029/JB084iB02p00561 [11] DING L, KAPP P, CAI F L, et al., 2022. Timing and mechanisms of Tibetan Plateau uplift[J]. Nature Reviews Earth & Environment, 3(10): 652-667. [12] DONG Z Y, XIAO Q B, SUN Z L, et al., 2024. Crustal electrical anisotropic structure of the Altyn Tagh fault in the Subei Area, NW China: implications for fault zone architecture[J]. Journal of Geophysical Research: Solid Earth, 129(7): e2023JB028550. doi: 10.1029/2023JB028550 [13] DUVALL A R, CLARK M K, KIRBY E, et al., 2013. Low-temperature thermochronometry along the Kunlun and Haiyuan Faults, NE Tibetan Plateau: Evidence for kinematic change during late-stage orogenesis[J]. Tectonics, 32(5): 1190-1211. doi: 10.1002/tect.20072 [14] DZIEWONSKI A M, CHOU T A, WOODHOUSE J H, 1981. Determination of earthquake source parameters from waveform data for studies of global and regional seismicity[J]. Journal of Geophysical Research: Solid Earth, 86(B4): 2825-2852. doi: 10.1029/JB086iB04p02825 [15] EKSTRÖM G, NETTLES M, DZIEWOŃSKI A M, 2012. The global CMT project 2004-2010: Centroid-moment tensors for 13, 017 earthquakes[J]. Physics of the Earth and Planetary Interiors, 200-201: 1-9. doi: 10.1016/j.pepi.2012.04.002 [16] ELLIOTT J R, BIGGS J, PARSONS B, et al., 2008. InSAR slip rate determination on the Altyn Tagh Fault, northern Tibet, in the presence of topographically correlated atmospheric delays[J]. Geophysical Research Letters, 35(12): L12309. [17] ENGLAND P, MCKENZIE D, 1982. A thin viscous sheet model for continental deformation[J]. Geophysical Journal International, 70(2): 295-321. doi: 10.1111/j.1365-246X.1982.tb04969.x [18] FENG Z S, ZHANG Z C, LI J F, et al., 2010. Study on Cenozoic sedimentary characteristics and its relationship with the Altyn Tagh Fault in Shibaodan Basin, Gansu[J]. Chinese Journal of Geology, 45(1): 181-193. (in Chinese with English abstract [19] FURLONG K P, SCHWARTZ S Y, 2004. Influence of the Mendocino triple junction on the tectonics of coastal California[J]. Annual Review of Earth and Planetary Sciences, 32: 403-433. doi: 10.1146/annurev.earth.32.101802.120252 [20] GAO S B, COWGILL E, WU L, et al., 2022. From left slip to transpression: Cenozoic tectonic evolution of the North Altyn Fault, NW margin of the Tibetan Plateau[J]. Tectonics, 41(3): e2021TC006962. doi: 10.1029/2021TC006962 [21] GE W P, SHEN Z K, MOLNAR P, et al., 2022. GPS determined asymmetric deformation across central Altyn Tagh fault reveals rheological structure of Northern Tibet[J]. Journal of Geophysical Research: Solid Earth, 127(9): e2022JB024216. doi: 10.1029/2022JB024216 [22] GUO Z J, ZHANG Z C, 1998. Structural style and tectonic evolution of the basins in the Altun Region[J]. Geological Review, 44(4): 357-364. (in Chinese with English abstract [23] HARKINS N, KIRBY E, SHI X, et al., 2010. Millennial slip rates along the eastern Kunlun fault: implications for the dynamics of intracontinental deformation in Asia[J]. Lithosphere, 2(4): 247-266. doi: 10.1130/L85.1 [24] HE J K, VERNANT P, CHÉRY J, et al., 2013. Nailing down the slip rate of the Altyn Tagh fault[J]. Geophysical Research Letters, 40(20): 5382-5386. doi: 10.1002/2013GL057497 [25] HE P J, SONG C H, WANG Y D, et al., 2020. Early Cenozoic exhumation in the Qilian Shan, northeastern margin of the Tibetan Plateau: insights from detrital apatite fission track thermochronology[J]. Terra Nova, 32(6): 415-424. doi: 10.1111/ter.12478 [26] INGERSOLL R V, 1982. Triple-junction instability as cause for late Cenozoic extension and fragmentation of the western United States[J]. Geology, 10(12): 621-624. doi: 10.1130/0091-7613(1982)10<621:TIACFL>2.0.CO;2 [27] JOLIVET M, BRUNEL M, SEWARD D, et al., 2001. Mesozoic and Cenozoic tectonics of the northern edge of the Tibetan Plateau: fission-track constraints[J]. Tectonophysics, 343(1-2): 111-134. doi: 10.1016/S0040-1951(01)00196-2 [28] KIRBY E, HARKINS N, WANG E Q, et al., 2007. Slip rate gradients along the eastern Kunlun fault[J]. Tectonics, 26(2): TC2010. [29] LAW R, ALLEN M B, 2020. Diachronous Tibetan Plateau landscape evolution derived from lava field geomorphology[J]. Geology, 48(3): 263-267. doi: 10.1130/G47196.1 [30] LEVANDER A, HENSTOCK T J, MELTZER A S, et al., 1998. Fluids in the lower crust following Mendocino triple junction migration: active basaltic intrusion?[J]. Geology, 26(2): 171-174. doi: 10.1130/0091-7613(1998)026<0171:FITLCF>2.3.CO;2 [31] LI A, LIU R, ZHANG S M, et al., 2022. Evidence of structural transformation in the eastern part of the Altyn Tagh Fault, northern margin of the Tibetan Plateau, China, based on the kinematics and shortening rate of the Hongliuxia region[J]. Journal of Asian Earth Sciences, 240: 105445. doi: 10.1016/j.jseaes.2022.105445 [32] LI B S, YAN M D, ZHANG W L, et al., 2021. Bidirectional growth of the Altyn Tagh Fault since the Early Oligocene[J]. Tectonophysics, 815: 228991. doi: 10.1016/j.tecto.2021.228991 [33] LI C X, XU X W, WEN X Z, et al., 2011. Rupture segmentation and slip partitioning of the mid-eastern part of the Kunlun Fault, north Tibetan Plateau[J]. Science China Earth Sciences, 54(11): 1730-1745. doi: 10.1007/s11430-011-4239-5 [34] LI H B, YANG J S, SHI R D, et al., 2002. Determination of the Altyn Tagh strike-slip fault basin and its relationship with mountains[J]. Chinese Science Bulletin, 47(7): 572-577. doi: 10.1360/02tb9132 [35] LI H B, YANG J S, XU Z Q, et al., 2006. The constraint of the Altyn Tagh fault system to the growth and rise of the northern Tibetan plateau[J]. Earth Science Frontiers, 13(4): 59-79. (in Chinese with English abstract [36] LI J F, ZHANG Z C, ZHAO Y, et al., 2017. Detrital apatite fission track analyses of the Subei basin: implications for basin-range structure of the northern Tibetan Plateau[J]. International Geology Review, 59(2): 204-218. doi: 10.1080/00206814.2016.1219880 [37] LI Y C, SHAN X J, QU C Y, et al., 2018. Crustal deformation of the Altyn Tagh fault based on GPS[J]. Journal of Geophysical Research: Solid Earth, 123(11): 10309-10322. doi: 10.1029/2018JB015814 [38] LIN X, ZHENG D W, SUN J M, et al., 2015. Detrital apatite fission track evidence for provenance change in the Subei Basin and implications for the tectonic uplift of the Danghe Nan Shan (NW China) since the mid-Miocene[J]. Journal of Asian Earth Sciences, 111: 302-311. doi: 10.1016/j.jseaes.2015.07.007 [39] LIU C J, JI L Y, ZHU L Y, et al., 2024. Interseismic strain rate distribution model of the Altyn Tagh Fault constrained by InSAR and GPS[J]. Earth and Planetary Science Letters, 642: 118884. doi: 10.1016/j.jpgl.2024.118884 [40] LIU D L, LI H B, SUN Z M, et al., 2017. AFT dating constrains the Cenozoic uplift of the Qimen Tagh Mountains, Northeast Tibetan Plateau, comparison with LA-ICPMS Zircon U-Pb ages[J]. Gondwana Research, 41: 438-450. doi: 10.1016/j.gr.2015.10.008 [41] LIU D L, LI H B, CHEVALIER M L, et al., 2021. Activity of the Baiganhu Fault of the Altyn Tagh Fault System, northern Tibetan Plateau: insights from zircon and apatite fission track analyses[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 570: 110356. doi: 10.1016/j.palaeo.2021.110356 [42] LIU Y J, NEUBAUER F, GENSER J, et al., 2007. Geochronology of the initiation and displacement of the Altyn Strike-Slip Fault, western China[J]. Journal of Asian Earth Sciences, 29(2-3): 243-252. doi: 10.1016/j.jseaes.2006.03.002 [43] LU H J, SANG S P, WANG P, et al., 2022. Initial uplift of the Qilian Shan, northern Tibet since ca. 25 Ma: implications for regional tectonics and origin of Eolian deposition in Asia[J]. GSA Bulletin, 134(9-10): 2531-2547. doi: 10.1130/B36242.1 [44] LUO H, HE W G, YUAN D Y, et al., 2015. Slip Rate of Yema River-Daxue Mountain Fault since the Late Pleistocene and Its Implications on the Deformation of the Northeastern Margin of the Tibetan Plateau[J]. Acta Geologica Sinica-English Edition, 89(2): 561-574. doi: 10.1111/1755-6724.12447 [45] LUO H, XU X W, LIU X L, et al., 2020. The structural deformation pattern in the eastern segment of the Altyn Tagh fault[J]. Acta Geologica Sinica, 94(3): 692-706. (in Chinese with English abstract [46] MCKENZIE D P, MORGAN W J, 1969. Evolution of triple Junctions[J]. Nature, 224(5215): 125-133. doi: 10.1038/224125a0 [47] MENG Q R, HU J M, YANG F Z, 2001. Timing and magnitude of displacement on the Altyn Tagh fault: constraints from stratigraphic correlation of adjoining Tarim and Qaidam basins, NW China[J]. Terra Nova, 13(2): 86-91. doi: 10.1046/j.1365-3121.2001.00320.x [48] MÉTIVIER F, GAUDEMER Y, TAPPONNIER P, et al., 1998. Northeastward growth of the Tibet Plateau deduced from balanced reconstruction of two depositional areas: The Qaidam and Hexi Corridor basins, China[J]. Tectonics, 17(6): 823-842. doi: 10.1029/98TC02764 [49] MEYER B, TAPPONNIER P, BOURJOT L, et al., 1998. Crustal thickening in Gansu-Qinghai, lithospheric mantle subduction, and oblique, strike-slip controlled growth of the Tibet Plateau[J]. Geophysical Journal International, 135(1): 1-47. doi: 10.1046/j.1365-246X.1998.00567.x [50] MOLNAR P, ENGLAND P, MARTINOD J, 1993. Mantle dynamics, uplift of the Tibetan Plateau, and the Indian monsoon[J]. Reviews of Geophysics, 31(4): 357-396. doi: 10.1029/93RG02030 [51] PAN J W, LI H B, VAN DER WOERD J, et al., 2015. The first quantitative slip-rate estimated along the ashikule fault at the western segment of the Altyn Tagh fault system[J]. Acta Geologica Sinica-English Edition, 89(6): 2088-2089. doi: 10.1111/1755-6724.12621 [52] PATRIAT P, COURTILLOT V, 1984. On the stability of triple junctions and its relation to episodicity in spreading[J]. Tectonics, 3(3): 317-332. doi: 10.1029/TC003i003p00317 [53] PEI X, HUANGFU P P, LI Z H, et al., 2022. Why Qaidam Basin is amalgamated into Tibetan Plateau but Tarim basin is not?[J]. Chinese Journal of Geophysics, 65(11): 4259-4272. (in Chinese with English abstract [54] PELTZER G, TAPPONNIER P, 1988. Formation and evolution of strike-slip faults, rifts, and basins during the India-Asia Collision: an experimental approach[J]. Journal of Geophysical Research: Solid Earth, 93(B12): 15085-15117. doi: 10.1029/JB093iB12p15085 [55] SHAO Y X, YUAN D Y, OSKIN M E, et al., 2017. Historical (Yuan Dynasty) Earthquake on the North Danghe Nanshan Thrust, Western Qilian Shan, China[J]. Bulletin of the Seismological Society of America, 107(3): 1175-1184. doi: 10.1785/0120160289 [56] SHI W B, WANG F, YANG L K, et al., 2018. Diachronous growth of the Altyn Tagh mountains: constraints on propagation of the Northern Tibetan margin from (U-Th)/he dating[J]. Journal of Geophysical Research: Solid Earth, 123(7): 6000-6018. doi: 10.1029/2017JB014844 [57] SHOBE C M, BENNETT G L, TUCKER G E, et al., 2021. Boulders as a lithologic control on river and landscape response to tectonic forcing at the Mendocino triple junction[J]. GSA Bulletin, 133(3-4): 647-662. doi: 10.1130/B35385.1 [58] SOBEL E R, ARNAUD N, JOLIVET M, et al. , 2001. Jurassic to Cenozoic exhumation history of the Altyn Tagh range, northwest China, constrained by 40Ar/39Ar and apatite fission track thermochronology[C]//HENDRIX M S, DAVIS G A. Paleozoic and Mesozoic tectonic evolution of central and Eastern Asia: from continental assembly to intracontinental deformation. Boulder: Geological Society of America. [59] SONG C H, 2006. Tectonic uplift and Cenozoic sedimentary evolution in the northern margin of the Tibetan Plateau[D]. Lanzhou: Lanzhou University. (in Chinese with English abstract [60] SONG X D, LI J T, BAO X W, et al., 2015. Deep structure of major basins in Western China and implications for basin formation and evolution[J]. Earth Science Frontiers, 22(1): 126-136. (in Chinese with English abstract [61] STEIGERWALD L, EINARSSON P, HJARTARDÓTTIR Á R, 2020. Fault kinematics at the Hengill Triple Junction, SW-Iceland, derived from surface fracture pattern[J]. Journal of Volcanology and Geothermal Research, 391: 106439. doi: 10.1016/j.jvolgeores.2018.08.017 [62] SUN Y J, DONG S W, FAN T Y, et al., 2013. 3D rheological structure of the continental lithosphere beneath China and adjacent regions[J]. Chinese Journal of Geophysics, 56(9): 2936-2946. (in Chinese with English abstract [63] SUN Z M, YANG Z Y, PEI J L, et al., 2005. Magnetostratigraphy of Paleogene sediments from northern Qaidam Basin, China: Implications for tectonic uplift and block rotation in northern Tibetan Plateau[J]. Earth and Planetary Science Letters, 237(3-4): 635-646. doi: 10.1016/j.jpgl.2005.07.007 [64] TAPPONNIER P, PELTZER G, LE DAIN A Y, et al., 1982. Propagating extrusion tectonics in Asia: new insights from simple experiments with plasticine[J]. Geology, 10(12): 611-616. doi: 10.1130/0091-7613(1982)10<611:PETIAN>2.0.CO;2 [65] TAPPONNIER P, ZHIQIN X, ROGER F, et al., 2001. Oblique stepwise rise and growth of the Tibet Plateau[J]. Science, 294(5547): 1671-1677. doi: 10.1126/science.105978 [66] TIAN D, UIEDA L, LEONG W J, et al. , 2024. PyGMT: A Python interface for the Generic Mapping Tools[J/OL]. Zenodo, 2024-09. Available from: https://doi.org/10.5281/zenodo.13679420. [67] TIAN Q J, DING G Y, 1998. The tectonic feature of a quasi trijunction in the northeastern corner of Qinghai Xizang Plateau[J]. Earthquake Research in China, 14(4): 27-35. (in Chinese with English abstract [68] WANG E, XU F Y, ZHOU J X, et al., 2006. Eastward migration of the Qaidam basin and its implications for Cenozoic evolution of the Altyn Tagh fault and associated river systems[J]. GSA Bulletin, 118(3-4): 349-365. doi: 10.1130/B25778.1 [69] WANG M, SHEN Z K, 2020. Present-day crustal deformation of continental China derived from GPS and its tectonic implications[J]. Journal of Geophysical Research: Solid Earth, 125(2): e2019JB018774. doi: 10.1029/2019JB018774 [70] WANG W T, ZHANG P Z, PANG J Z, et al., 2016. The Cenozoic growth of the Qilian Shan in the northeastern Tibetan Plateau: a sedimentary archive from the Jiuxi Basin[J]. Journal of Geophysical Research: Solid Earth, 121(4): 2235-2257. doi: 10.1002/2015JB012689 [71] WANG X M, WANG B Y, QIU Z X, et al., 2003. Danghe area (western Gansu, China) biostratigraphy and implications for depositional history and tectonics of northern Tibetan Plateau[J]. Earth and Planetary Science Letters, 208(3-4): 253-269. doi: 10.1016/S0012-821X(03)00047-5 [72] WANG Y, 2001. Heat flow pattern and lateral variations of lithosphere strength in China mainland: constraints on active deformation[J]. Physics of the Earth and Planetary Interiors, 126(3-4): 121-146. doi: 10.1016/S0031-9201(01)00251-5 [73] WANG Y D, ZHENG J J, ZHENG Y W, 2018. Mesozoic-Cenozoic exhumation history of the Qimen Tagh Range, northeastern margins of the Tibetan Plateau: evidence from apatite fission track analysis[J]. Gondwana Research, 58: 16-26. doi: 10.1016/j.gr.2018.01.014 [74] WANG Z S, WEI D P, 2018. Research progress on the formation and evolution of triple junctions of global plate motions[J]. Progress in Geophysics, 33(5): 1834-1843. (in Chinese with English abstract [75] WU C, ZUZA A V, ZHOU Z G, et al., 2019a. Mesozoic-Cenozoic evolution of the Eastern Kunlun Range, central Tibet, and implications for basin evolution during the Indo-Asian collision[J]. Lithosphere, 11(4): 524-550. doi: 10.1130/L1065.1 [76] WU C, LI J, DING L, 2021. Low-temperature thermochronology constraints on the evolution of the Eastern Kunlun Range, northern Tibetan Plateau[J]. Geosphere, 17(4): 1193-1213. doi: 10.1130/GES02358.1 [77] WU L, LIN X B, COWGILL E, et al., 2019b. Middle Miocene reorganization of the Altyn Tagh fault system, northern Tibetan Plateau[J]. GSA Bulletin, 131(7-8): 1157-1178. doi: 10.1130/B31875.1 [78] XIE H, LIU C C, ZHANG H P, et al., 2022. Cenozoic evolution of the Altyn Tagh fault: evidence from sedimentary records of basins along the fault[J]. Acta Petrologica Sinica, 38(4): 1107-1125. (in Chinese with English abstract doi: 10.18654/1000-0569/2022.04.09 [79] XU Q, HETZEL R, HAMPEL A, et al., 2021. Slip rate of the Danghe Nan Shan thrust fault from 10Be exposure dating of folded river terraces: implications for the strain distribution in Northern Tibet[J]. Tectonics, 40(4): e2020TC006584. doi: 10.1029/2020TC006584 [80] XU X W, TAPPONNIER P, VAN DER WOERD J, et al., 2003. Late Quaternary sinistral slip rate along the Altyn Tagh fault and its structural transformation model[J]. Science in China (Series D), 33(10): 967-974. (in Chinese with English abstract [81] XU Z Q, YANG J S, ZHANG J X, et al., 1999. A comparison between the tectonic units on the two sides of the Altun Sinistral strike-slip fault and the mechanism of lithospheric shearing[J]. Acta Geologica Sinica, 73(3): 193-205. (in Chinese with English abstract [82] YAN B, CHEN P, GAO Y, 2024. Stepwise decrease in strike-slip rate along the eastern Altyn Tagh Fault and its relation to the Qilian Shan thrust system, northeastern Tibetan Plateau[J]. Journal of Structural Geology, 179: 105037. doi: 10.1016/j.jsg.2023.105037 [83] YANG Y Z, WANG Z D, LIU R C, et al., 2023. Evolution of kinematic transformation from the Altyn Tagh fault to the Qilian Shan in the northern Tibetan Plateau: from early Cenozoic initiation to mid-Miocene extrusion[J]. Frontiers in Earth Science, 11: 1250640. doi: 10.3389/feart.2023.1250640 [84] YECK W L, SHELLY D R, MATERNA K Z, et al., 2023. Dense geophysical observations reveal a triggered, concurrent multi-fault rupture at the Mendocino Triple Junction[J]. Communications Earth & Environment, 4(1): 94. [85] YI K X, CHENG F, YANG Y Z, et al., 2022. Pleistocene northward thrusting of the Danghe Nanshan: Implications for the growth of the Qilian Shan, Northeastern Tibetan Plateau[J]. Tectonophysics, 838: 229476. doi: 10.1016/j.tecto.2022.229476 [86] YI K X, CHENG F, JOLIVET M, et al., 2024. Carbonate U-Pb ages constrain Paleocene motion along the Altyn Tagh fault in response to the India-Asia collision[J]. Geophysical Research Letters, 51(8): e2023GL107716. doi: 10.1029/2023GL107716 [87] YIN A, RUMELHART P E, BUTLER R, et al., 2002. Tectonic history of the Altyn Tagh fault system in northern Tibet inferred from Cenozoic sedimentation[J]. GSA Bulletin, 114(10): 1257-1295. doi: 10.1130/0016-7606(2002)114<1257:THOTAT>2.0.CO;2 [88] YORK D, 1973. Evolution of Triple Junctions[J]. Nature, 244(5415): 341-342. doi: 10.1038/244341a0 [89] YU G, LI M, SHAO G L, et al., 2020. Electrical resistivity variations of lithospheric mantle beneath the northern Tibetan Plateau with tectonic implications[J]. Journal of Asian Earth Sciences, 198: 104273. doi: 10.1016/j.jseaes.2020.104273 [90] YU J X, ZHENG D W, PANG J Z, et al., 2019. Miocene range growth along the Altyn Tagh fault: insights from apatite fission track and (U-Th)/He thermochronometry in the Western Danghenan Shan, China[J]. Journal of Geophysical Research: Solid Earth, 124(8): 9433-9453. doi: 10.1029/2019JB017570 [91] YUE Y J, RITTS B D, GRAHAM S A, 2001. Initiation and long-term slip history of the Altyn Tagh fault[J]. International Geology Review, 43(12): 1087-1093. doi: 10.1080/00206810109465062 [92] ZANDT G, HUMPHREYS E, 2008. Toroidal mantle flow through the western U. S. slab window[J]. Geology, 36(4): 295-298. doi: 10.1130/G24611A.1 [93] ZHANG P Z, MOLNAR P, XU X W, 2007. Late Quaternary and present-day rates of slip along the Altyn Tagh Fault, northern margin of the Tibetan Plateau[J]. Tectonics, 26(5): TC5010. [94] ZHANG Z C, GUO Z J, LI J F, et al., 2012. Mesozoic and Cenozoic uplift-denudation along the Altyn Tagh fault, Northwestern China: constraints from apatite fission track data[J]. Quaternary Sciences, 32(3): 499-509. (in Chinese with English abstract [95] ZHUANG G S, JOHNSTONE S A, HOURIGAN J, et al., 2018. Understanding the geologic evolution of Northern Tibetan Plateau with multiple thermochronometers[J]. Gondwana Research, 58: 195-210. doi: 10.1016/j.gr.2018.02.014 [96] 陈正乐,宫红良,李丽,等,2006. 阿尔金山脉新生代隆升-剥露过程[J]. 地学前缘,13(4):91-102. doi: 10.3321/j.issn:1005-2321.2006.04.008 [97] 冯志硕,张志诚,李建锋,等,2010. 甘肃石包城盆地新生代沉积特征及与阿尔金断裂的关系研究[J]. 地质科学,45(1):181-193. doi: 10.3969/j.issn.0563-5020.2010.01.016 [98] 郭召杰,张志诚,1998. 阿尔金盆地群构造类型与演化[J]. 地质论评,44(4):357-364. doi: 10.3321/j.issn:0371-5736.1998.04.004 [99] 李海兵,杨经绥,许志琴,等,2006. 阿尔金断裂带对青藏高原北部生长、隆升的制约[J]. 地学前缘,13(4):59-79. doi: 10.3321/j.issn:1005-2321.2006.04.006 [100] 罗浩,徐锡伟,刘小利,等,2020. 阿尔金断裂东段的构造转换模式[J]. 地质学报,94(3):692-706. doi: 10.3969/j.issn.0001-5717.2020.03.002 [101] 裴旭,皇甫鹏鹏,李忠海,等,2022. 为何塔里木盆地独立于青藏高原整体变形之外而柴达木盆地却并入其中?[J]. 地球物理学报,65(11):4259-4272. doi: 10.6038/cjg2022P0429 [102] 宋春晖,2006. 青藏高原北缘新生代沉积演化与高原构造隆升过程[D]. 兰州:兰州大学. [103] 宋晓东,李江涛,鲍学伟,等,2015. 中国西部大型盆地的深部结构及对盆地形成和演化的意义[J]. 地学前缘,22(1):126-136. [104] 孙玉军,董树文,范桃园,等,2013. 中国大陆及邻区岩石圈三维流变结构[J]. 地球物理学报,56(9):2936-2946. doi: 10.6038/cjg20130908 [105] 田勤俭,丁国瑜,1998. 青藏高原东北隅似三联点构造特征[J]. 中国地震,14(4):27-35. [106] 王振山,魏东平,2018. 全球板块运动三联点形成与演化规律的研究进展[J]. 地球物理学进展,33(5):1834-1843. doi: 10.6038/pg2018BB0286 [107] 谢皓,刘彩彩,张会平,等,2022. 新生代阿尔金断裂带的演化:来自沿线盆地沉积记录的启示[J]. 岩石学报,38(4):1107-1125. doi: 10.18654/1000-0569/2022.04.09 [108] 徐锡伟,TAPPONNIER P,VAN DER WOERD J,等,2003. 阿尔金断裂带晚第四纪左旋走滑速率及其构造运动转换模式讨论[J]. 中国科学(D辑),33(10):967-974. [109] 许志琴,杨经绥,张建新,等,1999. 阿尔金断裂两侧构造单元的对比及岩石圈剪切机制[J]. 地质学报,73(3):193-205. doi: 10.3321/j.issn:0001-5717.1999.03.001 [110] 张志诚,郭召杰,李建锋,等,2012. 阿尔金断裂带中段中新生代隆升历史分析:裂变径迹年龄制约[J]. 第四纪研究,32(3):499-509. doi: 10.3969/j.issn.1001-7410.2012.03.16 -