RESEARCH REVIEW ON LONG-TERM ACTIVITY OF POST-EARTHQUAKE GEOHAZARD IN STRONG SEISMIC-DISTURBED REGIONS
-
摘要: 地震通过改变地表岩体的物理力学性质而使得震区滑坡、泥石流等地质灾害显著增强的现象在震后持续相当长的一段时间。在研究分析国内外学者对地震地质灾害研究成果的基础上,系统总结了目前在地震诱发地质灾害的发育分布规律及其演化趋势方面的研究方法及成果,探讨了研究中存在的问题及薄弱环节,并对未来的研究方向及趋势进行了展望。研究认为目前国内外对地震地质灾害长期活动性的研究还没有形成体系,尚缺乏有效的研究方法与技术,并且研究成果存在较大差异性。地震扰动区地质灾害长期活动性研究可为震后地质灾害的长期防灾减灾和风险管控提供科学支持,也能对地震地质灾害相关问题的进一步深入研究提供参考。Abstract: Earthquake can significantly change the physical and mechanical properties of surface rock masses, which leads to an obvious geohazard increase after earthquake for a long period of time. Based on the review and analysis of the current research status of long-term activity of post-earthquake geohazard, the current research methods and achievements of development, distribution rule and evolution trend of earthquake-induced geohazard are systematically summarized, the problems and weaknesses during the research process are discussed, and the prospects and the future research directions and trends are presented. At present, there is no perfect research system and effective research methods and techniques for long-term activity of post-earthquake geohazard, and the research results have a big difference. In-depth scientific research on long-term activity of post-earthquake geohazard in seismic-disturbed regions can provide scientific support for long-term disaster prevention, mitigation and risk control of geohazard after the earthquake and also present a reference for further study of this scientific problem.
-
Key words:
- earthquake /
- geohazard /
- long-term activity /
- active cycle /
- review
-
0. 引言
1920年宁夏海原大地震(Ms8.5)诱发了大量黄土滑坡,多表现为低角度、长滑距、流态化的运动特征,甚至出现大范围近水平侧向流滑的现象,破坏性非常强烈[1~3],该类滑坡特殊的形成机制曾引起学术界的广泛关注和研究兴趣,石碑塬滑坡是其中的典型代表。白铭学、王家鼎等[4~5]最早对该类滑坡破坏特征及成因机制进行了研究,认为强震触发黄土层液化并进一步导致了斜坡低角度长距离滑移,由于研究条件的限制,其研究主要建立在现场调查与分析的基础上,缺少室内试验验证;随后王兰民[6~8]、袁中夏[9]等开展了黄土动力液化特性研究,验证了在一定条件下饱和黄土层具有明显的液化特性,对于黄土初始液化评判标准进行了探讨,并取得丰硕的研究成果,为黄土液化特性研究提供了坚实的理论基础和丰富的实践经验,然而未进一步考虑黄土初始液化后的强度与变形发展规律。事实上,初始液化并不一定会导致大变形的发生,动荷载停止后超孔隙水压力会不会立即随之消散?土体应力应变关系如何进一步发展?这才是地震液化后是否产生大变形的关键所在。在这方面,杨振茂[10]等通过应力控制固结不排水三轴试验,对取自兰州某场地的马兰黄土进行了振动液化试验,提出了饱和黄土流滑破坏的产生条件和利用稳态强度判断饱和黄土能否产生液化流滑的方法。即便在静力作用下,液化诱发的长距离流滑现象也同样引起学者关注,研究发现此类滑坡与国际土力学界新发现的“溃散性滑坡”极为吻合,具体表现为在失稳破坏时表现出明显的孔隙水压力激增和静态液化现象,失稳后土体呈流体状远程运动,易造成灾难性后果[11~12]。但由于三轴试验受到端部约束的影响,对于稳态强度测试存在一定的局限性,而借助大型环剪试验设备则可以弥补这方面的不足。为了深入揭示石碑塬滑坡低角度长距离流滑的形成机理,很有必要开展进一步的研究工作。
基于此,文章在对海原地震触发的石碑塬滑坡遗迹详细勘查的基础上,借助DPRI-5大型环剪仪展开石碑塬黄土液化后稳态变形特征研究,试验过程中考虑固结压力、饱和度和剪切速率等因素的影响,以进一步揭示不排水剪切过程中黄土孔压及应力应变发展规律,以及石碑塬黄土层液化后近水平侧向流滑的形成机理。
1. 强震触发黄土液化特征
石碑塬滑坡位于海原地震极震区东南部,地处宁夏回族自治区固原县原州区北部,距海原地震断裂带垂直距离90 km,地震烈度为Ⅹ度[3]。石碑塬滑坡全貌如图 1a所示,整个滑坡堆积区呈现为波浪起伏、峰谷相间的地貌形态,绵延数里,蔚为壮观,具有明显的流态化运动堆积特征(见图 1b)。滑坡主滑方向270°,顺坡长约1.2 km,横坡宽约2.2 km,影响范围约2.64 km2,整个滑体厚10~20 m,方量达3700×104 m3,其工程地质平面图如图 2所示。
滑坡区内海拔1510~1710 m,相对高差50~100 m,地形平缓,整体坡度为3°~5°,局部坡度仅7°~10°。滑坡区地下水主要来自大气降水,地下水位深度一般为8~20 m。区内出露的地层自上而下依次为晚更新世马兰黄土和中更新世离石黄土,中间夹多层古土壤,无基岩出露。现场调查结果揭示液化带位于地下水位线附近的马兰黄土层内,典型工程地质剖面如图 3所示[13]。
2. 黄土液化特性及稳态强度
对于黄土液化的分析,不能只停留在初始液化,而应该同时关注其液化后超孔隙水压力消散、应力应变发展及最终稳态强度的研究,静力液化环剪试验则是最为有效的研究手段之一。稳态是指在大变形条件下,当连续剪切时孔隙水压力、抗剪强度及变形速率保持不变的恒定状态,稳态强度则是土体在稳态变形下的强度,它不受前期加载方式和应力路径的影响,稳态强度对土体在地震中和地震后的稳定性与永久变形起到决定性作用[14~15]。
2.1 试验样品
试验样品取自滑坡后壁的马兰黄土层,取样位置如图 3所示。黄土样品基本物性指标如表 1。
表 1 试验黄土的基本物性指标Table 1. The basic physical parameters of the test loess取样深度/m 土的天然状态物性指标 塑性指数Ip 粒度组成/% 天然密度ρ/(g·cm-3) 含水率ω/% 孔隙比e0 粘粒<0.005/mm 粉粒0.005~0.075/mm 砂粒0.075~2.0/mm 14.10 1.47 5.30 1.02 4.56 8.52 78.64 12.84 2.2 试验仪器和试验方法
采用日本京都大学的DPRI-5大型环剪试验机,试验样品外径180 mm,内径120 mm,高度38.3 mm,剪切面积141.37 mm2。按照BD值的不同控制三种饱和度,分别为0.56、0.83和1。试样饱和后进行等压固结,固结压力分别为100 kPa、200 kPa、300 kPa,所有样品固结后孔隙比保持一致。固结后按照0.1 mm/s的速率进行剪切,直至达到稳态(剪切位移达到10 cm)[16~17],剪切过程中监测其应力、应变与孔压的变化;在同一固结应力下,研究固结压力、饱和度与剪切速率对稳态强度的影响。对于黄土液化,按照王兰民提出的两个判别标准(满足以下任一标准即可判为液化):①孔压比≥0.7;②累积应变≥3%,且孔压比≥0.2[18]。
2.3 黄土稳态强度及其影响因素
环剪试验中不同正应力作用下饱和黄土的应力—应变—孔压关系曲线如图 4所示。从图中可以看出,不同固结压力下饱和黄土应力—应变关系曲线呈弱软化型,在变形初始阶段,应力上升速率较快,但其上升速率和上升幅度有所不同,达到峰值后应力有所下降,最后趋于稳态。
试验黄土应力路径关系曲线如图 5所示,试样在各级压力下进行剪切,最终均达到了稳态,其破坏包络线如图 6所示,可见强度参数值较低,峰值状态黄土粘聚力为15.18 kPa,摩擦角为15.06°,而稳态粘聚力为0 kPa,摩擦角为14.85°(原始试验数据拟合后粘聚力为-0.65 kPa,为拟合带来的误差)。进一步从以下三个方面分析稳态强度的影响因素。
(1) 固结压力对黄土稳态强度的影响
固结压力对孔隙水压力影响较大(见图 4-图 6),在100 kPa固结压力下,孔压很快达到80 kPa以上,随着固结压力增大,孔压响应程度减弱,在300 kPa固结压力下,孔压响应较慢,且极限值不超过60 kPa,可见上覆土层厚度对黄土孔压发展有一定的影响,即上覆土层越厚,正应力越大,越不容易液化。因此,在不排水剪切条件下,由于孔压持续增高,有效应力降低,饱和黄土剪应力很快达到强度峰值而发生破坏,峰值点后,随着剪应变增加,剪应力不断降低,最后趋于极低的稳态强度,有利于大变形的持续发展。
(2) 饱和度对黄土稳态强度的影响
在固结压力恒定的条件下,分析饱和度对稳态强度的影响。由于黄土本身性状及DPRI-5设备构造原因,在低围压时控制不稳定,高围压又易于漏水,如100 kpa围压下,应力引起颗粒之间调整,导致数据波动幅度较大;300 kpa围压下易漏水,难以实现完全不排水剪切。经多次试验发现,在200 kpa围压下试验控制最稳定、精度最高,因此确定试验固结压力为200 kpa。考虑到饱和度对黄土液化程度的影响,将BD值分别设置为0.56、0.83和1,各试样剪切时程曲线如图 7所示,可见饱和度对黄土强度影响明显,随着饱和度提高,无论是峰值强度还是稳态强度,其值均明显降低。
对剪切过程中的孔隙水压力进行监测,孔压时程曲线如图 8所示,可以看出,对于完全饱和的试样,在剪切初始阶段,孔压几乎以直线速度快速上升,在50 s时孔压比(孔压/初始固结压力)就达到了0.6,随后增长速度相对减缓,在200 s左右达到0.7,之后很快趋于平稳;当BD值为0.56时,其孔压增长缓慢,在剪切开始后1000 s,孔压比才达到0.28,表明在非饱和的情况下,无论是孔压的增长速度,还是最终达到的极限值,均随着饱和度的降低而明显降低。可见初始饱和度越高,孔压响应越明显,孔压比越高,稳态强度也就越低。
分析以上试验数据,将峰值强度和稳态强度整理如图 9所示。可见,其峰值强度和稳态强度均随着饱和度的提高而大大将低。
(3) 加载速率对黄土稳态强度的影响
为了研究剪切速率对黄土抗剪强度的影响,在同一级固结压力下(200 kPa),对黄土样品进行了不同速率的剪切试验,试验结果如图 10。对不同剪切速率下黄土的稳态强度进行对比,发现剪切速率对黄土的稳态抗剪强度有一定程度的影响:当剪切速率在0.001~0.1 mm/s范围之间,其影响程度较小;当剪切速率介于0.1~1.0 mm/s时,剪切速率对土体的抗剪强度影响较大,具体表现为随着剪切速率的提高,抗剪强度有不同程度的降低,当剪切速率大于10 mm/s时,随着剪切速率的增大,剪切强度的变化趋于平稳。但对于不同饱和程度的黄土样品,反映出不同的性能,总体上看来,饱和度越高,剪切速率使黄土抗剪强度降低程度越明显,干燥状态下其变化不甚明显。据此可以分析,海原8.5级强震足以提供较快的初始剪切速率,使得高饱和度、高孔隙比的马兰黄土层震动液化后达到极低的稳态强度,在低水平驱动力或自重作用下即可导致近水平侧向扩展流滑破坏。
3. 结论
结合现场勘查及日本京都大学先进的试验平台,对液化黄土稳态强度及其影响因素进行了试验研究,可以揭示液化土体侧向扩展流滑的致灾机理。总结研究成果,可以得出以下结论:
(1) 石碑塬滑坡是1920年海原大地震触发的大型黄土液化型滑坡,滑坡具有低角度、长滑距、流态化的运动特征。
(2) 通过大型环剪试验揭示石碑塬黄土破坏后稳态强度及变形特征,不排水条件下黄土饱和度、上覆土层厚度对黄土稳态强度的影响较大。在不排水条件下,上覆土层厚度越大,其孔压响应越慢,稳态强度越高;试验黄土的饱和度越高,相应的稳态强度越低。
(3) 剪切速率对稳态强度有一定程度的弱化作用,当剪切速率<1.0 mm/s时,其影响较小;当剪切速率介于0.1~1.0 mm/s时,随着剪切速率的提高,稳态强度有不同程度的降低;当剪切速率大于1.0 mm/s时,随着剪切速率的增大,影响程度降低,稳态强度趋于恒定,但对于不同饱和程度的黄土样品,反映出不同的性能。总体上看来,饱和度越高,剪切速率对黄土抗剪强度的弱化越明显。
(4) 试验揭示石碑塬饱和黄土层具有极低的稳态强度,在低水平驱动剪应力或自重作用下即可产生近水平侧向扩展流滑破坏。
-
图 2 台湾集集地震扰动区触发泥石流的小时降雨量和累积降雨量[44]
Figure 2. Plot of the maximum hourly percipitation versus the maximum accumulated precipitation for debris flow events in the Chi-chi earthquake-disturbed areas
表 1 中国典型地震震后有效松弛时间[65]
Table 1. Post-seismic effective relaxation cycles of typical earthquakes in China
地震名称 震级(Ms) 发震时间 测段名称 资料年限 有效松弛时间/年 最大形变量/mm 同震形变/mm 唐山 7.8 1976.7.28 山津26-22 1976—1992 21.6 127.1 206 邢台 7.2 1966.3.22 冯巨7-11 1966—1976 11.1 131.6 273 通海 7.8 1970.1.5 高大1-4 1970—1981 5.5 32.8 未测 炉霍 7.6 1973.2.6 虚墟B-C 1973—1981 4.9 6.5 未测 共和 7.0 1900.4.26 倒花15-18 1990—1995 4.0 25.5 43 -
[1] 党光明, 王赞军.青海昆仑山口西Ms8.1级地震地表破裂带特征与主要震害-对青藏高原区域稳定性评价的制约[J].地质通报, 2002, 21(2):105~108. http://d.wanfangdata.com.cn/Periodical/zgqydz200202013DANG Guangming, WANG Zanjun. Characteristics of the surface rupture zone and main seismic hazards caused by the Ms8. 1 earthquake west of the Kunlun pass, China-Constraints on the regional stability of the Qinghai-Tibet Plateau[J]. Geological Bulletin of China, 2002, 21(2):105~108. (in Chinese with English abstract) http://d.wanfangdata.com.cn/Periodical/zgqydz200202013 [2] 张永双, 雷伟志, 石菊松, 等.四川5.12地震次生地质灾害的基本特征初析[J].地质力学学报, 2008, 14(2):109~116. http://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?file_no=20080211&flag=1ZHANG Yongshuang, LEI Weizhi, SHI Jusong, et al. General characteristics of 5.12 earthquake-induced geohazards in Sichuan[J]. Journal of Geomechanics, 2008, 14(2):109~116. (in Chinese with English abstract) http://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?file_no=20080211&flag=1 [3] 姚鑫, 张永双, 杨农, 等.玉树地震地表变形InSAR观测及初步分析[J].地质力学学报, 2010, 16(2):129~136. http://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?file_no=20100202&flag=1YAO Xin, ZHANG Yongshuang, YANG Nong, et al. D-InSAR observation of earth surface deformation in the Ms7.1 Yushu earthquake[J]. Journal of Geomechanics, 2010, 16(2):129~136. (in Chinese with English abstract) http://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?file_no=20100202&flag=1 [4] 张永双, 马寅生, 胡道功, 等.玉树地震地表破裂调查与灾后重建避让选址研究[J].地质学报, 2010, 84(5):593~605. http://d.wanfangdata.com.cn/Periodical/dizhixb201005001ZHANG Yongshuang, MA Yinsheng, HU Daogong, et al. Investigation and research on the surface rupture of the Yushu earthquake and reconstruction site selection[J]. Acta Geologica Sinica, 2010, 84(5):593~605. (in Chinese with English abstract) http://d.wanfangdata.com.cn/Periodical/dizhixb201005001 [5] 崔鹏, 陈晓清, 张建强, 等. "4·20"芦山7.0级地震次生山地灾害活动特征与趋势[J].山地学报, 2013, 31(3):257~265. http://d.wanfangdata.com.cn/Periodical/sdxb201303001CUI Peng, CHEN Xiaoqing, ZHANG Jianqiang, et al. Activities and tendency of mountain hazards induced by the Ms7. 0 Lushan Earthquake, April 20, 2013[J]. Journal of Mountain Science, 2013, 31(3):257~265. (in Chinese with English abstract) http://d.wanfangdata.com.cn/Periodical/sdxb201303001 [6] Qi S W, Xu Q, Lan H X, et al. Spatial distribution analysis of landslides triggered by 2008. 5.12 Wenchuan Earthquake, China[J]. Engineering Geology, 2010, 116(1~2):95~108. https://www.sciencedirect.com/science/article/pii/S0013795210001535 [7] Dai F C, Xu C, Yao X, et al. Spatial distribution of landslides triggered by the 2008Ms8. 0 Wenchuan earthquake, China[J]. Journal of Asian Earth Sciences, 2011, 40(4):883~895. doi: 10.1016/j.jseaes.2010.04.010 [8] 许冲, 徐锡伟, 吴熙彦, 等. 2008年汶川地震滑坡详细编目及其空间分布规律分析[J].工程地质学报, 2013, 21(1):25~44. http://d.wanfangdata.com.cn/Periodical/gcdzxb201301004XU Chong, XU Xiwei, WU Xiyan, et al. Detailed catalog of landslides triggered by the 2008 Wenchuan earthquake and statistical analyses of their spatial distribution[J]. Journal of Engineering Geology, 2013, 21(1):25~44. (in Chinese with English abstract) http://d.wanfangdata.com.cn/Periodical/gcdzxb201301004 [9] Wei F Q, Chernomorets S, Aristov K, et al. A seismically triggered landslide in the niujuanvalley near the epicenter of the 2008 Wenchuan Earthquake[J]. Journal of Earth Science, 2010, 21(6):901~909. doi: 10.1007/s12583-010-0143-8 [10] Lan H X, Li L P, Zhang Y S, et al. Risk assessment of debris flow in Yushu seismic area in China:a perspective for the reconstruction[J]. Natural Hazards and Earth System Sciences, 2013, 13(11):2957~2968. doi: 10.5194/nhess-13-2957-2013 [11] 兰恒星, 周成虎, 高星, 等.四川雅安芦山地震灾区次生地质灾害评估及对策建议[J].地理科学进展, 2013, 32(4):499~504. doi: 10.11820/dlkxjz.2013.04.001LAN Hengxing, ZHOU Chenghu, GAO Xing, et al. Secondary geological hazard assessment and hazard mitigation countermeasures in Lushan, Ya'an Earthquake, Sichuan Province[J]. Progress in Geography, 2013, 32(4):499~504. (in Chinese with English abstract) doi: 10.11820/dlkxjz.2013.04.001 [12] 陈宁生, 黄蓉, 李欢, 等.汶川5·12地震次生泥石流沟应急判识方法与指标[J].山地学报, 2009, 27(1):108~114. http://d.wanfangdata.com.cn/Periodical/sdxb200901016CHEN Ningsheng, HUANG Rong, LI Huan, et al. Emergency judge method and index of debris-flow sites triggered by 5·12 Wenchuan earthquake[J]. Journal of Mountain Science, 2009, 27(1):108~114. (in Chinese with English abstract) http://d.wanfangdata.com.cn/Periodical/sdxb200901016 [13] 陈宁生, 刘丽红, 邓明枫, 等. "4·20"芦山地震后的四川地质灾害形势预测与防治对策[J].成都理工大学学报(自然科学版), 2013, 40(4):371~378. http://d.wanfangdata.com.cn/Periodical/cdlgxyxb201304003CHEN Ningsheng, LIU Lihong, DONG Mingfeng, et al. Tendency prediction and prevention strategy of geohazards triggered by Lushan Ms7 earthquake, Sichuan, Province, China[J]. Journal of Chengdu University of Technology (Science and Technology Edition), 2013, 40(4):371~378. (in Chinese with English abstract) http://d.wanfangdata.com.cn/Periodical/cdlgxyxb201304003 [14] 刘凤民, 张立海, 刘海青, 等.中国地震次生地质灾害危险性评价[J].地质力学学报, 2006, 12(2):127~131. http://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?file_no=20060220&flag=1LIU Fengmin, ZHANG Lihai, LIU Haiqing, et al. Danger assessment of earthquake-induced geological disasters in China[J]. Journal of Geomechanics, 2006, 12(2):127~131. (in Chinese with English abstract) http://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?file_no=20060220&flag=1 [15] 黄润秋.汶川地震地质灾害后效应分析[J].工程地质学报, 2011, 19(2):145~151. http://d.wanfangdata.com.cn/Periodical/gcdzxb201102001HUANG Runqiu. After effect of geohazards induced by the Wenchuan earthquake[J]. Journal of Engineering Geology, 2011, 19(2):145~151. (in Chinese with English abstract) http://d.wanfangdata.com.cn/Periodical/gcdzxb201102001 [16] Huang R Q, Li W L. Post-earthquake landsliding and long-term impacts in the Wenchuan earthquake area, China[J]. Engineering Geology, 2014, 182:111~120. doi: 10.1016/j.enggeo.2014.07.008 [17] 苏鹏程, 韦方强, 冯汉中, 等. "8. 13"四川清平群发性泥石流灾害成因及其影响[J].山地学报, 2011, 29(3):337~347. http://www.cnki.com.cn/Article/CJFDTotal-SDYA201103013.htmSU Pengcheng, WEI Fangqiang, FENG Hanzhong, et al. Causes and effects of group-occurring debris flow disasters in Qingping town, Mianyuan river upstream, Sichuan[J]. Journal of Mountain Science, 2011, 29(3):337~347. (in Chinese with English abstract) http://www.cnki.com.cn/Article/CJFDTotal-SDYA201103013.htm [18] Wei X L, Chen N S, Cheng Q G, et al. Long-term activity of earthquake-induced landslides:A case study from Qionghai Lake Basin, Southwest of China[J]. Journal of Mountain Science, 2014, 11(3):607~624. doi: 10.1007/s11629-013-2970-4 [19] Ghazanfar A K, Owen L A, Kamp U, et al. Evolution of earthquake-triggered landslides in the Kashmir Himalaya, northern Pakistan[J]. Geomorphology, 2010, 115(1~2):102~108. doi: 10.1016/j.geomorph.2009.09.035 [20] Nakamura H, Tsuchiya S, Inoue K, et al. Sabo against Earthquakes[C]. Kokon Shoin, Tokyo, Japan, 2000, 190~220. [21] Lin CW, Liu SH, Chang WS, et al. The impact of the Chi-Chi earthquake on the subsequent rain fall induced landslides in the epicentral area of central Taiwan[A]. Proceeding of International Conference in Commemoration of 10th Anniversary of the Chi-Chi Earthquake[C]. 2009, 336~338. [22] 王伟. 地震动的山体地形效应[D]. 哈尔滨: 中国地震局工程力学研究所, 2011. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=gjzt201203009&dbname=CJFD&dbcode=CJFQWANG Wei. Effect of hill topography on ground motion[D]. Harbin:Institute of Engineering Mechanics, China Earthquake Administration, 2011. (in Chinese) http://kns.cnki.net/KCMS/detail/detail.aspx?filename=gjzt201203009&dbname=CJFD&dbcode=CJFQ [23] 陈桂华, 徐锡伟, 郑荣章, 等. 2008年汶川Ms8.0地震地表破裂变形定量分析-北川-映秀断裂地表破裂带[J].地震地质, 2008, 30(3):723~738. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=gjzt201203009&dbname=CJFD&dbcode=CJFQCHEN Guihua, XU Xiwei, Zheng Rongzhang, et al. Quantitative analysis of the co-seismic surface rupture of the 2008 Wenchuan earthquake, Sichuan, China along the Beichuan-Yingxiu fault[J]. Seismology and Geology, 2008, 30(3):723~738. (in Chinese with English abstract) http://kns.cnki.net/KCMS/detail/detail.aspx?filename=gjzt201203009&dbname=CJFD&dbcode=CJFQ [24] 陈桂华, 徐锡伟, 于贵华, 等. 2008年汶川Ms8.0地震多断裂破裂的近地表同震滑移及滑移分解[J].地球物理学报, 2009, 52(5):1384~1391. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=gjzt201006014&dbname=CJFD&dbcode=CJFQCHEN Guihua, XU Xiwei, YU Guihua, et al. Co-seismic slip and slip partitioning of multi-faults during the Ms8. 02008 Wenchuan earthquake[J]. Chinese Journal of Geophysics, 2009, 52(5):1384~1391. (in Chinese with English abstract) http://kns.cnki.net/KCMS/detail/detail.aspx?filename=gjzt201006014&dbname=CJFD&dbcode=CJFQ [25] Jiao Q J, Zhang B, Liu L Y, et al. Assessment of spatio-temporal variations in vegetation recovery after the Wenchuan earthquake using Landsat data[J]. Natural Hazards, 2014, 70(2):1309~1326. doi: 10.1007/s11069-013-0875-8 [26] Zhang Y S, Cheng Y L, Yin Y P, et al. High-position debris flow:a long-term active geohazard after the Wenchuanearthquake[J]. Engineering Geology, 2014, 180:45~54. doi: 10.1016/j.enggeo.2014.05.014 [27] 倪化勇, 郑万模, 唐业旗, 等.汶川震区文家沟泥石流成灾机理与特征[J].工程地质学报, 2011, 19(2):262~270. http://d.wanfangdata.com.cn/Periodical/gcdzxb201102019NI Huayong, ZHENG Wanmo, TANG Yeqi, et al. Mechanism and characteristics of Wenjia-gully debris flow in epicenter area of Wenchuan earthquake[J]. Journal of Engineering Geology, 2011, 19(2):262~270. (in Chinese with English abstract) http://d.wanfangdata.com.cn/Periodical/gcdzxb201102019 [28] Jóonsson S, Segall P, Pedersen R, et al. Post-earthquake ground movements correlated to pore-pressure transients[J]. Nature, 2003, 424(6945):179~183. doi: 10.1038/nature01776 [29] Wasowski J, Keefer D K, Lee C T. Toward the next generation of research on earthquake-induced landslides:Currentissues and future challenges[J]. Engineering Geology, 2011, 122(1~2):1~8. doi: 10.1016/j.enggeo.2011.06.001 [30] Keefer D K, Larsen M C. Assessing landslide hazards[J]. Science, 2007, 316(5828):1136~1138. doi: 10.1126/science.1143308 [31] 殷跃平.汶川八级地震滑坡特征分析[J].工程地质学报, 2009, 17(1):29~38. http://d.wanfangdata.com.cn/Periodical/gcdzxb200901004YIN Yueping. Features of landslides triggered by the Wenchuan earthquake[J]. Journal of Engineering Geology, 2009, 17(1):29~38. (in Chinese with English abstract) http://d.wanfangdata.com.cn/Periodical/gcdzxb200901004 [32] 许强, 李为乐.汶川地震诱发滑坡方向效应研究[J].四川大学学报(工程科学版), 2010, 42(S1):7~14. http://www.cnki.com.cn/Article/CJFDTotal-SCLH2010S1003.htmXU Qiang, LI Weile. Study on the direction effects of landslides triggered by Wenchuan earthquake[J]. Journal of Sichuan University (Engineering Science Edition), 2010, 42(S1):7~14. (in Chinese with English abstract) http://www.cnki.com.cn/Article/CJFDTotal-SCLH2010S1003.htm [33] 唐川.汶川地震区暴雨滑坡泥石流活动趋势预测[J].山地学报, 2010, 28(3):341~349. http://d.wanfangdata.com.cn/Periodical/sdxb201003012TANG Chuan. Activity tendency prediction of rainfall induced landslides and debris flows in the Wenchuan earthquake areas[J]. Journal of Mountain Science, 2010, 28(3):341~349. (in Chinese with English abstract) http://d.wanfangdata.com.cn/Periodical/sdxb201003012 [34] 许冲, 戴福初, 徐锡伟.汶川地震滑坡灾害研究综述[J].地质评论, 2011, 56(6):860~874. http://d.wanfangdata.com.cn/Periodical/dzlp201006013XU Chong, DAI Fuchu, XU Xiwei. Wenchuan earthquake-induced landslides:an overview[J]. Geological Review, 2011, 56(6):860~874. (in Chinese with English abstract) http://d.wanfangdata.com.cn/Periodical/dzlp201006013 [35] 李忠生.国内外地震滑坡灾害研究综述[J].灾害学, 2003, 18(4):64~70. http://d.wanfangdata.com.cn/Periodical/zhx200304013Li Zhongsheng. The state of the art of the research on seismic landslide hazard at home and abroad[J]. Journal of Catastrophology, 2003, 18(4):64~70. (in Chinese with English abstract) http://d.wanfangdata.com.cn/Periodical/zhx200304013 [36] 许冲, 戴福初, 陈剑, 等.汶川Ms8.0地震重灾区次生地质灾害遥感精细解译[J].遥感学报, 2009, 13(4):754~762. doi: 10.11834/jrs.20090416XU Chong, DAI Fuchu, CHEN Jian, et al. Identification and analysis of secondary geological hazards triggered by a magnitude 8.0 Wenchuan Earthquake[J]. Journal of Remote Sensing, 2009, 13(4):754~762. (in Chinese with English abstract) doi: 10.11834/jrs.20090416 [37] 吴树仁, 王涛, 石玲, 等. 2008汶川大地震极端滑坡事件初步研究[J].工程地质学报, 2008, 18(2):145~159. http://d.wanfangdata.com.cn/Periodical/gcdzxb201002001WU Shuren, WANG Tao, SHI Ling, et al. Study on catastrophic landslides triggered by 2008 great Wenchuan earthquake, Sichuan, China[J]. Journal of Engineering Geology, 2008, 18(2):145~159. (in Chinese with English abstract) http://d.wanfangdata.com.cn/Periodical/gcdzxb201002001 [38] Chen X L, Zhou Q, Ran H, et al. Earthquake-triggered landslides in southwest China[J]. Natural Hazards and Earth System Sciences, 2012, 12(2):351~363. doi: 10.5194/nhess-12-351-2012 [39] 张永双, 成余粮, 姚鑫, 等.四川汶川地震-滑坡-泥石流灾害链形成演化过程[J].地质通报, 2013, 32(12):1900~1910. http://d.wanfangdata.com.cn/Periodical/zgqydz201312003ZHANG Yongshuang, CHENG Yuliang, YAO Xin, et al. The evolution process of Wenchuan earthquake-landslide-debris flow geohazard chain[J]. Geological Bulletin of China, 2013, 32(12):1900~1910. (in Chinese with English abstract) http://d.wanfangdata.com.cn/Periodical/zgqydz201312003 [40] 殷跃平.汶川八级地震地质灾害研究[J].工程地质学报, 2008, 16(4):433~444. http://d.wanfangdata.com.cn/Periodical/gcdzxb200804001YIN Yueping. Researches on the geo-hazards triggered by Wenchuan earthquake, Sichuan[J]. Journal of Engineering Geology, 2008, 16(4):433~444. (in Chinese with English abstract) http://d.wanfangdata.com.cn/Periodical/gcdzxb200804001 [41] 殷跃平, 张永双, 吴树仁, 等.汶川地震工程地质与地质灾害[M].北京:科学出版社, 2013.YIN Yueping, ZHANG Yongshuang, WU Shuren, et al. Engineering Geology and Geological Hazards in Wenchuan Earthquake[M]. Beijing:Science Press, 2013. (in Chinese) [42] Xu C, Xu X W, Yao X, et al. Three (nearly) complete inventories of landslides triggered by the May 12, 2008 Wenchuan Mw7.9 earthquake of China and their spatial distribution statistical analysis[J]. Landslides, 2014, 11(3):441~461. doi: 10.1007/s10346-013-0404-6 [43] 黄润秋, 李为乐. "5·12"汶川大地震触发地质灾害的发育分布规律研究[J].岩石力学与工程学报, 2008, 27(12):2585~2592. doi: 10.3321/j.issn:1000-6915.2008.12.028HUANG Runqiu, LI Weile. Research on development and distribution rules of Geohazards induced by Wenchuan Earthquake on 12th May, 2008[J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(12):2585~2592. (in Chinese with English abstract) doi: 10.3321/j.issn:1000-6915.2008.12.028 [44] Lin C W, Shieh C L, Yuan B D, et al. Impact of Chi-Chi earthquake on the occurrence of landslides and debris flows:example from the Chenyulan River watershed, Nantou, Taiwan[J]. Engineering Geology, 2004, 71(1/2):49~61. http://www.sciencedirect.com/science/article/pii/S001379520300125X [45] Lin C W, Liu S H, Lee S Y, et al. Impacts of the Chi-Chi earthquake on subsequent rainfall-induced landslides in central Taiwan[J]. Engineering Geology, 2006, 86(2/3):87~101. http://www.sciencedirect.com/science/article/pii/S0013795206001037 [46] 张瑛, 成余粮, 李长顺, 等.汶川地震灾区地震前后地质灾害发育对比研究[J].工程地质学报, 2011, 19(S):179~185. http://d.wanfangdata.com.cn/Conference/7624765ZHANG Ying, CHENG Yuling, LI Changshun, et al. Comparatives study on geological disasters before and after Wenchuan earthquake[J]. Journal of Engineering Geology, 2011, 19(S):179~185. (in Chinese with English abstract) http://d.wanfangdata.com.cn/Conference/7624765 [47] Zhou W, Tang C. Rainfall thresholds for debris flow initiationin the Wenchuan earthquake-stricken area, southwestern China[J]. Landslides, 2014, 11(5):877~887. doi: 10.1007/s10346-013-0421-5 [48] Yu B, Wu Y F, Chu S M. Preliminary study of the effect of earthquakes on the rainfall threshold of debris flows[J]. Engineering Geology, 2014, 182:130~135. doi: 10.1016/j.enggeo.2014.04.007 [49] Tang C, Zhu J, Li W L, et al. Rainfall-triggered debris flows following the Wenchuan Earthquake[J]. Bulletin of Engineering Geology and the Environment, 2009, 68(2):187~194. doi: 10.1007/s10064-009-0201-6 [50] 陈源井, 余斌, 朱渊, 等.地震后泥石流临界雨量变化特征-以汶川地震区小岗剑沟为例[J].山地学报, 2013, 31(3):356~361. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=sdya201303015&dbname=CJFD&dbcode=CJFQCHEN Yuanjing, YU Bin, ZHU Yuan, et al. Characteristics of critical rainfall of debris flow after earthquake-a case study of the Xiaogangjian gully[J]. Journal of Mountain Science, 2013, 31(3):356~361. (in Chinese with English abstract) http://kns.cnki.net/KCMS/detail/detail.aspx?filename=sdya201303015&dbname=CJFD&dbcode=CJFQ [51] Koi T, Hotta N, Ishigaki I, et al. Prolonged impact of earthquake-induced landslides on sediment yield in a mountain watershed:The Tanzawa region, Japan[J]. Geomorphology, 2008, 101(4):692~702. doi: 10.1016/j.geomorph.2008.03.007 [52] Khan S F, Kamp U, Owen L A. Documenting five years of landsliding after the 2005 Kashmir earthquake, using repeat photography[J]. Geomorphology, 2013, 197:45~55. doi: 10.1016/j.geomorph.2013.04.033 [53] Saba S B, Van Der Meijde M, Van Der Werff H. Spatiotemporal landslide detection for the 2005 Kashmir earthquake region[J]. Geomorphology, 2010, 124(1/2):17~25. http://adsabs.harvard.edu/abs/2010Geomo.124...17S [54] 崔鹏, 韦方强, 何思明, 等. 5.12汶川地震诱发的山地灾害及减灾措施[J].山地学报, 2008, 26(3):280~282. http://d.wanfangdata.com.cn/Periodical/sdxb200803006CUI Peng, WEI Fangqiang, HE Siming, et al. Mountain disasters induced by the earthquake of May 12 in Wenchuan and the disasters mitigation[J]. Journal of Mountain Science, 2008, 26(3):280~282. (in Chinese with English abstract) http://d.wanfangdata.com.cn/Periodical/sdxb200803006 [55] 崔鹏, 韦方强, 陈晓清, 等.汶川地震次生山地灾害及其减灾对策[J].中国科学院院刊, 2008, 23(4):317~323. http://d.wanfangdata.com.cn/Periodical/zgkxyyk200804008CUI Peng, WEI Fangqiang, CHEN Xiaoqing, et al. Geo-hazards in Wenchuan eathquake area and countermeasures for disaster reduction[J]. Bulletin of Chinese Academy of Sciences, 2008, 23(4):317~323. (in Chinese with English abstract) http://d.wanfangdata.com.cn/Periodical/zgkxyyk200804008 [56] 崔鹏, 庄建琦, 陈兴长, 等.汶川地震区震后泥石流活动特征与防治对策[J].四川大学学报(工程科学版), 2010, 42(5):10~19. http://d.wanfangdata.com.cn/Conference/7681080CUI Peng, ZHUANG Jianqi, CHEN Xingchang, et al. Characteristics and countermeasures of debris flow in Wenchuan area after the earthquake[J]. Journal of Sichuan University (Engineering Science Edition), 2010, 42(5):10~19. (in Chinese with English abstract) http://d.wanfangdata.com.cn/Conference/7681080 [57] 陈晓清, 崔鹏, 赵万玉.汶川地震区泥石流灾害工程防治时机的研究[J].四川大学学报(工程科学版), 2009, 41(3):125~130. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=sclh200903021&dbname=CJFD&dbcode=CJFQCHEN Xiaoqing, CUI Peng, ZHAO Wanyu. Optimal timing for the control of debris flow in Wenchuan earthquake area[J]. Journal of Sichuan University (Engineering Science Edition), 2009, 41(3):125~130. (in Chinese with English abstract) http://kns.cnki.net/KCMS/detail/detail.aspx?filename=sclh200903021&dbname=CJFD&dbcode=CJFQ [58] 谢洪, 钟敦伦, 矫震, 等. 2008年汶川地震重灾区的泥石流[J].山地学报, 2009, 27(4):501~509. http://d.wanfangdata.com.cn/Periodical/sdxb200904017XIE Hong, ZHONG Dunlun, JIAO Zhen, et al. Debris flow in Wenchuan Quake-hit area in 2008[J]. Journal of Mountain Science, 2009, 27(4):501~509. (in Chinese with English abstract) http://d.wanfangdata.com.cn/Periodical/sdxb200904017 [59] 陈晓清, 崔鹏, 李泳, 等.汶川地震后北川干溪沟山地灾害及长期发展趋势初步分析[J].四川大学学报(工程科学版), 2010, 42(S1):22~32. http://d.wanfangdata.com.cn/Conference/9032141CHEN Xiaoqing, CUI Peng, LI Yong, et al. Mountain hazard induced by Wenchuan earthquake and its long-term development trends of Ganxi gully, Beichuan[J]. Journal of Sichuan University (Engineering Science Edition), 2010, 42(S1):22~23. (in Chinese with English abstract) http://d.wanfangdata.com.cn/Conference/9032141 [60] 游勇, 柳金峰.汶川8级地震对岷江上游泥石流灾害防治的影响[J].四川大学学报(工程科学版), 2009, 41(S1):16~22. doi: 10.1002-lary.20808/YOU Yong, LIU Jinfeng. The influence on debris flow prevention in the upriver of Minjiang after Wenchuan earthquake[J]. Journal of Sichuan University (Engineering Science Edition), 2009, 41(S1):16~22. (in Chinese with English abstract) doi: 10.1002-lary.20808/ [61] Chang K T, Chiang S H, Hsu M L. Modeling typhoon-and earthquake-induced landslides in a mountainous watershed using logistic regression[J]. Geomorphology, 2007, 89(3/4):335~347. https://www.sciencedirect.com/science/article/pii/S0169555X07000049 [62] Shou K J, Hong C Y, Wu C C, et al. Spatial and temporal analysis of landslides in Central Taiwan after 1999 Chi-Chi earthquake[J]. Engineering Geology, 2011, 123(1/2):122~128. http://www.sciencedirect.com/science/article/pii/S0013795211000779 [63] Liu S H, Lin C W, Tseng C M. A statistical model for the impact of the 1999 Chi-Chi earthquake on the subsequent rainfall-induced landslides[J]. Engineering Geology, 2013, 156:11~19. doi: 10.1016/j.enggeo.2013.01.005 [64] Liu C N, Huang H F, Dong J J. Impacts of September 21, 1999 Chi-Chi earthquake on the characteristics of gully-type debris flows in central Taiwan[J]. Natural Hazards, 2008, 47(3):349~368. doi: 10.1007/s11069-008-9223-9 [65] 王庆良, 张希, 王文萍, 等. 中国典型强震震后形变有效松弛时间研究[A]. 中国地震学会第七次学术大会论文摘要集[C]. 中国地震学会, 1998, 13.Wang Qingliang, Zhang Xi, Wang Wenping, et al. The research on effective relaxation cycle of postseismic deformation of typical earthquakes in China[A]. Abstract Proceedings of Seventh Academic Conference of the Seismological Society of China[C]. Seismological Society of China, 1998, 13. (in Chinese) -