MICROTECTONIC FEATURES AND EVOLUTION OF THE YUSHIGOU PERIDOTITE ROCK FROM THE QILIANSHAN MOUNTAIN
-
摘要: 橄榄岩作为上地幔的主要成分,影响着上地幔的流变学行为,其显微构造记录了岩石形成发展过程中所经受的构造事件。通过对祁连山玉石沟橄榄岩样品的镜下显微构造观察、岩石组构测定及TEM位错分析,探讨了与变形相关的温度、围压、含水性和应变速率等因素,总结该岩石的变形机制和变形历史,并推断其形成发展时大地构造环境。研究表明,玉石沟橄榄岩产自上地幔,其变形改造经历了上地幔演化和脆-韧性变形2个阶段。上地幔演化阶段橄榄石发育明显的A型原生组构,电子背散射衍射技术(EBSD)测定的橄榄石显微组构表明,该地区橄榄岩形成于高温(>1200℃)、低应力( < 350 MPa)、低应变速率、低含水量的地幔浅部环境条件下;脆-韧性变形阶段叠加改造了原生A型组构,而发育明显的D型次生组构。橄榄石变形主控因素为动态恢复作用,普遍发育亚晶粒、消光带和扭折显微构造等相关组构,并与透射电镜下所观察到的位错排对应,同时还发育以微破裂为主的一套脆性变形组构,表现出两组共轭剪破裂和另一组张性破裂等现象,揭示出与韧性动态恢复现象一致的应力场方向指示。Abstract: As a main component of upper mantle, peridotite affects the rheological behavior of the upper mantle. The microstructures contain records of tectonic events experienced during the development process of the specimen. Rheological parameters, such as temperature, confining pressure, factors of water and strain rate, are defined according to microtectonic observations, EBSD data and TEM results. Deformation mechanisms, deformation history of the Yushigou rock samples and geotectonic environment are summarized. Problems of petrogenesis and evolution history of the Yushigou peridotite body are finally concluded as:Ⅰ, the evolution stage in the upper mantle, which is indicated by the A-type original fabric of olivine. The fabric of olivine lattice-preferred orientation (LPO) is determined by electron backscatter diffraction (EBSD) analysis. Our peridotite sample shows some upper mantle features, such as high temperature (>1200℃), low stress ( < 350 MPa), low strain rate and low water content environmental conditions. Ⅱ, the ductile-brittle deformation stage, showing D-type fabric which superimposed and transformed the A-type original fabric. Dynamic recovery is the main controlling factor for olivine deformation. Sub-grains, extinction bands and kink bands are generally observed by polarized-light microscopy, and are also shown as dislocation rows in the transmission electron microscopy (TEM) graphs. Brittle microcrack fabric including micro fractures with different dynamic nature is also analyzed as two groups of conjugate shear ruptures and another group of tension fractures. One same stage of paleostress field is shown by both microcrack and the ductile dynamic recovery phenomena.
-
Key words:
- Yushigou /
- Qilianshan Mountain /
- peridotite /
- microfabric /
- deformation mechanism /
- deformation history
-
图 1 典型橄榄石组构及其与滑移系和应力、含水量关系(据Karato等[3],略有修改)
Figure 1. Typical olivine fabric and the relationship with dominant slip systems, stress and water content
图 4 玉石沟超基性岩体A-B地质剖面示意图(剖面位置见图 1)
1—北岩体(方辉橄榄岩);2—中岩体(方辉橄榄岩);3—小岩体(纯橄榄岩);4—南岩体(纯橄榄岩)
Figure 4. Schematic cross section of ultrabasic rock from Yushigou
表 1 五种LPO类型特征及其形成环境
Table 1. Features and formation conditions of five LPO-types
-
[1] 宋述光.北祁连山俯冲杂岩带的构造演化[J].地球科学进展, 1997, 12(4):351~365. http://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ704.007.htmSONG Shu-guang. Tectonic evolution of subductive complex belts in the North Qilian Mountains[J]. Advance in Earth Sciences, 1997, 12(4):351~365. http://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ704.007.htm [2] Chopra C N, Paterson M S. The role of water in the deformation of dunite[J]. Journal of Geophysical Research:Solid Earth, 1984, 89(B9):7861~7876. doi: 10.1029/JB089iB09p07861 [3] Karato S, Jung H, Katayama I, et al. Geodynamic significance of seismic anisotropy of the upper mantle:New insights from laboratory studies[J]. Annual Review of Earth and Planetary Sciences, 2008, 36:59~95. doi: 10.1146/annurev.earth.36.031207.124120 [4] Jung H, Karato S. Water-induced fabric transitions in olivine[J]. Science, 2001, 293(5534):1060~1063. [5] Jung H, Katayama I, Jiang Z, et al. Effect of water and stress on the lattice-preferred orientation of olivine[J]. Tectonophysics, 2006, 421(1-2):1~22. doi: 10.1016/j.tecto.2006.02.011 [6] Bystricky M, Kunze K, Burlini L, et al. High shear strain of olivine aggregates:Rheological and seismic consequences[J]. Science, 2000, 290(5496):1564~1567. doi: 10.1126/science.290.5496.1564 [7] Nicolas A, Christensen N I. Formation of anisotropy in upper mantle peridotites:A review[C]//Fuchs K, Froideveaux C. Composition, structure and dynamics of the lithosphere-asthenosphere system. Washington DC:American Geophysical Union, 1987:407~433. [8] Raterron P, Chen J, Li L, et al. Pressure-induced slip-system transition in forsterite:Single-crystal rheological properties at mantle pressure and temperature[J]. American Mineralogist, 2007, 92(8/9):1436~1445. [9] Mainprice D, Eacute A, Tommasi A, et al. Pressure sensitivity of olivine slip systems and seismic anisotropy of Earth's upper mantle[J]. Nature, 2005, 433(7027):731~733. doi: 10.1038/nature03266 [10] Couvy H, Frost D J, Heidelbach F, et al. Shear deformation experiments of forsterite at 11 GPa-1400℃ in the multianvil apparatus[J]. European Journal of Mineralogy, 2004, 16(6):877~889. doi: 10.1127/0935-1221/2004/0016-0877 [11] Zhang S, Karato S, Fitz Gerald J, et al. Simple shear deformation of olivine aggregates[J]. Tectonophysics, 2000, 316(1/2):133~152. [12] 宋述光, 牛耀龄, 张立飞, 等.大陆造山运动从大洋俯冲到大陆俯冲、碰撞、折返的时限——以北祁连山、柴北缘为例[J].岩石学报, 2009, 25(9):2067~2077. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200909003.htmSONG Shu-guang, NIU Yao-ling, ZHANG Li-fei, et al. Time constraints on orogenesis from oceanic subduction to continental subduction, collision, and exhumation:An example from North Qilian and North Qaidam HP-UHP belts[J]. Acta Petrologica Sinica, 2009, 25(9):2067~2077. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200909003.htm [13] 肖序常, 陈国铭, 朱志直.祁连山古蛇绿岩带的地质构造意义[J].地质学报, 1978, (4):282~283. http://www.cnki.com.cn/Article/CJFDTOTAL-DZXE197804002.htmXIAO Xu-chang, CHEN Guo-ming, ZHU Zhi-zhi. A preliminary study on the tectonics of ancient ophiolites in the Qilian Mountain, Northwest China[J]. Acta Geologica Sinica, 1978, (4):282~283. http://www.cnki.com.cn/Article/CJFDTOTAL-DZXE197804002.htm [14] 侯青叶, 赵志丹, 张宏飞, 等.北祁连玉石沟蛇绿岩印度洋MORB型同位素组成特征及其地质意义[J].中国科学D辑:地球科学, 2005, 35(8):710~719. http://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200508002.htmHOU Qing-ye, ZHAO Zhi-dan, ZHANG Hong-fei, et al. Indian-MORB-type isotopic composition and geological significance of Yushigou ophiolite in the North Qilian[J]. Science in China Serial D:Earth Sciences, 2005, 35(8):710~719. http://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200508002.htm [15] Song S G, Zhang L F, Niu Y, et al. Eclogite and carpholite-bearing meta-pelite in the North Qilian suture zone, NW China:Implications for Paleozoic cold oceanic subduction and water transport into mantle[J]. Journal of Metamorphic Geology, 2007, 25:547~563. doi: 10.1111/jmg.2007.25.issue-5 [16] Schieber J. Evolution of Continents and Oceans[EB/OL].[2013-03-24]. http://www.indiana.edu/~g105lab/1425chap13.htm. [17] 洛长义.玉石沟含铬超基性岩体橄榄石矿物应力特征及地质意义[J].西北地质, 1981, (4):36~39. http://www.cnki.com.cn/Article/CJFDTOTAL-XBDI198104003.htmLUO Chang-yi. Stress characteristics and geological significance of olivine mineral in Yushigou chromium-containing ultramafic rock[J]. Northwestern Geology, 1981, (4):36~39. http://www.cnki.com.cn/Article/CJFDTOTAL-XBDI198104003.htm [18] 曹淑云, 刘俊来.岩石显微构造分析现代技术——EBSD技术及应用地球科学进展[J].地球科学进展, 2006, 21(10):1091~1096. doi: 10.3321/j.issn:1001-8166.2006.10.014CAO Shu-yun, LIU Jun-lai. Modern techniques for the Analysis of rock microstructure EBSD and its application[J]. Advances in Earth Science, 2006, 21(10):1091~1096. doi: 10.3321/j.issn:1001-8166.2006.10.014 [19] Carter N L, Avé Lallemant H G. High temperature flow of dunite and peridotite[J]. Geological Society of America Bulletin, 1970, 81(8):2181~2202. doi: 10.1130/0016-7606(1970)81[2181:HTFODA]2.0.CO;2 [20] Ismail W B, Mainprice D. An olivine fabric database:An overview of upper mantle fabrics and seismic anisotropy[J]. Tectonophysics, 1998, 296(1):145~157. [21] 孙平, 路凤香.下扬子地区若干上地幔橄榄岩的显微构造研究[J].现代地质, 1994, 8(1):57~64. http://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ401.007.htmSUN Ping, LU Feng-xiang. Microstructures of some peridotites from upper mantle in Low Yangtze Area[J]. Geoscience, 1994, 8(1):57~64. http://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ401.007.htm [22] Li C S, Thakurta J, Ripley E M. Low-Ca contents and kink-banded textures are not unique to mantle olivine:evidence from the Duke Island Complex, Alaska[J]. Mineralogy and Petrology, 2012, 104(3-4):147~153. doi: 10.1007/s00710-011-0188-0