CHARACTERISTICS OF MATERIAL SOURCES OF GALONGQU GLACIAL DEBRIS FLOW AND THE INFLUENCE TO ZHAMO ROAD
-
摘要: 在全球气候变暖的大背景下,冰川消融加剧,冰舌后退,冰川泥石流加剧。扎墨公路是目前通往西藏墨脱的唯一公路,公路必经的嘎龙曲发育藏东南地区典型的海洋性冰川泥石流,针对嘎龙曲冰川泥石流的物源特征,经现场调查得出,嘎龙曲冰川泥石流物源类型有冰碛物物源、崩塌型物源以及沟道堆积型物源三类,总结分析了三种物源类型的分布特征和启动模式。通过建立物源计算模型,定量计算嘎龙曲沟域内可参与泥石流活动的松散固体物源动储量为366.28×104 m3,其中冰碛物物源为主要的动储量物源,物源补给特征在藏东南海洋性冰川发育区域具有一定代表性。嘎龙曲沟域内水动力分布的不均一特性决定了物源启动参与泥石流活动的不均一性,随着全球气候变暖影响下水动力条件的增强,嘎龙曲冰川泥石流对扎墨公路的危害会愈加严重。Abstract: Under the background of global warming, glaciers melt, ice tongues retreat, glacial debris flows tend to be more active. Zhamo road is now the only road to Motuo county. Galongqu develops typical maritime glacier debris flows in southeastern Tibet. Based on the field survey, Galongqu valley is investigated through three kinds of material sources including moraine, collapse and channel accumulation. Distribution characteristics and participating modes of material sources are also summarized. On account of material source calculation models, the quantitative volume may participate in the Galongqu debris flow is 366.28×104 m3, where the moraine source is dominant. The supplying of material sources here are representative in southeastern Tibet. Galongqu glacial debris flow might bear great hazard potential to Zhamo Road along with the global warming trend.
-
Key words:
- glacial debris flow /
- characteristic of material source /
- dynamic reverse /
- Galongqu /
- Zhamo Road /
- SE Tibet
-
表 1 嘎龙曲泥石流物源情况统计表
Table 1. Statistics data of material sources of Galongqu debris flow
编号 类型 位置 稳定性 物源总量/
104 m3物源动储量
/104 m3补给方式 补给条件 M01 冰碛物物源 嘎龙拉隧道东侧(嘎龙寺) 较稳定 680.54 25.24 泥石流裹挟、滑坡 冰雪融水、暴雨冲刷、地震 M02 冰碛物物源 嘎龙拉隧道西侧 欠稳定 894.23 106.01 泥石流裹挟、滑坡 冰雪融水、暴雨冲刷、地震 M03 冰碛物物源 仓孔北侧 欠稳定 556.6 98.12 泥石流裹挟、滑坡 冰雪融水、暴雨冲刷、地震 M04 冰碛物物源 仓孔 欠稳定 253.1 59.2 泥石流裹挟、滑坡 冰雪融水、暴雨冲刷、地震 M05 冰碛物物源 沟口堆积区 较稳定 566.2 0 崩滑、坡面泥石流 不参与泥石流 小计 2950.67 288.57 B01 崩塌堆积物源 上游,仓孔右侧沟道转弯处 欠稳定 35.9 6.2 崩塌、坡面侵蚀 暴雨、洪水或泥石流冲刷、地震 B02 崩塌堆积物源 上游,仓孔南侧 欠稳定 15.8 3.85 崩塌、坡面侵蚀 暴雨、洪水或泥石流冲刷、地震 B03 崩塌堆积物源 上游,仓孔北侧 较稳定 9.26 0 崩塌、坡面侵蚀 不参与泥石流 B04 崩塌堆积物源 上游,仓孔左侧沟道转弯处 较稳定 9.96 0 崩塌、坡面侵蚀 不参与泥石流 B05 崩塌堆积物源 上游仓过对岸支沟 欠稳定 12.6 1.65 崩塌、坡面侵蚀 暴雨、洪水或泥石流冲刷、地震 B06 崩塌堆积物源 中上游沟道变窄处 欠稳定 11.63 2.6 崩塌、坡面侵蚀 暴雨、洪水或泥石流冲刷、地震 B07 崩塌堆积物源 中上游冰碛垄对岸支沟 欠稳定 13.64 5.02 崩塌、坡面侵蚀 暴雨、洪水或泥石流冲刷、地震 B08 崩塌堆积物源 中上游冰碛垄北侧支沟 欠稳定 26.57 2.02 崩塌、坡面泥石流 暴雨、洪水或泥石流冲刷、地震 B09 崩塌堆积物源 勇打不南侧1公里 欠稳定 12.39 0.55 崩塌 暴雨、洪水或泥石流冲刷、地震 B10 崩塌堆积物源 勇打不南侧500米 欠稳定 9.3 9.36 崩塌 暴雨、洪水或泥石流冲刷、地震 B11 崩塌堆积物源 勇打不南侧100米 欠稳定 18.99 5.36 崩塌、坡面侵蚀 暴雨、洪水或泥石流冲刷、地震 B12 崩塌堆积物源 勇打不 欠稳定 26.36 8.52 崩塌、坡面侵蚀 暴雨、洪水或泥石流冲刷、地震 B13 崩塌堆积物源 勇打不对岸 欠稳定 21.32 6.24 崩塌、坡面侵蚀 暴雨、洪水或泥石流冲刷、地震 B14 崩塌堆积物源 勇打不北侧200米 欠稳定 15.32 9.65 崩塌、坡面侵蚀 暴雨、洪水或泥石流冲刷、地震 B15 崩塌堆积物源 勇打不北侧300米 欠稳定 18.55 0.22 崩塌、坡面侵蚀 暴雨、洪水或泥石流冲刷、地震 B16 崩塌堆积物源 勇打不北侧500米 欠稳定 69.2 3.36 崩塌、坡面侵蚀 暴雨、洪水或泥石流冲刷、地震 B17 崩塌堆积物源 勇打不北侧500米对岸 欠稳定 16.54 2 崩塌、坡面侵蚀 暴雨、洪水或泥石流冲刷、地震 B18 崩塌堆积物源 中下游勇打不北侧1公里 欠稳定 13.75 1.55 崩塌、坡面侵蚀 暴雨、洪水或泥石流冲刷、地震 B19 崩塌堆积物源 中下游勇打不北侧1.2公里 欠稳定 19.66 0.2 崩塌、坡面侵蚀 暴雨、洪水或泥石流冲刷、地震 B20 崩塌堆积物源 中下游勇打不北侧2公里 欠稳定 28.5 4.3 崩塌、坡面侵蚀 暴雨、洪水或泥石流冲刷、地震 小计 379.31 72.65 G01 沟道堆积物源 勇打不上游500米 5.64 1.69 沟床揭底冲刷 暴雨洪水或泥石流冲刷 G02 沟道堆积物源 流通区中部支沟沟口 8.22 2.5 沟床揭底冲刷 暴雨洪水或泥石流冲刷 G03 沟道堆积物源 仓孔 5.63 0.7 沟床揭底冲刷 暴雨洪水或泥石流冲刷 G04 沟道堆积物源 堆积区沟道 2.96 0.17 沟床揭底冲刷 暴雨洪水或泥石流冲刷 小计 22.45 5.06 总计 3352.43 366.28 表 2 嘎龙曲泥石流物源情况汇总表
Table 2. Statistics data of material sources of Galongqu debris flow
冰碛物物源 崩塌堆积物源 沟道堆积物源 合计/104 m3 物源总量 动储量 物源总量 动储量 物源总量 动储量 物源总量 动储量 2950.67 288.57 379.31 72.65 22.45 5.06 3352.43 366.28 -
[1] 王宗盛, 姚鑫, 孙进忠, 等.冰川泥石流研究进展概述[J].工程地质学报, 2014, 22(S1):459~465.WANG Zongsheng, YAO Xin, SUN Jinzhong, et al. An overview on research development of glacier-related debris flow[J]. Journal of Engineering Geology, 2014, 22(S1):459~465. (in Chinese with English abstract) [2] 铁永波, 李宗亮.冰川泥石流形成机理研究进展[J].水科学进展, 2010, 21(6):861~866. http://www.doc88.com/p-995230371407.htmlTIE Yongbo, LI Zongliang. Progress in the study of glacial debris flow mechanisms[J]. Advances in Water Science, 2010, 21(6):861~866. (in Chinese with English abstract) http://www.doc88.com/p-995230371407.html [3] Cui P, Dang C, Chen Z L, et al. Debris flows resulting from Glacial-Lake outburst floods in Tibet, China[J]. Physical Geography, 2010, 31(6):508~527. doi: 10.2747/0272-3646.31.6.508 [4] 刘建康, 程尊兰.西藏古乡沟泥石流与气象条件的关系[J].科学技术与工程, 2015, 15(9):45~49, 55. http://d.old.wanfangdata.com.cn/Periodical/kxjsygc201509007LIU Jiankang, CHENG Zunlan. Meteorology conditions for frequent debris flows from Guxiang valley in Tibet, China[J]. Science Technology and Engineering, 2015, 15(9):45~49, 55. (in Chinese with English abstract) http://d.old.wanfangdata.com.cn/Periodical/kxjsygc201509007 [5] 杜榕桓, 李鸿琏, 王立伦, 等. 西藏古乡沟冰川泥石流的形成与发展[A]. 中国科学院兰州冰川冻土研究所集刊[M]. 北京: 科学出版社, 1984: 1~18.DU Ronghuan, LI Honglian, WANG Lilun, et al. Formation and development of glacial debris flow in Guxiang gulley, Xizang[A]. Memoris of Lanzhou Institute of Glaciology and Geocryology, Chinese Academy of Sciences[M]. Beijing: Science Press, 1984: 1~18. (in Chinese with English abstract) [6] Walder J S, Driedger C L. Frequent outburst floods from South Tahoma Glacier, Mount Rainier, U.S.A.:relation to debris flows, meteorological origin and implications for subglacial hydrology[J]. Journal of Glaciology, 1995, 41(137):1~10. doi: 10.1017/S0022143000017718 [7] Bardou E, Delaloye R. Effects of ground freezing and snow avalanche deposits on debris flows in alpine environments[J]. Natural Hazards and Earth System Sciences, 2004, 4(4):519~530. doi: 10.5194/nhess-4-519-2004 [8] 张顺英.西藏古乡泥石流暴发的气象条件及予报的可能性[J].冰川冻土, 1980, 2(2):41~47.ZHANG Shunying. Meteorology Conditions and forecasting for debris flows in Guxiang valley[J]. Journal of Glaciology and Geocryology, 1980, 2(2):41~47. (in Chinese) [9] 成都地质矿产研究所, 甘肃地调院地质三所. 1: 25万墨脱县幅地质图调查报告[R]. 1999~2003.Chengdu Institute of Geology and Mineral Resources, Third Institute of Gansu Province Bureau of Geology and Mineral Resources. Report for 1: 250000 geological map of Motuo[R]. 1999~2003. (in Chinese) [10] 唐方头, 宋键, 曹忠权, 等.最新GPS数据揭示的东构造结周边主要断裂带的运动特征[J].地球物理学报, 2010, 53(9):2119~2128. http://www.docin.com/p-519452467.htmlTANG Fangtou, SONG Jian, CAO Zhongquan, et al. The movement Characters of main faults around Eastern Himalayan Syntaxis revealed by the latest GPS data[J]. Chinese Journal of Geophysics, 2010, 53(9):2119~2128. (in Chinese with English abstract) http://www.docin.com/p-519452467.html [11] 宋健, 唐方头, 邓志辉, 等.青藏高原嘉黎断裂晚第四纪运动特征[J].北京大学学报(自然科学版), 2013, 49(6):973~980. http://www.doc88.com/p-8611951241293.htmlSONG Jian, TANG Fangtou, DENG Zhihui, et al. Late Quaternary movement characteristic of Jiali Fault in Tibetan Plateau[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2013, 49(6):973~980. (in Chinese with English abstract) http://www.doc88.com/p-8611951241293.html [12] 吕儒仁, 唐邦兴, 朱平一.西藏泥石流与环境[M].成都:成都科技大学出版社, 1999:1~245.LV Ruren, TANG Bangxing, ZHU Pingyi. Debris flow and environment in Tibet[M]. Chengdu:Chengdu University of Science and Technology Press, 1999:1~245. (in Chinese) [13] 丁继新, 杨志法, 尚彦军.川藏公路然乌-鲁朗段泥石流灾害成因分析及定量化分区[J].地质力学学报, 2006, 12(2):203~210, 226. http://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?file_no=20060230&flag=1DING Jixin, YANG Zhifa, SHANG Yanjun. Cause analysis and quantitative zonation of mudflow hazards along the Rawu-Lunang section, Sichuan-Tibet highway[J]. Journal of Geomechanics, 2006, 12(2):203~210, 226. (in Chinese with English abstract) http://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?file_no=20060230&flag=1 [14] 张佳佳, 王军朝, 陈龙, 等.川藏公路扎木到索通段第四纪堆积体的分布及产出特征[J].科学技术与工程, 2017, 17(32):37~43. doi: 10.3969/j.issn.1671-1815.2017.32.007ZHANG Jiajia, WANG Junchao, CHEN Long, et al. Distribution of the Quaternary accumulation along Zhamu-Suotong section of the Sichuan-Tibet High way and their occurrence characteristics[J]. Science Technology and Engineering, 2017, 17(32):37~43. (in Chinese with English abstract) doi: 10.3969/j.issn.1671-1815.2017.32.007 [15] 崔鹏, 陈容, 向灵芝, 等.气候变暖背景下青藏高原山地灾害及其风险分析[J].气候变化研究进展, 2014, 10(2):103~109. http://d.old.wanfangdata.com.cn/Periodical/qhbhyjjz201402004CUI Peng, CHEN Rong, XIANG Lingzhi, et al. Risk analysis of mountain hazards in Tibetan Plateau under global warming[J]. Progressus Inquisitiones de Mutatione Climatis, 2014, 10(2):103~109. (in Chinese with English abstract) http://d.old.wanfangdata.com.cn/Periodical/qhbhyjjz201402004 [16] 乔建平, 黄栋, 杨宗佶, 等.汶川地震极震区泥石流物源动储量统计方法讨论[J].中国地质灾害与防治学报, 2012, 23(2):1~6. http://www.doc88.com/p-913968510979.htmlQIAO Jianping, HUANG Dong, YANG Zongjie, et al. Statistical method on dynamic reserve of debris flow's source materials in meizoseismal area of Wenchuan earthquake region[J]. The Chinese Journal of Geological Hazard and Control, 2012, 23(2):1~6. (in Chinese with English abstract) http://www.doc88.com/p-913968510979.html [17] 中国科学院青藏高原综合科学考察队. 一九七三年度青藏高原综合科学考察报告: 西藏东南部察隅县、波密县及八宿县部分地区地貌考察报告[R]. 北京: 中国科学院青藏高原综合科学考察队, 1974: 11~12.The Comprehensive Scientific Expedition to the Qinghai Xizang Plateau, Academia Sinica. Report of the comprehensive scientific expedition to the Qinghai~Xizang Plateau, exploration report of the geomorphology in Chayu, Bomi and Basu Counties, Southeast Tibet[R]. The Comprehensive Scientific Expedition to the Qinghai Xizang Plateau, Academia Sinica, 1974: 11~12. (in Chinese) [18] 中国科学院青藏高原综合科学考察队.西藏地貌[M].北京:科学出版社, 1983:1~238.The Comprehensive Scientific Expedition to the Qinghai~Xizang Plateau, Academia Sinica. Geomorphology of Xizang (Tibet)[M]. Beijing:Science Press, 1983:1~238. (in Chinese) [19] 高杨, 李滨, 冯振, 等.全球气候变化与地质灾害响应分析[J].地质力学学报, 2017, 23(1):65~77. http://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?file_no=20170102&flag=1GAO Yang, LI Bin, FENG Zhen, et al. Global climate change and geological disaster response analysis[J]. Journal of Geomechanics, 2017, 23(1):65~77. (in Chinese with English abstract) http://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?file_no=20170102&flag=1