留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

青藏高原陆陆碰撞-挤出活动构造体系控震作用:以1990年以来强震活动为例

吴中海

刘建朝, 张林, 王行运, 等, 2014. 固市凹陷非常规水溶甲烷气成因及来源. 地质力学学报, 20 (1): 61-69.
引用本文: 吴中海, 2024. 青藏高原陆陆碰撞-挤出活动构造体系控震作用:以1990年以来强震活动为例. 地质力学学报, 30 (2): 189-205. DOI: 10.12090/j.issn.1006-6616.2023186
LIU Jian-chao, ZHANG Lin, WANG Xing-yun, et al., 2014. GENESIS AND SOURCES OF NON-CONVENTIONAL WATER SOLUBLE METHANE GAS IN GUSHI SAG. Journal of Geomechanics, 20 (1): 61-69.
Citation: WU Zhonghai, 2024. The earthquake-controlling process of continental collision-extrusion active tectonic system around the Qinghai-Tibet Plateau: A case study of strong earthquakes since 1990. Journal of Geomechanics, 30 (2): 189-205. DOI: 10.12090/j.issn.1006-6616.2023186

青藏高原陆陆碰撞-挤出活动构造体系控震作用:以1990年以来强震活动为例

doi: 10.12090/j.issn.1006-6616.2023186
基金项目: 

中国地质调查局地质调查项目 DD20242319

中国地质调查局地质调查项目 DD20230014

国家自然科学基金云南联合基金项目 U2002211

西藏自治区第1次全国自然灾害综合风险普查项目(2022年地震灾害部分) XZLX-BMC-2022-053

详细信息
    作者简介:

    吴中海(1974—),男,博士,研究员,主要从事新构造与活动构造研究。Email:wuzhonghai8848@foxmail.com

  • 中图分类号: P315;P553

The earthquake-controlling process of continental collision-extrusion active tectonic system around the Qinghai-Tibet Plateau: A case study of strong earthquakes since 1990

Funds: 

the Geological Survey Project of the China Geological Survey DD20242319

the Geological Survey Project of the China Geological Survey DD20230014

the National Natural Science Foundation of China U2002211

the First National Natural Disaster Comprehensive Risk Survey Project of Xizang Autonomous Region XZLX-BMC-2022-053

  • 摘要: 青藏高原是地中海-喜马拉雅地震带上强震活动最频繁的区域之一,深入认识该区的活动构造体系控震效应对于区域强震危险性分析具有重要科学意义。从陆陆碰撞-挤出活动构造体系角度,对青藏高原自1990年以来的MW≥6.0强震活动及控震构造机制进行分析发现,青藏高原陆陆碰撞-挤出构造体系对区域强震活动起到显著控制作用,区域强震事件尤其是MW≥6.5地震主要出现在构造体系的主要边界断裂带上,并显示出相对有规律的时空迁移过程,而且青藏高原东部的多层次挤出-旋转活动构造体系构成了1990年以来强震过程的主要控震构造,其次是喜马拉雅主前缘逆冲断裂带。因此,青藏高原挤出构造体系应是未来强震活动趋势分析最值得关注的区域,尤其是当前最为活跃的巴颜喀拉次级挤出构造单元。对比分析土耳其安纳托利亚板块及周边的强震活动发现,该区具有类似的陆陆碰撞-挤出构造体系及控震效应,表明该构造体系是陆内造山中的一种典型的控震构造。进一步综合分析认为,活动构造体系控震效应的主要表现:一是构造体系中主要断块的边界断裂带通常是强震活动的主要场所;二是构造体系中不同构造带的强震活动常具有联动效应或相互触发关系,其中的复杂或特殊构造部位则是易出现双震或震群活动的场所;三是当构造体系中某个构造单元或构造带处于活跃阶段时,便会出现强震丛集现象。另外,充分认识构造体系中主要活动断层间的协调变形关系,活动断层带上的强震活动的分段破裂行为,以及活动断层上强震原地复发通常存在“周期长、准周期性和丛集性”的特点等,有助于在根据活动构造体系分析区域未来强震活动趋势时更为准确地判定活动断层带的未来强震危险性。

     

  • 水溶天然气(简称水溶气)是指溶解在地层水中的气体, 气体成分以甲烷为主, 还含有少量乙烷等重烃类气体和氢气、氮气、CO2等非烃气体以及氦气等稀有气体, 是一种非常规能源[1]。这种尚未被充分开发的天然气资源在全球范围内分布很广, 潜在资源量很大。全世界含油气盆地、含煤盆地以及其他水文盆地地层水中溶解的甲烷气资源预计总量约为n×1016~n×1018 m3, 超过全球已探明的油气及煤炭资源总量的若干倍。盆地中已查明的水溶性天然气资源量约为33837×1012 m3, 是常规天然气资源量的100多倍。日本、美国、俄罗斯、乌克兰、哈萨克、乌兹别克、阿塞拜疆、土库曼、匈牙利、意大利、菲律宾、尼泊尔、伊朗等国都发现了水溶天然气, 并开展了勘探、开发及地质综合研究, 尤其在日本, 大约四分之一国土都发现了水溶气, 并累计了70多年的勘探开发工作经验[2]

    从理论上讲, 水溶气资源领域较常规天然气的分布领域更加广泛[2]。但由于水溶气在中国还属于一个较新的、研究较少的新型非常规能源, 勘探开发还处于初步阶段, 很多研究工作属于空白。

    原地质矿产部第三普查勘探大队(以下简称三普)在20世纪60年代对渭河盆地进行了油气资源普查, 曾先后两上渭河盆地, 打出油气普查井32口, 其中发现气测异常井15口, 并完成《汾渭盆地石油普查阶段地质成果报告》。1974年在西安地区油气普查中, 三普在渭深13井发现8个组的气测异常, 并测得产气量208 L/d[1]。其后因工作重点转移和工业价值效果不明显而未受到重视, 使得盆地的资源勘探程度非常低。近几年随着对渭河盆地的重新认识和勘探, 在固市凹陷钻探的地热井和天然气探井均发现水溶甲烷气存在, 且含量较高, 预示了非常好的勘探前景, 成为极具工业价值的水溶甲烷气资源开发潜力盆地。

    渭河盆地位于陕西省中部(关中平原), 是秦岭造山带与鄂尔多斯盆地2个大地构造单元接合部位的新生代断陷盆地, 其地层属华北地层区南缘分区。研究区固市凹陷位于渭河盆地东部, 属于渭河盆地的次级凹陷[1](见图 1)。固市凹陷富含多种资源, 主要包括水溶天然气、富氦水溶气、地热水资源等。

    图  1  渭河盆地构造-地质略图
    Figure  1.  A structural-geological map of Wehe Basin

    研究区内发现的水溶气以甲烷为主, 是一种多成因气体, 可分为生物化学有机成因和宇宙无机成因两大类, 水溶气中碳同位素和重烃含量的组合是判断其成因的主要参数。

    ① 生物化学成因气:有机盐和无机盐被微生物分解后形成, 如烃类气体、二氧化碳、氮气、氨气、硫化氢等。

    ② 宇宙无机成因气体:地球形成时保留下来的气体, 如惰性气体及部分无机成因的二氧化碳、甲烷气等[2]

    生物化学有机成因甲烷气又分为生物和热演化成因2种, 可根据甲烷碳同位素含量多少区分其成因类型。一般认为, 生物成因气碳同位素值小于-60‰, 而且几乎不含重烃气体组分; 热演化成因气分为油型气和煤型气, 油型气随着演化程度的增高, 重烃含量减少, 煤型气以重烃含量低为特征。不同热演化阶段甲烷碳同位素特征值不同, 一般为-28‰~-45‰, 随着演化程度的增高, 甲烷碳同位素值增大[3~4](见表 1)。

    表  1  珠江组及其相邻地层概况(据文献[9]修改)
    Table  1.  Stratigraphic profiles about Zhujiang Formation and the adjacent strata
    演化阶段 天然气类型 Ro/% δ13CCH4/‰
    计算值 确定值
    生物化学作用带 生物化学气 ≤0.3 ≤-58.6 ≤-60
    生物化学作用带 生物—热催化过渡气 0.3~0.6 -58.6~-44.9 -65~-45
    热催化作用带 煤型热解气 0.6~2.0 -44.9~-28.0 -45~-28
    热裂解作用带 煤型裂解气 ≥2.0 ≥-28.0 ≥-28
    下载: 导出CSV 
    | 显示表格

    ① 高热演化甲烷气:煤型热解气的典型特征为甲烷碳同位素值分布在-45‰~-28‰, 重烃含量低。

    此次分析中6个蓝田—灞河组较深层地热水溶气样品的碳同位素值分布于-28.1‰~-39.8‰区间(见表 2), 证明蓝田—灞河组深层水溶气属于典型的煤型热解气, 而该层不发育烃源岩, 因此水溶气应该来源于下部地层。

    表  2  固市凹陷天然气碳同位素分析结果
    Table  2.  Analysis results of the natural gas in Gushi Sag
    井名 取样地层 δ13 CCH4/‰ δ13 CCO2/‰ δ13 CC2H6/‰
    WN1 蓝田—灞河组 -34.9 -11.4 -21.6
    WN2 蓝田—灞河组 -33.8 -11.6 -26.4
    WN3 蓝田—灞河组 -39.8 -10.0 -25.9
    WN4 蓝田—灞河组 -28.8 -14.0 -26.2
    WN5 蓝田—灞河组 -28.1 -13.1
    WN6 张家坡组 -65.6 -15.2 -53.2
    WN7 蓝田—灞河组 -28.4 -14.0 -26.2
    下载: 导出CSV 
    | 显示表格

    ② 生物甲烷气:此次分析中WN6井气样采于浅层张家坡组, 其甲烷碳同位素(δ13 C1)值为-65.6‰(见表 2), 国内外大多数生物气成因的δ13 C1值定为-85‰~-55‰, 据此得出张家坡组浅层水溶甲烷气为典型的有机成因浅层生物化学气, 结合烃源岩和有机质类型, 该层水溶甲烷气来源于本层含碳质泥灰岩, 属自生自储的生物气。

    腐泥型热解气和腐殖型热解气的乙烷碳同位素具有典型的母质继承性, 分布也明显不同。一般腐泥型热解气的乙烷碳同位素值小于-29‰, 而腐殖型热解气的乙烷碳同位素值大于-29‰[5]; 从这一标准也可以看出固市凹陷水溶天然气属于有机成因, 且蓝田—灞河组较深层地热水溶气属于腐殖型热解气(见表 2)。

    从固市凹陷13口井所采地热水溶气样品气体组分数据表(见表 3)可以看出, 可燃气体所占比例最高, 全烃含量平均高达72.23%, 甲烷气质量分数大多在70%~90%, 最高为99.03%, 已大大超过水溶可燃天然气工业标准(30%), 有个别井偏低, 不排除取样时的误差。CO2质量分数多数小于10%, 个别井较高(见表 3)。

    表  3  固市凹陷水溶天然气组分
    Table  3.  Water soluble gas composition in Gushi Sag
    井号 甲烷/% 乙烷/% 丙烷/% 异丁烷/% 正丁烷/% 异戊烷/% 正戊烷/% 全烃/% CO2/%
    1 82.44 3.405 0.343 0.012 0.064 0.013 0.021 86.29 8.824
    2 89.74 3.093 0.556 0.035 0.167 0.01 0.035 93.85 1.913
    3 43.17 2.300 0.545 0.115 0.185 0.039 0.048 46.40 45.678
    4 12.52 0.134 0.020 0.002 0.005 0.001 0.002 12.68 17.992
    5 47.52 0.442 0.053 0.006 0.013 0.003 0.004 48.43 8.241
    6 98.51 0.076 0.013 0.002 0.001 0 0 98.60 1.237
    7 99.03 0.092 0.014 0.004 0.001 0.001 0 99.14 0.316
    8 62.77 0.018 0.002 0 0.001 0 0 62.79 15.336
    9 72.20 2.727 0.536 0.040 0.166 0.016 0.044 75.73 19.830
    10 98.90 0.076 0.013 0.005 0.001 0.001 0 98.99 1.249
    11 84.91 0.072 0.018 0.007 0.002 0.001 0.001 85.01 0.411
    12 31.17 0.420 0.160 0.028 0.025 0.009 0.009 35.10 0.256
    13 95.90 0.059 0.012 0.006 0.002 0.002 0 95.98 1.292
    平均 70.68 0.993 0.176 0.020 0.049 0.007 0.013 72.23 9.429
    下载: 导出CSV 
    | 显示表格

    固市凹陷生烃源岩层主要为张家坡组泥灰岩段, 有机碳含量虽多在0.5%以下, 但仍有较封闭的浅湖区达到0.86%的水平, 具有生气的源岩条件, 显示未成熟的生物气生烃潜力相当可观。

    CO2可以是有机成因, 也可以是无机成因。有机成因的CO2碳同位素δ13 CCO2值一般小于-10‰; 无机成因CO2的碳同位素δ13 CCO2值一般大于-10‰, 无机成因的CO2中, 幔源成因的碳同位素δ13 CCO2值一般在-8‰~-4‰之间[3]

    固市凹陷13口井所采样品中CO2的特征为:含量低, 质量分数大部分都小于10%, 不排除个别取样误差; 其δ13 CCO2和伴生烃类气的δ13 CCH4偏轻, 所有井样品的δ13 CCO2值均小于-10‰(见表 2), 为典型的壳源型有机成因[5]

    生物成因气形成和聚集的有利地质条件主要包括5个方面, 即高沉积速率、低地温梯度、充足的有机质、缺氧的还原环境及储盖组合形成的良好圈闭[5]

    ① 固市凹陷张家坡组沉积速率较高, 上覆地层三门组的沉积速率更高。以最大沉降幅度与沉积厚度相当进行测算, 盆地新生代(距今50 Ma)的沉降速率为0.14 mm/a, 其中始新世—中新世(距今38 Ma)时期的沉降速率为0.1 mm/a, 上新世(距今8.8 Ma)时期为0.11 mm/a, 第四纪(距今3.2 Ma)时期为0.74 mm/a, 几乎与我国著名的第四纪莺歌海生物气盆地的沉积速率(0.8 mm/a)和柴达木三湖凹陷生物气沉积速率(0.715 mm/a)相当(见表 4)。

    表  4  固市凹陷与柴达木三湖地区生物气资源类比
    Table  4.  Comparison of biogas resources in Gushi Sag and Qaidam Sanhu area
    地区 地质年代 沉积速率/(mm·a-1) 有机碳含量/% 地层温度/℃ 地温梯度/(℃/100 m) 地层压力/MPa 储层孔隙度/% 砂层厚度/m 生物气资源量/108 m3 δ13 C1/‰
    固市凹陷 N2z 0.740 0.55 65.75 3.43 15 30 200 11784 -65.6
    柴达木三湖地区 Q1s 0.715 0.3~0.4 63 3.78 16.8 25~41 300 11210 -60.58~-66.38
    下载: 导出CSV 
    | 显示表格

    ② 固市凹陷张家坡组具有中等的地温梯度和低于80 ℃的地层温度。固市凹陷张家坡组产气层深度均在2000 m以内, 根据WN6井1461~1550 m深度测试, 求得平均地层温度为65.75 ℃, 地温梯度3.43 ℃/100 m。在张家坡组沉积时期, 古气候是温带向趋凉方向转化的时期, 固市凹陷张家坡组最高地层温度在80 ℃以内, 是生物气生成的理想地温条件。

    ③ 固市凹陷张家坡组气源岩实测结果:张家坡组气源岩有机碳含量平均0.49%, 氯仿沥青"A"含量平均0.043%, 生烃潜量平均0.98 mg/g。有机质类型多为Ⅱ1型, 其次为Ⅰ型, 即腐殖腐泥型和腐泥型, 镜质体反射率(Ro)平均0.55%, 岩石热解最高解温(Tmax)平均428 ℃(见表 5-表 8), 均表明有机质热演化程度较低, 处于未成熟阶段, 以生化作用和部分热催化作用的生物甲烷气为主。

    表  5  陆相烃源岩有机质丰度评价指标
    Table  5.  Evaluation indicators of organic matter abundance in continental hydrocarbon source rocks
    指标 湖盆水体类型 非烃源岩 烃源岩类型
    中等 最好
    总有机碳/% 淡水—半咸水 <0.4 0.4~0.6 >0.6~1.0 >1.0~2.0 >2.0
    咸水—超咸水 <0.2 0.2~0.4 >0.4~0.6 >0.6~0.8 >0.8
    氯仿沥青"A"/% <0.015 0.015~0.050 >0.050~0.100 >0.100~0.200 >0.200
    HC/10-6 <100 100~200 >200~500 >500~1000 >1000
    (S1+S2)/(mg·g-1) <2 2~6 >6~20 >20
    下载: 导出CSV 
    | 显示表格
    表  6  固市凹陷张家坡组有机碳、氯仿沥青"A"含量
    Table  6.  Contents of organic carbon and chloroform bitumen "A" in Zhangjiapo Formation in Gushi Sag
    井号 有机碳/% 氯仿沥青"A"/% 烃源岩类型 沉积相带
    样品数 最小—最大/平均值 样品数 最小—最大/平均值
    渭1井 12 0.112~0.858/0.47 12 0.0063~0.0674/0.032 差—中 浅湖
    渭3井 36 0.034~0.423/0.18 5 0.0029~0.0241/0.0113 差—非 浅湖
    渭参1井 6 0.212~0.459/0.30 2 0.0139~0.0142/0.0141 差—好 浅湖
    渭参2井 8 0.060~0.143/0.10 1 0.0037 河湖
    渭参3井 5 0.326~0.408/0.36 5 0.0107~0.0225/0.0174 浅湖
    渭参4井 25 0.083~1.185/0.48 28 0.0021~0.257/0.0362 差—中 较深湖
    渭参5井 18 0.239~0.786/0.45 21 0.0044~0.348/0.0468 差—中 较深湖
    渭深12井 27 0.24~0.92/0.52 27 0.0011~0.0663/0.0275 差—好 较深湖
    渭深16井 23 0.08~1.17/0.50 23 0.0025~0.0368/0.0174 差—好 较深湖
    渭深17井 16 0.22~1.3/0.69 24 0.0059~0.045/0.0181 差—好 较深湖
    渭南1井 1 0.59 1 0.1195 中—好 较深湖
    渭南2井 1 0.56 1 0.0256 差—中 较深湖
    渭南3井 2 0.08~0.30/0.19 2 0.0061~0.0072/0.00665 差—非 浅湖
    渭南4井 1 0.41 1 0.0115 差—非 较深湖
    渭南5井 2 0.26~0.33/0.295 2 0.0082~0.0090/0.0086 差—非 较深湖
    渭南6井 2 0.65~0.82/0.735 2 0.061~0.089/0.075 中—好 较深湖
    下载: 导出CSV 
    | 显示表格
    表  7  固市凹陷张家坡组烃源岩热解分析数据
    Table  7.  Pyrolysis analysis data of hydrocarbon source rock in Zhangjiapo Formation in Gushi Sag
    样品号 井号 井深/m 岩性 可溶烃
    S1/(mg·g-1)
    热解烃
    S2/(mg·g-1)
    最高峰温
    Tmax/℃
    产油潜率
    (S1+S2)/(mg·g-1)
    wh-1 渭南5 1764.75 灰黑色泥岩 0.05 2.84 430 2.89
    wh-2 渭南6 1687.85 灰黑色泥岩 0.02 0.97 421 0.99
    wh-3 渭南11 1673.76 灰黑色泥岩 0.05 2.42 432 2.47
    wh-4 1669.76 灰黑色泥岩 0.03 1.32 422 1.35
    wh-5 渭南10 1479.16 灰黑色泥岩 0.01 0.17 426 0.18
    wh-6 1610.15 灰黑色泥岩 0.01 0.24 428 0.25
    wh-7 渭南8 1843.54 深灰色泥页岩 0.01 0.49 430 0.50
    wh-8 1845.83 深灰色泥岩 0 0.03 431 0.03
    wh-9 渭南9 1543.26 深灰色泥岩 0.01 0.16 431 0.17
    下载: 导出CSV 
    | 显示表格
    表  8  固市凹陷张家坡组镜质体反射率分析结果
    Table  8.  Vitrinite reflectance of hydrocarbon source rock in Zhangjiapo Formation in Gushi Sag
    样品号 井号 井深/m 岩性 测点数 Ro/%
    最小值 最大值 平均值
    wh-1 渭南5 1764.75 灰黑色泥岩 5 0.50 0.65 0.58
    wh-2 渭南6 1687.85 灰黑色泥岩 5 0.49 0.62 0.54
    wh-3 渭南11 1673.76 灰黑色泥岩 1 0.53
    wh-4 1669.76 灰黑色泥岩 1 0.49
    wh-5 渭南10 1479.16 灰黑色泥岩 1 0.59
    wh-6 1610.15 灰黑色泥岩 1 0.48
    wh-7 渭南8 1843.54 深灰色泥页岩 10 0.52 0.64 0.57
    wh-8 1845.83 深灰色泥岩 1 0.60
    wh-2 渭南9 1543.26 深灰色泥岩 8 0.50 0.68 0.59
    下载: 导出CSV 
    | 显示表格

    根据前人研究, 渭河盆地基底以渭河断裂为界, 断裂以北基底为下古生界碳酸盐岩地层, 断裂南部基底为秦岭北侧的太古界花岗岩和变质岩层[7]。固市凹陷沉积于渭河断裂之上, 在断裂南北均有分布, 因此凹陷南部基底为花岗岩和变质岩, 断裂北部基底属于下古生界碳酸盐岩地层的范围。

    固市凹陷西部三原凸起某探井中钻遇二叠系[8], 也佐证了固市凹陷北部基底有下古生界碳酸盐岩地层沉积。

    凹陷内深层蓝田—灞河组大量分布高热演化煤型裂解甲烷气与有机成因的CO2气, 证实固市凹陷北部鄂尔多斯南缘下部可能沉积高热演化的煤系地层, 经过水动力系统运移至凹陷中心, 而固市凹陷新生界烃源岩成熟度低, 难以大量生成CO2, 因此CO2来源也说明了该凹陷周边下部存在高热演化煤系地层。

    基础地质资料、地热井与水溶气井钻井资料显示, 固市凹陷新近系沉积厚度达数千米, 以河湖相沉积为主, 岩性组合为砂(砾)岩-泥灰岩组合, 表现为下粗上细的正旋回沉积特征, 即旋回下部河流相为良好的储集层, 上部为巨厚的湖相泥灰岩, 是良好的盖层, 纵向上构成了良好的储盖组合。自下而上发育2~3套下粗上细的储盖组合, 分别为高陵群、蓝田—灞河组、张家坡组[1]

    新近系张家坡组、蓝田—灞河组储层均为层状砂岩体, 属中、高孔隙-裂隙型储层, 砂岩孔隙性和渗透性好, 为主要的地热水赋水层段和水溶甲烷气成藏层段。钻探显示, 该区潜在油气藏的主要盖层岩性为湖相泥灰岩、粉砂质泥岩, 单层厚度一般为数米, 分布面积较广。

    高陵群早期为河流相, 晚期为湖相—河流相沉积, 其中冷水沟组岩性主要为紫红色泥岩、砂岩, 寇家沟组岩性为棕红色、桔黄色泥岩和灰白色、棕黄色砂岩。由下向上岩性变细, 构成一套储盖组合, 储层物性相对较好。

    蓝田—灞河组与高陵群具有相似的沉积相特征及岩性组合, 为一套红色调为主的砂泥岩交替沉积。其中蓝田组岩性主要为深红色黏土及棕红、灰白色砾岩, 属河湖相沉积; 灞河组是河流相为主的河湖相沉积, 上部以泥页岩为主, 普遍含石膏, 下部砂体发育。孔隙度平均15%左右; 渗透率一般在30×10-3 μm2以上。

    张家坡组为浅湖—半深湖相沉积, 以泥灰岩为主; 张家坡组砂岩储层渗透率普遍较大, 分布在128.5×10-3~1529.0×10-3 μm2之间, 平均386.5×10-3 μm2, 储层物性较好, 孔隙度在15.20%~42.30%, 平均29.65%, 相对较高; 非储集层岩性以泥灰岩为主, 尤其是上部泥灰岩厚度大, 分布面积广, 为该凹陷水溶天然气成藏的良好盖层。

    固市凹陷新生界发育多套良好储盖组合, 张家坡组又发现了储量丰富的非常规水溶甲烷生物气。该区张家坡组虽然埋藏深度不大, 深埋历史较短, 但其断裂体系发育, 具有良好的运移通道[9], 而且发育良好储盖结合, 为固市凹陷新生界生物气藏成藏提供了良好的地质基础。

    通过对地层水溶甲烷气碳同位素δ13C1及重烃的含量研究发现, 不同层位的水溶甲烷气成因类型不同。新近系张家坡组水溶甲烷气主要为有机成因生物气, 来源于本层含碳质较高的灰黑色泥灰岩生物分解, 为自生自储式; 下部蓝田—灞河组水溶甲烷气以未成熟的煤型热解气(煤型腐殖型热解气)为主, 来源于下部地层。

    对CO2碳同位素的分布范围和质量分数的含量进行分析得出δ13CCO2小于-10‰, 为典型的壳源型有机成因。

    结合CO2碳同位素和乙烷碳同位素分析认为, 蓝田—灞河组水溶甲烷气和CO2来源于下部地层的混合型气, 即下部地层可能存在有机成因的煤型热解气层系。

    责任编辑: 范二平
  • 图  1  1990年以来青藏高原发生的MW≥6.0强震的活动特征

    地震释放能(E)采用公式logE=5.24+1.44MW进行计算(美国地质调查局,https://www.usgs.gov/)
    a—强震分布图(DEM数据来源 https://www.gscloud.cn/search;国内的活动断层数据吴中海和周春景,2018;国外活动断层数据为遥感解译);b—强震的震源机制解(数据搜索自 https://www.globalcmt.or);c—强震的震级-时间(M-T)分布与地震累计释放能曲线

    Figure  1.  Characteristics of strong earthquakes with MW≥6.0 around the Qinghai-Tibet Plateau since 1990

    (a)Distribution map of strong earthquakes (DEM Data from https://www.gscloud.cn/search); domestic active fault data from Wu and Zhou, 2018, and foreign active fault data from remote sensing interpretation); (b) Seismic source mechanism solutions of strong earthquakes (data retrieved from https://www.globalcmt.org); (c) Magnitude-time (M-T) distribution of strong earthquakes and cumulative seismic energy release curve (Dark purple line)
    The seismic energy release (E) is calculated using the formula logE=5.24+1.44MW (U.S. Geological Survey, https://www.usgs.gov/programs/earthquake-hazards/earthquake-magnitude-energy-release-and-shaking-intensity).

    图  2  青藏高原及邻区的活动构造变形样式与现今地壳运动状态(Molnar and Lyon-Caen, 1989; Zhang et al., 2004吴中海和周春景,2018)

    Ⅰ—柴达木断块;Ⅱ—巴颜喀拉断块;Ⅲ—藏东-川滇-禅泰断块

    Figure  2.  Active tectonic deformation patterns and present crustal movement around the Qinghai-Tibet Plateau and adjacent regions (Molnar and Lyon-Caen, 1989; Zhang et al., 2004; Wu and Zhou, 2018)

    I-Qaidam Block; Ⅱ-Bayan Har Block; Ⅲ-eastern Tibetan-Sichuan-Yunnan-Chantai Block

    图  3  青藏高原主要活动断裂与构造体系以及1990年以来发生的MW≥6.5强震活动(震源机制解和地震数据引自美国地质调查局(USGS)相关网站(https://earthquake.usgs.gov/);国内部分活动断层数据吴中海和周春景,2018;国外活动断层数据为遥感解译;断层滑动速率引自Van Der Woerd et al., 2002Vigny et al., 2003Cowgill,2007Ader et al., 2012; Cowgill, 2007; Ader et al., 2012Chevalier et al., 20122017Liu et al., 2020; Li et al., 2021; 胡萌萌等, 2023)

    1—青藏高原中南部的近东西向伸展变形构造体系;2—由鲜水河-小江断裂带及藏东-川滇断块区构成的挤出构造体系;3—由东昆仑断裂带、龙门山断裂带及巴颜喀拉断块构成的挤出构造体系;4—由阿尔金-祁连-海原逆冲走滑边界及柴达木断块构成的挤出构造体系;5—走滑断裂;6—逆冲断裂;7—正断层;8—GPS观测的主要断块现今运动状态及速率(数据引自Zhang et al., 2004);9—震源机制解(其中粗线条代表发震断层节面);10—6.5≤MW < 7.0地震;11—7.0≤MW < 8.0地震

    Figure  3.  Main active faults and tectonic systems around the Qinghai-Tibet Plateau and strong earthquake events with MW≥6.5 since 1990 (seismic source mechanisms and earthquake data from relevant websites of the United States Geological Survey (USGS); some domestic active fault data from Wu and Zhou, 2018; foreign active fault data from remote sensing interpretation; fault slip rates from Van Der Woerd et al., 2002; Vigny et al., 2003; Cowgill, 2007; Ader et al., 2012; Chevalier et al., 2012, 2017; Liu et al., 2020; Li et al., 2021; Hu et al., 2023)

    1-Nearly EW-trending extensional deformation tectonic system in the central and southern Qinghai-Tibet Plateau; 2-Extrusion tectonic system composed of the Xianshuihe-Xiaojiang Fault Zone and the eastern Tibetan-Sichuan-Yunnan Block; 3-Extrusion tectonic system composed of the Dongkunlun Fault Zone, Longmenshan Fault Zone, and Bayan Har Block; 4-Extrusion tectonic system composed of the Altyn Tagh-Qilian-Haiyuan thrust and strike-slip boundary and Qaidam Block; 5-Strike-slip faults; 6-Thrust faults; 7-Normal faults; 8-Current movement and velocity of main blocks observed by GPS (data from Zhang et al., 2004); 9-Seismic source mechanisms (thick lines represent fault planes); 10-Earthquakes with 6.5≤MW < 7.0; 11-Earthquakes with 7.0≤MW < 8.0

    图  4  青藏高原最近一轮强震活动过程中不同类型断裂带和构造单元的地震能释放量统计图

    Figure  4.  Statistical map of seismic energy release from different types of active fault zones and tectonic units during the recent strong earthquakes with MW≥6.5 around the Qinghai-Tibet Plateau since 1990

    图  5  土耳其及邻区公元1999—2023年间的MW>7.0大震序列与陆陆碰撞-挤出构造体系关系图(地震与震源机制解数据源自美国地质调查局(USGS)相关网站https://earthquake.usgs.gov/)

    NAF—北安纳托利亚断裂带;EAF—东安纳托利亚断裂带;DSF—死海断裂;NAT—北爱琴海海槽
    a—安纳托利亚及周边板块现今运动状态(Armijo et al., 1999);b—土耳其安纳托利亚及邻区的陆陆碰撞-挤出构造体系及其最近一轮大地震迁移过程

    Figure  5.  Relationship between the sequence of MW>7.0 earthquakes and the continental collision-extrusion tectonic system in Turkey and neighboring areas from 1999 to 2023 (earthquake and seismic source mechanism data sourced from relevant websites of the United States Geological Survey (USGS) at https://earthquake.usgs.gov/)

    (a)Current motion status of Anatolia and surrounding plates (from Armijo et al., 1999); (b) Continental collision-extrusion tectonic system and the latest seismic migration process in Anatolia, Turkey, and neighboring areas

    图  6  刚性块体碰撞-挤出活动构造体系及控震特征模式图

    Figure  6.  Diagram showing the collision-extrusion active tectonic system of rigid block and its earthquake-controlling pattern

    表  1  1990年以来青藏高原22次MW≥6.5强震序列及其主要参数

    Table  1.   Sequence and main parameters of 22 strong earthquakes with MW≥6.5 since 1990 around the Qinghai-Tibet Plateau

    序号 发震时期
    (年-月-日)
    仪器震中 地震发生地 矩震级
    (MW)
    震源
    深度/
    km
    发震构造 同震震破裂 参考文献
    北纬/
    (°)
    东经/
    (°)
    断层名称 断层性质 长度/km 最大位移/m
    水平 垂直
    1 2022-09-05 29.68 102.24 四川泸定 6.6 12 鲜水河断裂带磨西段 左旋走滑 22 2.23 吴伟伟等, 2023; 韩炳权等, 2023
    2 2022-01-07 37.83 101.29 青海门源 6.6 13 海原断裂带冷龙岭-托莱山段 左旋走滑 23 3.2 0.5~1.0 韩帅等, 2022
    3 2021-05-21 34.60 98.25 青海玛多 7.3 10 东昆仑断裂带分支——昆仑山口-江错断裂东南段 左旋走滑 151~154 2.8~4.8 2.0 盖海龙等, 2021潘家伟等, 2021; Pan et al., 2022; Ren et al., 2022; Fan et al., 2022
    4 2017-08-08 33.19 103.86 四川九寨沟 6.5 9 东昆仑断裂带东段的塔藏断裂 左旋走滑 25~40 0.74~1.1 单新建等, 2017; 季灵运等, 2017; 郑绪君等, 2017; 陈威等, 2018; 申文豪等, 2019;
    5 2015-05-12 27.81 86.07 尼泊尔珠峰登山者营地 7.3 15 喜马拉雅主前缘逆冲断裂带尼泊尔段 低角度逆冲 40 3.5 (倾滑) 吴中海等, 2015
    6 2015-04-26 27.77 86.02 尼泊尔(余震) 6.7 22.91 喜马拉雅主前缘逆冲断裂带尼泊尔段 低角度逆冲 USGS
    7 2015-04-25 28.22 84.82 尼泊尔(余震) 6.6 10 喜马拉雅主前缘逆冲断裂带尼泊尔段 低角度逆冲 USGS
    8 2015-04-25 28.23 84.73 尼泊尔博克拉 7.8 8.22 喜马拉雅主前缘逆冲断裂带尼泊尔段 低角度逆冲 140 5.3 (倾滑) 吴中海等, 2015
    9 2014-02-12 35.91 82.59 新疆于田 6.9 10 阿尔金断裂西南分支:南硝尔库勒断裂、硝尔库勒断裂及阿什库勒断裂 左旋走滑 37.1 0.9 袁兆德等, 2021
    10 2013-04-20 30.31 102.89 四川芦山 6.6 14 龙门山构造带南段的盲逆断层 逆断层 20~28 1.5~1.6 倾滑) 王卫民等, 2013; 刘成利等, 2013
    11 2011-09-18 27.73 88.16 印度锡金邦 6.9 50 喜马拉雅主前缘逆冲断裂带锡金段 走滑断层 USGS
    12 2010-04-13 33.17 96.55 青海玉树 6.9 17 玉树-甘孜断裂带隆宝湖-结古镇段 左旋走滑 46 2.4 0.6 周春景等, 2014
    13 2008-08-25 30.90 83.52 西藏仲巴县 6.7 12 仲巴-改则裂谷中段的帕龙错地堑 左旋正断层 50 1.15~1.34 (倾滑) 邱江涛等, 2019
    14 2008-05-12 31.00 103.32 四川汶川 7.9 19 龙门山构造带的映秀-北川断裂和彭县-灌县断裂 右旋逆断层 240 4.9 6.5 Xu et al., 2009
    15 2008-03-20 35.49 81.47 新疆于田 6.6 14 阿尔金断裂西南分支局部拉分处的雪山西麓断裂 左旋正断层 31 1.8 2.0 徐锡伟等, 2011;
    16 2001-11-14 35.95 90.54 青海太阳湖 7.8 10 东昆仑断裂系库塞湖-昆仑山口段 左旋走滑 426 8.0 Xu et al., 2006
    17 1999-03-28 30.51 79.40 印度北安恰尔 6.6 15 喜马拉雅主前缘逆冲断裂带印度乌塔兰恰尔邦段 低角度逆冲 USGS
    18 1997-11-08 35.07 87.33 西藏玛尼 7.5 33 东昆仑断裂系西段分支——玛尔盖茶卡断裂 左旋走滑 170~185 5.5~7.5 Wang et al., 2007; Ren and Zhang, 2019
    19 1996-11-19 35.35 78.13 新疆和田喀喇昆仑山口 6.9 33 阿尔金断裂系西段分支断裂 左旋走滑 61 Wang and Wright, 2012
    20 1996-02-03 27.29 100.28 云南丽江大具乡 6.6 11.1 哈巴-玉龙雪山东麓断裂 正断层 33 0.78 秦嘉政等, 1997
    21 1991-10-19 30.78 78.77 印度代赫里 6.8 10.3 喜马拉雅主前缘逆冲断裂带印度乌塔兰恰尔邦段 低角度逆冲 USGS
    22 1990-04-26 35.99 100.25 青海共和 6.5 8.1 青海共和盆地北西西向隐伏逆断层 左旋逆断层 40 0.05 0.79 (倾滑) 赵明等, 1992
    注:①地震数据源自美国地质调查局(USGS)相关网站(https://earthquake.usgs.gov/earthquakes/map/);②数据采集日期为1900-01-01—2023-08-30,震级MW≥6.5,范围为北纬26.037°~40.044°、东经76.025°~106.084°;③地震破裂若具有同震地表破裂数据则使用地表调查结果,否则采用地震反演或InSAR等形变观测的震源区破裂参数
    下载: 导出CSV
  • ADER T, AVOUAC J P, JING L Z, et al., 2012. Convergence rate across the Nepal Himalaya and interseismic coupling on the Main Himalayan Thrust: implications for seismic hazard[J]. Journal of Geophysical Research: Solid Earth, 117(B4): B04403, doi: 10.1029/2011JB009071.
    ARMIJO R, MEYER B, HUBERT A, et al., 1999. Westward propagation of the North Anatolian fault into the northern Aegean: timing and kinematics[J]. Geology, 27(3): 267-270, doi: 10.1130/0091-7613(1999)027<0267:WPOTNA>2.3.CO;2.
    CHEN W, QIAO X J, LIU G, et al., 2018. Study on the coseismic slip model and Coulomb stress of the 2017 Jiuzhaigou MS7.0 earthquake constrained by GNSS and InSAR measurements[J]. Chinese Journal of Geophysics, 61(5): 2122-2132, doi: 10.6038/cjg2018L0613.(in Chinese with English abstract)
    CHEVALIER M L, TAPPONNIER P, VAN DER WOERD J, et al., 2012. Spatially constant slip rate along the southern segment of the Karakorum fault since 200 ka[J]. Tectonophysics, 530-531: 152-179, doi: 10.1016/j.tecto.2011.12.014.
    CHEVALIER M L, PAN J W, LI H B, et al., 2017. First tectonic-geomorphology study along the Longmu-Gozha Co fault system, western Tibet[J]. Gondwana Research, 41: 411-424, doi: 10.1016/j.gr.2015.03.008.
    COWGILL E, 2007. Impact of riser reconstructions on estimation of secular variation in rates of strike-slip faulting: revisiting the Cherchen River site along the Altyn Tagh Fault, NW China[J]. Earth and Planetary Science Letters, 254(3-4): 239-255, doi: 10.1016/j.epsl.2006.09.015.
    DENG Q D, ZHANG P Z, RAN Y K, et al., 2003. Active tectonics and earthquake activities in China[J]. Earth Science Frontiers, 10(special issue): 66-73. (in Chinese with English abstract)
    DENG Q D, GAO X, CHEN G H, et al., 2010. Recent tectonic activity of Bayankala fault-block and the Kunlun-Wenchuan earthquake series of the Tibetan Plateau[J]. Earth Science Frontiers, 17(5): 163-178. (in Chinese with English abstract)
    DENG Q D, CHENG S P, MA J, et al., 2014. Seismic activities and earthquake potential in the Tibetan Plateau[J]. Chinese Journal of Geophysics, 57(7): 2025-2042, doi: 10.6038/cjg20140701.(in Chinese with English abstract)
    DEWEY J F, SHACKLETON R M, CHANG C F, et al., 1988. The tectonic evolution of the Tibetan Plateau[J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 327(1594): 379-413.
    ENGLAND P, MOLNAR P, 1990. Right-lateral shear and rotation as the explanation for strike-slip faulting in eastern Tibet[J]. Nature, 344(6262): 140-142. doi: 10.1038/344140a0
    FAN X R, ZHANG G H, ZHAO D Z, et al., 2022. Fault geometry and kinematics of the 2021 Mw 7.3 Maduo earthquake from aftershocks and InSAR observations[J]. Frontiers in Earth Science, 10: 993984, doi: 10.3389/feart.2022.993984.
    GAI H L, YAO S H, YANG L P, et al., 2021. Characteristics and causes of coseismic surface rupture triggered by the "5.22" MS 7.4 Earthquake in Maduo, Qinghai, and their significance[J]. Journal of Geomechanics, 27(6): 899-912, doi: 10.12090/j.issn.1006-6616.2021.27.06.073.(in Chinese with English abstract)
    HAN B Q, LIU Z J, CHEN B, et al., 2023. Coseismic deformation and slip distribution of the 2022 Luding Mw 6.6 earthquake revealed by InSAR observations[J]. Geomatics and Information Science of Wuhan University, 48(1): 36-46, doi: 10.13203/J.whugis20220636.(in Chinese with English abstract)
    HAN S, WU Z H, GAO Y, et al., 2022. Surface rupture investigation of the 2022 Menyuan MS 6.9 Earthquake, Qinghai, China: implications for the fault behavior of the Lenglongling fault and regional intense earthquake risk[J]. Journal of Geomechanics, 28(2): 155-168, doi: 10.12090/j.issn.1006-6616.2022013.(in Chinese with English abstract)
    HU M M, WU Z H, LI J C, et al., 2023. The late Quaternary strike-slip rate of the Qiaojia segment of the Xiaojiang fault zone[J]. Acta Geologica Sinica, 97(1): 16-29, doi: 10.19762/j.cnki.dizhixuebao.2022188.(in Chinese with English abstract)
    JI L Y, LIU C J, XU J, et al., 2017. InSAR observation and inversion of the seismogenic fault for the 2017 Jiuzhaigou MS7.0 earthquake in China[J]. Chinese Journal of Geophysics, 60(10): 4069-4082, doi: 10.6038/cjg20171032.(in Chinese with English abstract)
    LEE J S, 1973a. Seismological geology[M]. Beijing: Science Press. (in Chinese)
    LEE J S, 1973b. An introduction to geomechanics[M]. Beijing: Science Press. (in Chinese)
    LI H, CHEVALIER M L, TAPPONNIER P, et al., 2021. Block tectonics across western Tibet and multi-millennial recurrence of great earthquakes on the Karakax fault[J]. Journal of Geophysical Research: Solid Earth, 126(12): e2021JB022033, doi: 10.1029/2021JB022033.
    LIU C L, ZHENG Y, GE C, et al., 2013. Rupture process of the MS7.0 Lushan earthquake, 2013[J]. Science China Earth Sciences, 56(7): 1187-1192, doi: 10.1007/s11430-013-4639-9.
    LIU J R, REN Z K, ZHENG W J, et al., 2020. Late Quaternary slip rate of the Aksay segment and its rapidly decreasing gradient along the Altyn Tagh fault[J]. Geosphere, 16(6): 1538-1557, doi: 10.1130/GES02250.1.
    MOLNAR P, TAPPONNIER P, 1978. Active tectonics of Tibet[J]. Journal of Geophysical Research: Solid Earth, 83(B11): 5361-5375. doi: 10.1029/JB083iB11p05361
    MOLNAR P, LYON-CAENT H, 1989. Fault plane solutions of earthquakes and active tectonics of the Tibetan Plateau and its margins[J]. Geophysical Journal International, 99(1): 123-153. doi: 10.1111/j.1365-246X.1989.tb02020.x
    PAN J W, BAI M K, LI C, et al., 2021. Coseismic surface rupture and seismogenic structure of the 2021-05-22 Maduo (Qinghai) MS7.4 earthquake[J]. Acta Geologica Sinica, 95(6): 1655-1670, doi: 10.19762/j.cnki.dizhixuebao.2021166.(in Chinese with English abstract)
    PAN J W, LI H B, CHEVALIER M L, et al., 2022. Co-seismic rupture of the 2021, MW7.4 Maduo earthquake (northern Tibet): short-cutting of the Kunlun fault big bend[J]. Earth and Planetary Science Letters, 594: 117703, doi: 10.1016/j.epsl.2022.117703.
    QIN J Z, LIU Z Y, ZHANG J W, 1997. Study on the rupture process of the M7.0 Lijiang earthquake by using seismic scaling[J]. Journal of Seismological Research, 20(1): 47-57. (in Chinese with English abstract)
    QIU J T, LIU L, LIU C J, et al., 2019. The deformation of the 2008 Zhongba earthquakes and the tectonic movement revealed[J]. Seismology and Geology, 41(2): 481-498, doi: 10.3969/j.issn.0253-4967.2019.02.014.(in Chinese with English abstract)
    REID H F, 1911. The elastic-rebound theory of earthquakes[J]. Bulletin of the Department of Geology, University of California Publications, 6(19): 413-444.
    REILINGER R E, MCCLUSKY S C, ORAL M B, et al., 1997. Global Positioning System measurements of present-day crustal movements in the Arabia-Africa-Eurasia plate collision zone[J]. Journal of Geophysical Research: Solid Earth, 102(B5): 9983-9999. doi: 10.1029/96JB03736
    REN J J, XU X W, ZHANG G W, et al., 2022. Coseismic surface ruptures, slip distribution, and 3D seismogenic fault for the 2021 Mw 7.3 Maduo earthquake, central Tibetan Plateau, and its tectonic implications[J]. Tectonophysics, 827: 229275, doi: 10.1016/j.tecto.2022.229275.
    REN Z K, ZHANG Z Q, 2019. Structural analysis of the 1997 Mw 7.5 Manyi earthquake and the kinematics of the Manyi fault, central Tibetan Plateau[J]. Journal of Asian Earth Sciences, 179: 149-164, doi: 10.1016/j.jseaes.2019.05.003.
    SHAN X J, QU C Y, GONG W Y, et al., 2017. Coseismic deformation field of the Jiuzhaigou MS7.0 earthquake from Sentinel-1A InSAR data and fault slip inversion[J]. Chinese Journal of Geophysics, 60(12): 4527-4536, doi: 10.6038/cjg20171201.(in Chinese with English abstract)
    SHEN W H, LI Y S, JIAO Q S, et al., 2019. Joint inversion of strong motion and InSAR/GPS data for fault slip distribution of the Jiuzhaigou 7.0 earthquake and its application in seismology[J]. Chinese Journal of Geophysics, 62(1): 115-129, doi: 10.6038/cjg2019L0541.(in Chinese with English abstract)
    TAPPONNIER P, MOLNAR P, 1977. Active faulting and tectonics in China[J]. Journal of Geophysical Research, 82(20): 2905-2930. doi: 10.1029/JB082i020p02905
    TAPPONNIER P, PELTZER G, ARMIJO R, 1986. On the mechanics of the collision between India and Asia[J]. Geological Society, London, Special Publications, 19(1): 113-157. doi: 10.1144/GSL.SP.1986.019.01.07
    TAPPONNIER P, RYERSON F J, VAN DER WOERD J, et al., 2001. Long-term slip rates and characteristic slip: keys to active fault behaviour and earthquake hazard[J]. Comptes Rendus de l' Académie des Sciences-Series ⅡA-Earth and Planetary Science, 333(9): 483-494.
    TAYLOR M, YIN A, RYERSON F J, et al., 2003. Conjugate strike-slip faulting along the Bangong-Nujiang suture zone accommodates coeval east-west extension and north-south shortening in the interior of the Tibetan Plateau[J]. Tectonics, 22(4): 1044, doi: 10.1029/2002TC001361.
    VAN DER WOERD J, TAPPONNIER P, RYERSON F J, et al., 2002. Uniform postglacial slip-rate along the central 600 km of the Kunlun Fault (Tibet), from 26Al, 10Be, and 14C dating of riser offsets, and climatic origin of the regional morphology[J]. Geophysical Journal International, 148(3): 356-388, doi: 10.1046/j.1365-246x.2002.01556.x.
    VIGNY C, SOCQUET A, RANGIN C, et al., 2003. Present-day crustal deformation around Sagaing fault, Myanmar[J]. Journal of Geophysical Research: Solid Earth, 108(B11): 2533, doi: 10.1029/2002JB001999.
    WANG H, XU C J, GE L L, 2007. Coseismic deformation and slip distribution of the 1997 MW7.5 Manyi, Tibet, earthquake from InSAR measurements[J]. Journal of Geodynamics, 44(3-5): 200-212, doi: 10.1016/j.jog.2007.03.003.
    WANG H, WRIGHT T J, 2012. Satellite geodetic imaging reveals internal deformation of western Tibet[J]. Geophysical Research Letters, 39(7): L07303.
    WANG W M, HAO J L, YAO Z X, 2013. Preliminary result for rupture process of Apr. 20, 2013, Lushan Earthquake, Sichuan, China[J]. Chinese Journal of Geophysics, 56(4): 1412-1417, doi: 10.6038/cjg20130436.(in Chinese with English abstract)
    WU W W, MENG G J, LIU T, et al., 2023. Coseismic displacement field and slip distribution of the 2022 Luding M6.8 earthquake derived from GNSS observations[J]. Chinese Journal of Geophysics, 66(6): 2306-2321, doi: 10.6038/cjg2023Q0826.(in Chinese with English abstract)
    WU Z H, YE P S, BAROSH P J, et al., 2011. The October 6, 2008 Mw 6.3 magnitude Damxung earthquake, Yadong-Gulu rift, Tibet, and implications for present-day crustal deformation within Tibet[J]. Journal of Asian Earth Sciences, 40(4): 943-957, doi: 10.1016/j.jseaes.2010.05.003.
    WU Z H, ZHAO G M, 2013. The earthquake prediction status and related problems: a review[J]. Geological Bulletin of China, 32(10): 1493-1512. (in Chinese with English abstract) doi: 10.3969/j.issn.1671-2552.2013.10.002
    WU Z H, ZHAO G M, LONG C X, et al., 2014. The seismic hazard assessment around South-East area of Qinghai-Xizang Plateau: a preliminary results from active tectonics system analysis[J]. Acta Geologica Sinica, 88(8): 1401-1416. (in Chinese with English abstract)
    WU Z H, LONG C X, FAN T Y, et al., 2015. The arc rotational-shear active tectonic system on the southeastern margin of Tibetan Plateau and its dynamic characteristics and mechanism[J]. Geological Bulletin of China, 34(1): 1-31. (in Chinese with English abstract)
    WU Z H, ZHAO G M, LIU J, 2016. Tectonic genesis of the 2015 Ms8.1 Nepal great earthquake and its influence on future strong earthquake tendency of Tibetan Plateau and its adjacent region[J]. Acta Geologica Sinica, 90(6): 1062-1085. (in Chinese with English abstract) doi: 10.3969/j.issn.0001-5717.2016.06.002
    WU Z H, ZHOU C J, 2018. Distribution map of active faults in China and its adjacent sea area (1 ∶ 5, 000, 000)[M]//HAO A B, LI R M. Atlas sets of geological environment of China. Beijing: Geological Publishing House. (in Chinese)
    WU Z H, HU M M, 2019. Neotectonics, active tectonics and earthquake geology: terminology, applications and advances[J]. Journal of Geodynamics, 127: 1-15. doi: 10.1016/j.jog.2019.01.007
    WU Z H, 2022. Active faults and engineering applications Ⅰ: definition and classification[J]. Journal of Earth Sciences and Environment, 44(6): 922-947, doi: 10.19814/j.jese.2022.09049.(in Chinese with English abstract)
    WU Z H, 2024. The MW≥6.5 strong earthquake events since 1990 around the Tibetan Plateau and control-earthquake effect of active tectonic system[J]. Progress in Earthquake Sciences, 54(1): 10-24, doi: 10.19987/j.dzkxjz.2023-170.(in Chinese with English abstract)
    WU Z H, HU M M, 2024. Definitions, classification schemes for active faults, and their application[J]. Geosciences, 14(3): 68, doi: 10.3390/geosciences14030068.
    XU X W, YU G H, KLINGER Y, et al., 2006. Reevaluation of surface rupture parameters and faulting segmentation of the 2001 Kunlunshan earthquake (Mw7.8), northern Tibetan Plateau, China[J]. Journal of Geophysical Research: Solid Earth, 111(B5): B05316, doi: 10.1029/2004JB003488.
    XU X W, WEN X Z, YU G H, et al., 2009. Coseismic reverse- and oblique-slip surface faulting generated by the 2008 Mw 7.9 Wenchuan earthquake, China[J]. Geology, 37(6): 515-518, doi: 10.1130/G25462A.1.
    XU X W, TAN X B, WU G D, et al., 2011. Surface rupture features of the 2008 Yutian MS7.3 earthquake and its tectonic nature[J]. Seismology and Geology, 33(2): 462-471. (in Chinese with English abstract)
    YUAN Z D, LIU-ZENG J, LI X, et al., 2021. Detailed mapping of the surface rupture of the 12 February 2014 Yutian MS7.3 earthquake, Altyn Tagh fault, Xinjiang, China[J]. Science China Earth Sciences, 64(1): 127-147, doi: 10.1007/s11430-020-9673-6.
    ZHANG J L, REN J W, CHEN C Y, et al., 2014. The Late Pleistocene activity of the eastern part of east Kunlun fault zone and its tectonic significance[J]. Science China Earth Sciences, 57(3): 439-453, doi: 10.1007/s11430-013-4759-2.
    ZHANG P Z, DENG Q D, ZHANG G M, et al., 2003. Active tectonic blocks and strong earthquakes in the continent of China[J]. Science in China Series D: Earth Sciences, 46(2): 13-24.
    ZHANG P Z, SHEN Z K, WANG M, et al., 2004. Continuous deformation of the Tibetan Plateau from global positioning system data[J]. Geology, 32(9): 809-812, doi: 10.1130/G20554.1.
    ZHANG P Z, DENG Q D, ZHANG Z Q, et al., 2013. Active faults, earthquake hazards and associated geodynamic processes in continental China[J]. Scientia Sinica Terrae, 43(10): 1607-1620. (in Chinese) doi: 10.1360/zd-2013-43-10-1607
    ZHAO G M, WU Z H, LIU J, et al., 2019. The time space distribution characteristics and migration law of large earthquakes in the Indiam-Eurasian plate collision deformation area[J]. Journal of Geomechanics, 25(3): 324-340, doi: 10.12090/j.issn.1006-6616.2019.25.03.030.(in Chinese with English abstract)
    ZHAO G M, WU Z H, LIU J, 2020. The types, characteristics and mechanism of seismic migration[J]. Journal of Geomechanics, 26(1): 13-32, doi: 10.12090/j.issn.1006-6616.2020.26.01.002.(in Chinese with English abstract)
    ZHAO M, CHEN Y T, GONG S W, et al., 1992. Inversion of focal mechanism of the Gonghe earthquake in April 26, 1990 using leveling data[J]. Crustal Deformation and Earthquake, 12(4): 1-11. (in Chinese with English abstract)
    ZHENG W J, ZHANG P Z, YUAN D Y, et al., 2019. Basic characteristics of active tectonics and associated geodynamic processes in continental China[J]. Journal of Geomechanics, 25(5): 699-721, doi: 10.12090/j.issn.1006-6616.2019.25.05.062.(in Chinese with English abstract)
    ZHENG X J, ZHANG Y, WANG R J, 2017. Estimating the rupture process of the 8 August 2017 Jiuzhaigou earthquake by inverting strong-motion data with IDS method[J]. Chinese Journal of Geophysics, 60(11): 4421-4430, doi: 10.6038/cjg20171128.(in Chinese with English abstract)
    ZHOU C J, WU Z H, NIMA C R, et al., 2014. Structural analysis of the co-seismic surface ruptures associated with the Yushu Ms7.1 earthquake, Qinghai Province[J]. Geological Bulletin of China, 33(4): 551-566, doi: 10.3969/j.issn.1671-2552.2014.04.011.(in Chinese with English abstract)
    陈威, 乔学军, 刘刚, 等, 2018. 基于GNSS与InSAR约束的九寨沟MS7.0地震滑动模型及其库仑应力研究[J]. 地球物理学报, 61(5): 2122-2132, doi: 10.6038/cjg2018L0613.
    邓起东, 张培震, 冉勇康, 等, 2003. 中国活动构造与地震活动[J]. 地学前缘, 10(特刊): 66-73. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY2003S1011.htm
    邓起东, 高翔, 陈桂华, 等, 2010. 青藏高原昆仑—汶川地震系列与巴颜喀喇断块的最新活动[J]. 地学前缘, 17(5): 163-178. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201005017.htm
    邓起东, 程绍平, 马冀, 等, 2014. 青藏高原地震活动特征及当前地震活动形势[J]. 地球物理学报, 57(7): 2025-2042, doi: 10.6038/cjg20140701.
    盖海龙, 姚生海, 杨丽萍, 等, 2021. 青海玛多"5·22"MS7.4级地震的同震地表破裂特征、成因及意义[J]. 地质力学学报, 27(6): 899-912, doi: 10.12090/j.issn.1006-6616.2021.27.06.073.
    韩炳权, 刘振江, 陈博, 等, 2023.2022年泸定Mw 6.6地震InSAR同震形变与滑动分布[J]. 武汉大学学报(信息科学版), 48(1): 36-46, doi: 10.13203/J.whugis20220636.
    韩帅, 吴中海, 高扬, 等, 2022.2022年1月8日青海门源MS 6.9地震地表破裂考察的初步结果及对冷龙岭断裂活动行为和区域强震危险性的启示[J]. 地质力学学报, 28(2): 155-168, doi: 10.12090/j.issn.1006-6616.2022013.
    胡萌萌, 吴中海, 李家存, 等, 2023. 小江断裂带巧家段晚第四纪走滑速率研究[J]. 地质学报, 97(1): 16-29, doi: 10.19762/j.cnki.dizhixuebao.2022188.
    季灵运, 刘传金, 徐晶, 等, 2017. 九寨沟MS7.0地震的InSAR观测及发震构造分析[J]. 地球物理学报, 60(10): 4069-4082, doi: 10.6038/cjg20171032.
    李四光, 1973a. 地震地质[M]. 北京: 科学出版社.
    李四光, 1973b. 地质力学概论[M]. 北京: 科学出版社.
    刘成利, 郑勇, 葛粲, 等, 2013.2013年芦山7.0级地震的动态破裂过程[J]. 中国科学: 地球科学, 43(6): 1020-1026. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201306010.htm
    潘家伟, 白明坤, 李超, 等, 2021.2021年5月22日青海玛多MS7.4地震地表破裂带及发震构造[J]. 地质学报, 95(6): 1655-1670, doi: 10.19762/j.cnki.dizhixuebao.2021166.
    秦嘉政, 刘祖荫, 张俊伟, 1997. 用地震标定律研究丽江7.0级地震的破裂过程[J]. 地震研究, 20(1): 47-57. https://www.cnki.com.cn/Article/CJFDTOTAL-DZYJ701.006.htm
    邱江涛, 刘雷, 刘传金, 等, 2019.2008年仲巴地震形变及其揭示的构造运动[J]. 地震地质, 41(2): 481-498, doi: 10.3969/j.issn.0253-4967.2019.02.014.
    单新建, 屈春燕, 龚文瑜, 等, 2017.2017年8月8日四川九寨沟7.0级地震InSAR同震形变场及断层滑动分布反演[J]. 地球物理学报, 60(12): 4527-4536, doi: 10.6038/cjg20171201.
    申文豪, 李永生, 焦其松, 等, 2019. 联合强震记录和InSAR/GPS结果的四川九寨沟7.0级地震震源滑动分布反演及其地震学应用[J]. 地球物理学报, 62(1): 115-129, doi: 10.6038/cjg2019L0541.
    王卫民, 郝金来, 姚振兴, 2013.2013年4月20日四川芦山地震震源破裂过程反演初步结果[J]. 地球物理学报, 56(4): 1412-1417, doi: 10.6038/cjg20130436.
    吴伟伟, 孟国杰, 刘泰, 等, 2023.2022年泸定6.8级地震GNSS同震形变场及其约束反演的破裂滑动分布[J]. 地球物理学报, 66(6): 2306-2321, doi: 10.6038/cjg2023Q0826.
    吴中海, 赵根模, 2013. 地震预报现状及相关问题综述[J]. 地质通报, 32(10): 1493-1512. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD201310002.htm
    吴中海, 赵根模, 龙长兴, 等, 2014. 青藏高原东南缘现今大震活动特征及其趋势: 活动构造体系角度的初步分析结果[J]. 地质学报, 88(8): 1401-1416. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201408004.htm
    吴中海, 龙长兴, 范桃园, 等, 2015. 青藏高原东南缘弧形旋扭活动构造体系及其动力学特征与机制[J]. 地质通报, 34(1): 1-31. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD201501002.htm
    吴中海, 赵根模, 刘杰, 2016.2015年尼泊尔Ms8.1地震构造成因及对青藏高原及邻区未来强震趋势的影响[J]. 地质学报, 90(6): 1062-1085. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201606003.htm
    吴中海, 周春景, 2018. 中国及毗邻海区活动断裂分布图(1 ∶ 500万)[M]//郝爱兵, 李瑞敏. 中国地质环境图系(图件编号: 00-01-05). 北京: 地质出版社.
    吴中海, 2022. 活断层与工程应用I: 定义与分类[J]. 地球科学与环境学报, 44(6): 922-947, doi: 10.19814/j.jese.2022.09049.
    吴中海, 2024. 青藏高原1990年以来的MW≥6.5强震事件及活动构造体系控震效应[J]. 地震科学进展, 54(1): 10-24, doi: 10.19987/j.dzkxjz.2023-170.
    徐锡伟, 谭锡斌, 吴国栋, 等, 2011.2008年于田MS7.3地震地表破裂带特征及其构造属性讨论[J]. 地震地质, 33(2): 462-471. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDZ201102024.htm
    袁兆德, 刘静, 李雪, 等, 2021.2014年新疆于田MS7.3地震地表破裂带精细填图及其破裂特征[J]. 中国科学: 地球科学, 51(2): 276-298, doi: 10.1360/SSTe-2020-0100.
    张军龙, 任金卫, 陈长云, 等, 2014. 东昆仑断裂带东部晚更新世以来活动特征及其大地构造意义[J]. 中国科学: 地球科学, 44(4): 654-667. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201404008.htm
    张培震, 邓起东, 张国民, 等, 2003. 中国大陆的强震活动与活动地块[J]. 中国科学(D辑), 33(S1): 12-20. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200407000.htm
    张培震, 邓起东, 张竹琪, 等, 2013. 中国大陆的活动断裂、地震灾害及其动力过程[J]. 中国科学: 地球科学, 43(10): 1607-1620. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201310005.htm
    赵根模, 吴中海, 刘杰, 等, 2019. 印度-欧亚板块碰撞变形区的大地震时空分布特征与迁移规律[J]. 地质力学学报, 25(3): 324-340, doi: 10.12090/j.issn.1006-6616.2019.25.03.030.
    赵根模, 吴中海, 刘杰, 2020. 地震迁移的类型、特征及机制讨论[J]. 地质力学学报, 26(1): 13-32, doi: 10.12090/j.issn.1006-6616.2020.26.01.002.
    赵明, 陈运泰, 巩守文, 等, 1992. 用水准测量资料反演1990年青海共和地震的震源机制[J]. 地壳形变与地震, 12(4): 1-11. https://www.cnki.com.cn/Article/CJFDTOTAL-DKXB199204000.htm
    郑文俊, 张培震, 袁道阳, 等, 2019. 中国大陆活动构造基本特征及其对区域动力过程的控制[J]. 地质力学学报, 25(5): 699-721, doi: 10.12090/j.issn.1006-6616.2019.25.05.062.
    郑绪君, 张勇, 汪荣江, 2017. 采用IDS方法反演强震数据确定2017年8月8日九寨沟地震的破裂过程[J]. 地球物理学报, 60(11): 4421-4430, doi: 10.6038/cjg20171128.
    周春景, 吴中海, 尼玛次仁, 等, 2014. 青海玉树Ms7.1级地震同震地表破裂构造[J]. 地质通报, 33(4): 551-566, doi: 10.3969/j.issn.1671-2552.2014.04.011.
  • 加载中
图(6) / 表(1)
计量
  • 文章访问数:  566
  • HTML全文浏览量:  113
  • PDF下载量:  142
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-12-01
  • 修回日期:  2024-01-15
  • 录用日期:  2024-03-14
  • 预出版日期:  2024-04-09
  • 刊出日期:  2024-04-28

目录

/

返回文章
返回