留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

2008年汶川大地震孕震、同震及震后变形和应力演化全过程的数值模拟

孟秋 高宽 陈启志 胡才博

孟秋, 高宽, 陈启志, 等, 2021. 2008年汶川大地震孕震、同震及震后变形和应力演化全过程的数值模拟. 地质力学学报, 27 (4): 614-627. DOI: 10.12090/j.issn.1006-6616.2021.27.04.051
引用本文: 孟秋, 高宽, 陈启志, 等, 2021. 2008年汶川大地震孕震、同震及震后变形和应力演化全过程的数值模拟. 地质力学学报, 27 (4): 614-627. DOI: 10.12090/j.issn.1006-6616.2021.27.04.051
MENG Qiu, GAO Kuan, CHEN Qizhi, et al., 2021. Seismogenic, coseismic and postseismic deformation and stress evolution of the 2008 Wenchuan earthquake: Numerical simulation analysis. Journal of Geomechanics, 27 (4): 614-627. DOI: 10.12090/j.issn.1006-6616.2021.27.04.051
Citation: MENG Qiu, GAO Kuan, CHEN Qizhi, et al., 2021. Seismogenic, coseismic and postseismic deformation and stress evolution of the 2008 Wenchuan earthquake: Numerical simulation analysis. Journal of Geomechanics, 27 (4): 614-627. DOI: 10.12090/j.issn.1006-6616.2021.27.04.051

2008年汶川大地震孕震、同震及震后变形和应力演化全过程的数值模拟

doi: 10.12090/j.issn.1006-6616.2021.27.04.051
基金项目: 

国家自然基金面上项目 42074117

国家自然基金面上项目 41474085

详细信息
    作者简介:

    孟秋(1994-), 在读博士, 主要从事地球动力学数值模拟。E-mail: qmeng@whu.edu.cn

    通讯作者:

    胡才博(1980-), 博士, 副教授, 主要从事地球动力学数值模拟。E-mail: hucb@ucas.ac.cn

  • 中图分类号: P313.2;P313.4;P313.5

Seismogenic, coseismic and postseismic deformation and stress evolution of the 2008 Wenchuan earthquake: Numerical simulation analysis

Funds: 

the National Natural Science Foundation of China 42074117

the National Natural Science Foundation of China 41474085

  • 摘要: 2008年MS 8.0级汶川大地震发生在具有复杂的地质构造背景、强烈的地表起伏、不均匀的弹性和黏性结构的龙门山断裂带上。由于震前地震活动性不够强烈且地表构造变形较小,龙门山断裂带的地震危险性在汶川地震之前被低估。从数值模拟的角度,建立黏弹性有限元模型,考虑了初始地形、重力、构造加载、黏弹性松弛等因素对2008年汶川大地震的孕震、同震及震后150年变形全过程的影响,定量研究了映秀-北川断裂带的同震及震后变形,分析了弹性层、黏弹性层的应力积累、释放、调整的特点,模拟得到地表同震和震后位移与大地测量资料较为吻合,对汶川大地震的余震分布进行了力学上的解释,模拟得到震前、同震及震后的应力变化有助于深入分析大地震的动力学成因及其对周围区域的地震危险性影响。

     

  • 图  1  2008年汶川地震的地质构造背景和龙门山断裂带地表起伏图

    a—地质构造背景图(彩色底图显示的是研究区域的地表高程,红线代表文中选取的横跨龙门山断裂带的研究剖面,蓝线代表研究区域的主要活动断裂带,灰色圆圈代表研究区域大于5.0级的历史大地震震中, LMSFZ—龙门山断裂带;XSHF—鲜水河断裂);b—研究区域的三维地表高程分布图;c—研究剖面的地表高程图

    Figure  1.  Geological background of the 2008 Wenchuan earthquake and surface relief map of the Longmenshan fault zone. (a) Geological background map. The color base map shows the surface elevation of the study area. Red line demotes the selected section across the Longmenshan fault zone. Blue lines represent the main active faults in the study area. Grey circles represent the epicenters of historical earthquakes with magnitude greater than 5.0. LMSFZ-the Longmenshan fault zone, XSHF-the Xianshuihe fault. (b)Three-dimensional surface elevation distribution map of the study area. (c) Surface elevation map of the study section.

    图  2  有限元模型示意图

    灰色和深蓝色为各向同性弹性层;F1—龙门山后山断裂带,F2—龙门山中央断裂带(映秀-北川断裂带),F3—龙门山前山断裂带,F4—龙门山后山次级断裂带,均为横观各向同性弹性材料;其余各层均为Maxwell黏弹性层

    Figure  2.  Schematic diagram of the finite element model. Gray and dark blue regions are isotropic elastic layers. F1-the Longmenshan range-back fault zone; F2-the Longmenshan range-central fault zone; F3-the Longmenshan range-front fault zone; F4-the Longmenshan secondary range-back fault zone. Other regions are the Maxwell viscoelastic layers.

    图  3  模型设定的初始位移和演化40万年之后的汶川地震初始位移

    a—演化40万之后的汶川地震初始地表水平位移u;b—模型设定的初始高程和演化40万年之后的汶川地震地表垂直位移v

    Figure  3.  Initial displacement specified by the model and initial displacement before the 2008 Wenchuan earthquake after 400, 000 years evolution by the model. (a) Initial surface horizontal displacement u before the 2008 Wenchuan earthquake after 400, 000 years evolution by the model. (b) Initial vertical displacement specified by the model and initial vertical displacement v before the 2008 Wenchuan earthquake after 400, 000 years evolution by the model.

    图  4  2008年汶川大地震的同震位移等值线图

    a—同震水平位移变化Ux;b—同震垂直位移变化Uy

    Figure  4.  Coseismic displacement contour map of the 2008 Wenchuan earthquake. (a) Coseismic horizontal displacement Ux. (b) Coseismic vertical displacement Uy.

    图  5  2008年汶川大地震的地表同震位移分布

    a—同震地表水平位移变化Ux;b—同震地表垂直位移变化Uy

    Figure  5.  Surface coseismic displacement of the 2008 Wenchuan earthquake. (a) Coseismic horizontal displacement Ux. (b) Coseismic vertical displacement Uy.

    图  6  2008年汶川大地震引起的同震应力变化

    a—同震水平正应力变化Sxx;b—同震垂直正应力变化Syy;c—同震剪应力变化Sxy

    Figure  6.  Coseismic stress changes caused by the 2008 Wenchuan earthquake. (a) Coseismic horizontal normal stress change Sxx. (b) Coseismic vertical normal stress change Syy. (c) Coseismic shear stress change Sxy.

    图  7  2008年汶川大地震之后7年的震后位移(去掉同震位移后)

    a—水平位移变化Ux(平行于图 1a的红色剖面);b—垂直位移变化Uy

    Figure  7.  Postseismic displacement 7 years after the 2008 Wenchuan earthquake (Coseismic displacement is removed). (a) Horizontal displacement Ux (parallel to the red section in Fig. 1a). (b) Vertical displacement Uy.

    图  8  汶川大地震50年后的位移变化

    a—水平位移变化Ux;b—垂直位移变化Uy

    Figure  8.  Displacement changes 50 years after the Wenchuan earthquake. (a) Horizontal displacement change Ux. (b) Vertical displacement change Uy.

    图  9  汶川大地震100年后的位移变化

    a—水平位移变化Ux;b—垂直位移变化Uy

    Figure  9.  Displacement changes 100 years after the Wenchuan earthquake. (a) Horizontal displacement change Ux. (b) Vertical displacement change Uy.

    图  10  映秀-北川断裂带西侧出露点的震后位移随时间的变化曲线

    a—水平位移变化Ux;b—垂直位移变化Uy

    Figure  10.  Postseismic displacement curves with time of the western outcrop point in the Yingxiu-Beichuan fault zone. (a) Horizontal displacement change Ux. (b) Vertical displacement change Uy.

    图  11  映秀-北川断裂带东侧出露点的震后位移随时间的变化曲线

    a—水平位移变化Ux;b—垂直位移变化Uy

    Figure  11.  Postseismic displacement curves with time of the eastern outcrop point of the Yingxiu-Beichuan fault zone. (a) Horizontal displacement change Ux. (b) Vertical displacement change Uy.

    图  12  2008年汶川大地震平行于主震震源机制解主平面的同震结果

    a—正应力Δσn;b—剪应力Δτn;c—库仑应力变化ΔCFS

    Figure  12.  Coseismic results of the 2008 Wenchuan earthquake parallel to the main plane of focal mechanism solution. (a) Normal stress change Δσn. (b) Shear stress change Δτn. (c) Coulomb stress change ΔCFS.

    图  13  2008年汶川大地震平行于主震震源机制解主平面的震后50年结果

    a—正应力变化Δσn;b—剪应力变化Δτn;c—库仑应力变化ΔCFS

    Figure  13.  Results 50 years after the 2008 Wenchuan earthquake parallel to the main plane of focal mechanism solution. (a) Normal stress change Δσn. (b) Shear stress change Δτn. (c) Coulomb stress change ΔCFS.

    图  14  2008年汶川大地震的余震在剖面上的投影分布

    蓝点代表2008年汶川大地震的余震位置,剖面位置与图 1a中的红色测线一致

    Figure  14.  Projection distribution of the aftershocks after the 2008 Wenchuan earthquake on the profile (The profile corresponds to the red survey line in Fig. 1a and blue points denote the aftershocks after the 2008 Wenchuan earthquake.)

    表  1  龙门山断裂带两侧P波速度随深度的分布表(黄晓萍,2012)

    Table  1.   Distribution of P-wave velocity with depth on both sides of the Longmenshan fault zone (Huang, 2012)

    龙门山断裂带西侧(松潘甘孜地块) 龙门山断裂带东侧(四川盆地)
    界面深度/km P波速度/(km/s) 界面深度/km P波速度/(km/s)
    0 5.0 0 4.5
    4 5.4 3 5.0
    7 5.8 7 5.4
    10 6.0 10 6.0
    15 6.2 15 6.4
    30 6.4 25 6.8
    40 6.7 40 7.5
    50 6.9 50 8.0
    60 7.8 60 8.3
    70~100 8.3 70~100 8.3
    下载: 导出CSV
  • AVOUAC J P, TAPPONNIER P, 1993. Kinematic model of active deformation in central Asia[J]. Geophysical Research Letters, 20(10): 895-898. doi: 10.1029/93GL00128
    BIRD P, 1991. Lateral extrusion of lower crust from under high topography in the isostatic limit[J]. Journal of Geophysical Research: Solid Earth, 96(B6): 10275-10286. doi: 10.1029/91JB00370
    BURCHFIEL B C, ROYDEN L H, VAN DER HILST R D, et al., 2008. A geological and geophysical context for the Wenchuan earthquake of 12 May 2008, Sichuan, People's Republic of China[J]. GSA Today, 18(7): 4-11. doi: 10.1130/GSATG18A.1
    CHEN Q C, FENG C J, MENG W, et al., 2012. Analysis of in situ stress measurements at the northeastern section of the Longmenshan fault zone after the 5.12 Wenchuan earthquake[J]. Chinese Journal of Geophysics, 55(12): 3923-3932. doi: 10.6038/j.issn.0001-5733.2012.12.005.(in Chinese with English abstract)
    CHEN Z A, LIN B H, BAI W, et al., 2009. The mechanism of generation of May 12, 2008 MS8.0 Wenchuan earthquake[J]. Chinese Journal of Geophysics, 52(2): 408-417. doi: 10.1029/2009GC002590
    DENG Q D, CHEN S F, ZHAO X L, 1994. Tectonics, scismisity and dynamics of Longmenshan mountains and its adjacent regions[J]. Seismology and Geology, 16(4): 389-403. (in Chinese) http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZDZ404.013.htm
    DENG Q D, CHEN G H, ZHU A L, 2011. Discussion of rupture mechanisms on the seismogenic fault of the 2008 MS8.0 Wenchuan earthquake[J]. Science China Earth Sciences, 54(9): 1360-1377. doi: 10.1007/s11430-011-4230-1.
    DIAO F Q, WANG R J, WANG Y B, et al., 2018. Fault behavior and lower crustal rheology inferred from the first seven years of postseismic GPS data after the 2008 Wenchuan earthquake[J]. Earth and Planetary Science Letters, 495: 202-212. doi: 10.1016/j.epsl.2018.05.020
    DONG S W, ZHANG Y Q, LONG C X, et al., 2008. Surface rupture investigation of the Wenchuan MS 8.0 earthquake of May 12th, 2008, West Sichuan, and analysis of its occurrence setting[J]. Acta Geoscientica Sinica, 29(3): 392-396. (in Chinese with English abstract)
    DU J J, CHEN Q C, MA Y S, et al., 2013. Faults activity and stress state in the northeast segment of Longmenshan faults zone[J]. Progress in Geophysics, 28(3): 1161-1170. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQWJ201303006.htm
    FENG C J, CHEN Q C, TAN C X, et al., 2013. Analysis on current in-situ stress state in northern segment of Longmenshan fault belt[J]. Progress in Geophysics, 28(3): 1109-1121. (in Chinese with English abstract) http://d.wanfangdata.com.cn/periodical/dqwlxjz201303002
    FU Z, 2008. Viscoelastic LDDA method for contact problems and its applications to studies on mechanism of postseismic deformation[D]. Beijing: Peking University: 41-48. (in Chinese with English abstract)
    GUO B, LIU Q Y, CHEN J H, et al., 2009. Teleseismic P-wave tomography of the crust and upper mantle in Longmenshan area, west Sichuan[J]. Chinese Journal of Geophysics, 52(2): 346-355. (in Chinese with English abstract) http://www.oalib.com/paper/1569152
    GUO X Y, GAO R, KELLER G R, et al., 2013. Imaging the crustal structure beneath the eastern Tibetan Plateau and implications for the uplift of the Longmen Shan range[J]. Earth and Planetary Science Letters, 379: 72-80. doi: 10.1016/j.epsl.2013.08.005
    HU C B, 2009. A new method to study earthquake triggering and continuous evolution of stress field[D]. Beijing: Peking University: 23-28. (in Chinese with English abstract)
    HUA W, CHEN Z L, ZHENG S H, 2009. A study on segmentation characteristics of aftershock source parameters of Wenchuan M8.0 earthquake in 2008[J]. Chinese Journal of Geophysics, 52(2): 365-371. (in Chinese with English abstract) http://www.oalib.com/paper/1568370
    HUANG X P, 2012. Relocation of earthquakes before and after Wenchuan MS8.0 earthquake and the study of focal mechanism[D]. Chengdu: Chengdu University of Technology: 10. (in Chinese with English abstract)
    HUANG Y T, ZHU J S, CAO J M, et al., 2012. Relocation of the epicentre before and after Wenchuan MS 8.0 earthquake[J]. Computing Techniques for Geophysical and Geochemical Exploration, 34(3): 272-278. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-WTHT201203005.htm
    HUANG Y, WU J P, ZHANG T Z, et al., 2008. Relocation of the M8.0 Wenchuan earthquake and its aftershock sequence[J]. Science in China Series D: Earth Sciences, 51(12): 1703-1711. doi: 10.1007/s11430-008-0135-z.
    JIA D, WEI G Q, CHEN Z X, et al., 2006. Longmen Shan fold-thrust belt and its relation to the western Sichuan Basin in central China: new insights from hydrocarbon exploration[J]. AAPG Bulletin, 90(9): 1425-1447. doi: 10.1306/03230605076
    KING G C P, STEIN R S, LIN J, 1994. Static stress changes and the triggering of earthquakes[J]. Bulletin of the Seismological Society of America, 84(3): 935-953. http://gji.oxfordjournals.org/cgi/ijlink?linkType=ABST&journalCode=ssabull&resid=84/3/935
    KIRBY E, REINERS P W, KROL M A, et al., 2002. Late Cenozoic evolution of the eastern margin of the Tibetan Plateau: Inferences from 40Ar/39Ar and (U-Th)/He thermochronology[J]. Tectonics, 21(1): 1001. doi: 10.1029/2000TC001246.
    LEI J S, ZHAO D P, SU J R, et al., 2009. Fine seismic structure under the Longmenshan fault zone and the mechanism of the large Wenchuan earthquake[J]. Chinese Journal of Geophysics, 52(2): 339-345. (in Chinese with English abstract) http://www.oalib.com/paper/1568771
    LI H B, WANG Z X, FU X F, et al., 2008. The surface rupture zone distribution of the Wenchuan earthquake (MS8.0) happened on May 12th, 2008[J]. Geology in China, 35(5): 803-813. (in Chinese with English abstract) http://www.researchgate.net/publication/290491865_The_surface_rupture_zone_distribution_of_the_Wenchuan_earthquake_Ms80_happened_on_May_12th_2008
    LI Y, ZHOU R J, DENSMORE A L, et al., 2006. Geomorphic evidence for the late Cenozoic strike-slipping and thrusting in Longmen mountain at the eastern margin of the Tibetan Plateau[J]. Quaternary Sciences, 26(1): 40-51. (in Chinese with English abstract) http://www.cqvip.com/Main/Detail.aspx?id=21093649
    LI Z Q, YUAN Y F, LI X L, et al., 2008. Preliminary research on the characteristics of the MS8.0 Wenchuan earthquake hazard[J]. Seismology and Geology, 30(4): 855-876. (in Chinese with English abstract) http://www.oalib.com/paper/1553191
    LIU C, ZHU B J, YANG X L, 2015. How does crustal shortening contribute to the uplift of the eastern margin of the Tibetan Plateau?[J]. Journal of Asian Earth Sciences, 98: 18-25. doi: 10.1016/j.jseaes.2014.10.037
    LIU Q Y, LI Y, CHEN J H, et al., 2009. Wenchuan MS8.0 earthquake: preliminary study of the S-wave velocity structure of the crust and upper mantle[J]. Chinese Journal of Geophysics, 52(2): 309-319. (in Chinese with English abstract) http://www.oalib.com/paper/1569196
    MENG Q, 2020. The independent development of viscoelastic finite element program and its application on surface deformation and seismic migration under ice load[D]. Beijing: University of Chinese Academy of Sciences: 9-29. (in Chinese with English abstract)
    MENG Q, HU C B, SHI Y L, 2020. The study of post-glacial rebound and stress evolution since the Last Ice Age in the northern North Sea of Norway by using viscoelastic finite element model[J]. Chinese Journal of Geophysics, 63(10): 3751-3763. doi: 10.6038/cjg2020N0382.(in Chinese with English abstract)
    MENG W, CHEN Q C, WU M L, et al., 2013. Research on segmentation and characteristic of tectonic stress field of Longmenshan fault zone[J]. Progress in Geophysics, 28(3): 1150-1160. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQWJ201303005.htm
    QIN X H, CHEN Q C, TAN C X, et al., 2013. Analysis of current geostress state and seismic risk in southwest segment of Longmenshan fracture belt[J]. Chinese Journal of Rock Mechanics and Engineering, 32(S1): 2870-2876. (in Chinese with English abstract) http://d.wanfangdata.com.cn/Periodical/yslxygcxb2013z1038
    ROYDEN L H, BURCHFIEL B C, VAN DER HILST R D, 2008. The geological evolution of the Tibetan Plateau[J]. Science, 321(5892): 1054-1058. doi: 10.1126/science.1155371.
    SHEN Z K, SUN J B, ZHANG P Z, et al., 2009. Slip maxima at fault junctions and rupturing of barriers during the 2008 Wenchuan earthquake[J]. Nature Geoscience, 2(10): 718-724. doi: 10.1038/NGEO636.
    TAPPONNIER P, XU Z Q, RONGER F, et al., 2001. Oblique stepwise rise and growth of the Tibet plateau[J]. Science, 294(5547): 1671-1677. doi: 10.1126/science.105978.
    TODA S, LIN J, MEGHRAOUI M, et al., 2008. 12 May 2008 M=7.9 Wenchuan, China, earthquake calculated to increase failure stress and seismicity rate on three major fault systems[J]. Geophysical Research Letters, 35(17): L17305. doi: 10.1029/2008GL034903.
    WANG M, 2009. Coseismic slip distribution of the 2008 Wenchuan great earthquake constrained using GPS cosesimic displacement field[J]. Chinese Journal of Geophysics, 52(10): 2519-2526. (in Chinese with English abstract) http://www.oalib.com/paper/1568022
    WANG Q L, CUI D X, ZHANG X, et al., 2009. Coseismic vertical deformation of the MS8.0 Wenchuan earthquake from repeated levelings and its constraint on Listric fault geometry[J]. Earthquake Senccie, 22(6): 595-602. doi: 10.1007/s11589-009-0595-z.
    WANG Q, QIAO X J, LAN Q G, et al., 2011. Rupture of deep faults in the 2008 Wenchuan earthquake and uplift of the Longmen Shan[J]. Nature Geoscience, 4(9): 634-640. doi: 10.1038/NGEO1210.
    WANG T, MA Y S, LONG C X, et al., 2008. Fault activity of the Wenchuan earthquake in Sichuan, China and seismic secondary geohazards[J]. Geological Bulletin of China, 27(11): 1913-1922. (in Chinese with English abstract) http://d.old.wanfangdata.com.cn/Periodical/zgqydz200811022
    WANG W M, ZHAO L F, LI J, et al., 2008. Rupture process of the MS 8.0 Wenchuan earthquake of Sichuan, China[J]. Chinese Journal of Geophysics, 51(5): 1403-1410. (in Chinese with English abstract) http://www.researchgate.net/publication/279613838_Rupture_process_of_the_MS_8.0_Wenchuan_earthquake_of_Sichuan_China
    WEN X Z, ZHANG P Z, DU F, et al., 2009. The background of historical and modern seismic activities of the occurrence of the 2008 MS8.0 Wenchuan, Sichuan, earthquake[J]. Chinese Journal of Geophysics, 52(2): 444-454. (in Chinese with English abstract) http://d.wanfangdata.com.cn/periodical/dqwlxb200902016
    WU J, LU H S, LIU A W, 2008. Preliminary study on correlation between seismic intensity and earthquake source process in Wenchuan earthquake of Sichuan, China[J]. Technology for Earthquake Disaster Prevention, 3(3): 224-229. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZZFY200803004.htm
    WU Z H, ZHANG Z C, 2008. Seismic deformation and co-seismic displacement of the MS 8.0 Wenchuan Earthquake in Sichuan, China[J]. Geological Bulletin of China, 27(12): 2067-2075. (in Chinese with English abstract)
    XU H H, LIU J Z, CAI Y E, 2002. Two dimensional numerical simulation of subduction of continental deep subduction[C]//Annual journal of Chinese geophysical society 2002, proceedings of the 18th annual meeting of the Chinese Geophysical Society. Beihai: Earthquake Press. (in Chinese)
    XU Z Q, LI H B, WU Z L, 2008. Wenchuan earthquake and scientific drilling[J]. Acta Geologica Sinica, 82(12): 1613-1622. (in Chinese with English abstract)
    YAN D P, SUN M, GONG L X, et al., 2020. Composite structure and growth of the Longmenshan foreland thrust belt in the eastern margin of the Qinghai-Tibet Plateau[J]. Journal of Geomechanics, 26(5): 615-633. doi: 10.12090/j.issn.1006-6616.2020.26.05.054.(in Chinese with English abstract)
    YI G X, LONG F, ZHANG Z W, 2012. Spatial and temporal variation of focal mechanisms for aftershocks of the 2008 MS 8.0 Wenchuan earthquake[J]. Chinese Journal of Geophysics, 55(4): 1213-1227. doi: 10.6038/j.issn.0001-5733.2012.04.017.(in Chinese with English abstract)
    YIN A, NIE S, 1996. A Phanerozoic palinspastic reconstruction of China and its neighboring regions[M]//YIN A, HARRISON M. The tectonic evolution of Asia. New York: Cambridge University Press: 442-485.
    YIN L, LUO G, 2018. Crustal deformation across the Longmen Shan fault zone from finite element simulation of seismic cycles[J]. Chinese Journal of Geophysics, 61(4): 1238-1257. doi: 10.6038/cjg2018L0248.(in Chinese with English abstract)
    YIN X C, 2011. Solid Mechanics[M]. 2nd ed. Beijing: Seismological Press: 337-360. (in Chinese)
    ZHANG G H, QU C Y, WANG C S, et al., 2010. Inversion of slip distribution of 2008 Wenchuan MW7.9 earthquake constrained jointly by InSAR and GPS measurements[J]. Journal of Geodesy and Geodynamics, 30(4): 19-24. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-DKXB201004006.htm
    ZHAO G M, WU Z H, LIU J, 2020. The types, characteristics and mechanism of seismic migration[J]. Journal of Geomechanics, 26(1): 13-32. doi: 10.12090/j.issn.1006-6616.2020.26.01.002.(in Chinese with English abstract)
    ZHU J S, 2008. The Wenchuan earthquake occurrence background in deep structure and dynamics of lithosphere[J]. Journal of Chengdu University of Technology (Science & Technology Edition), 35(4): 348-356. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-CDLG200804001.htm
    ZHU S B, ZHANG P Z, 2013. FEM simulation of interseismic and coseismic deformation associated with the 2008 Wenchuan Earthquake[J]. Tectonophysics, 584: 64-80. doi: 10.1016/j.tecto.2012.06.024
    陈群策, 丰成君, 孟文, 等, 2012. 5.12汶川地震后龙门山断裂带东北段现今地应力测量结果分析[J]. 地球物理学报, 55(12): 3923-3932. doi: 10.6038/j.issn.0001-5733.2012.12.005.
    陈祖安, 林邦慧, 白武明, 等, 2009. 2008年汶川8.0级地震孕震机理研究[J]. 地球物理学报, 52(2): 409-417.
    邓起东, 陈社发, 赵小麟, 1994. 龙门山及其邻区的构造和地震活动及动力学[J]. 地震地质, 16(4): 389-403.
    邓起东, 陈桂华, 朱艾斓, 2011. 关于2008年汶川MS8.0地震震源断裂破裂机制几个问题的讨论[J]. 中国科学: 地球科学, 41(11): 1559-1576. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201111002.htm
    董树文, 张岳桥, 龙长兴, 等, 2008. 四川汶川MS 8.0地震地表破裂构造初步调查与发震背景分析[J]. 地球学报, 29(3): 392-396. doi: 10.3321/j.issn:1006-3021.2008.03.013
    杜建军, 陈群策, 马寅生, 等, 2013. 龙门山断裂带东北段地应力状态与断裂活动性研究[J]. 地球物理学进展, 28(3): 1161-1170.
    丰成君, 陈群策, 谭成轩, 等, 2013. 龙门山断裂带东北段现今地应力环境研究[J]. 地球物理学进展, 28(3): 1109-1121.
    付真, 2008. 接触问题的粘弹性LDDA方法及其在震后变形机制研究中的应用[D]. 北京: 北京大学: 41-48.
    郭飚, 刘启元, 陈九辉, 等, 2009. 川西龙门山及邻区地壳上地幔远震P波层析成像[J]. 地球物理学报, 52(2): 346-355.
    胡才博, 2009. 研究地震触发和应力场连续演化的新方法[D]. 北京: 北京大学: 23-28.
    华卫, 陈章立, 郑斯华, 2009. 2008年汶川8.0级地震序列震源参数分段特征的研究[J]. 地球物理学报, 52(2): 365-371.
    黄晓萍, 2012. 汶川MS8.0级地震前后重新定位以及震源机制的研究[D]. 成都: 成都理工大学: 10.
    黄玉婷, 朱介寿, 曹家敏, 等, 2012. 对汶川8.0级地震前后震源的重新定位[J]. 物探化探计算技术, 34(3): 272-278. doi: 10.3969/j.issn.1001-1749.2012.03.06
    黄媛, 吴建平, 张天中, 等, 2008. 汶川8.0级大地震及其余震序列重定位研究[J]. 中国科学D辑: 地球科学, 38(10): 1242-1249. doi: 10.3321/j.issn:1006-9267.2008.10.007
    雷建设, 赵大鹏, 苏金蓉, 等, 2009. 龙门山断裂带地壳精细结构与汶川地震发震机理[J]. 地球物理学报, 52(2): 339-345. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX200902006.htm
    李海兵, 王宗秀, 付小方, 等, 2008. 2008年5月12日汶川地震(MS8.0)地表破裂带的分布特征[J]. 中国地质, 35(5): 803-813. doi: 10.3969/j.issn.1000-3657.2008.05.002
    李勇, 周荣军, DENSMORE A L, 等, 2006. 青藏高原东缘龙门山晚新生代走滑-逆冲作用的地貌标志[J]. 第四纪研究, 26(1): 40-51. doi: 10.3321/j.issn:1001-7410.2006.01.006
    李志强, 袁一凡, 李晓丽, 等, 2008. 汶川MS 8.0特大地震破坏特征初步研究[J]. 地震地质, 30(4): 855-876. doi: 10.3969/j.issn.0253-4967.2008.04.004
    刘启元, 李昱, 陈九辉, 等, 2009. 汶川MS8.0地震: 地壳上地幔S波速度结构的初步研究[J]. 地球物理学报, 52(2): 309-319. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX200902003.htm
    孟秋, 2020. 黏弹性有限元程序自主开发及其在冰载荷作用下的地表变形和地震迁移的应用研究[D]. 北京: 中国科学院大学: 9-29.
    孟秋, 胡才博, 石耀霖, 2020. 利用黏弹性有限元模型研究挪威北海北部地区末次冰期以来的冰后回弹和应力演化[J]. 地球物理学报, 63(10): 3751-3763. doi: 10.6038/cjg2020N0382.
    孟文, 陈群策, 吴满路, 等, 2013. 龙门山断裂带现今构造应力场特征及分段性研究[J]. 地球物理学进展, 28(3): 1150-1160.
    秦向辉, 陈群策, 谭成轩, 等, 2013. 龙门山断裂带西南段现今地应力状态与地震危险性分析[J]. 岩石力学与工程学报, 32(S1): 2870-2876.
    王敏, 2009. 基于GPS同震位移场约束反演2008年5.12汶川大地震破裂空间分布[J]. 地球物理学报, 52(10): 2519-2526. doi: 10.3969/j.issn.0001-5733.2009.10.010
    王涛, 马寅生, 龙长兴, 等, 2008. 四川汶川地震断裂活动和次生地质灾害浅析[J]. 地质通报, 27(11): 1913-1922. doi: 10.3969/j.issn.1671-2552.2008.11.022
    王卫民, 赵连锋, 李娟, 等, 2008. 四川汶川8.0级地震震源过程[J]. 地球物理学报, 51(5): 1403-1410. doi: 10.3321/j.issn:0001-5733.2008.05.013
    闻学泽, 张培震, 杜方, 等, 2009. 2008年汶川8.0级地震发生的历史与现今地震活动背景[J]. 地球物理学报, 52(2): 444-454. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX200902017.htm
    吴健, 吕红山, 刘爱文, 2008. 汶川地震烈度分布与震源过程相关性的初步研究[J]. 震灾防御技术, 3(3): 224-229. doi: 10.3969/j.issn.1673-5722.2008.03.003
    吴珍汉, 张作辰, 2008. 四川汶川MS 8.0级地震的地表变形与同震位移[J]. 地质通报, 27(12): 2067-2075. doi: 10.3969/j.issn.1671-2552.2008.12.012
    许鹤华, 刘金朝, 蔡永恩, 2002. 大陆深俯冲过程的二维数值模拟[C]//中国地球物理学会年刊2002: 中国地球物理学会第十八届年会论文集. 北海: 地震出版社.
    许志琴, 李海兵, 吴忠良, 2008. 汶川地震和科学钻探[J]. 地质学报, 82(12): 1613-1622. doi: 10.3321/j.issn:0001-5717.2008.12.001
    颜丹平, 孙铭, 巩凌霄, 等, 2020. 青藏高原东缘龙门山前陆逆冲带复合结构与生长[J]. 地质力学学报, 26(5): 615-633. doi: 10.12090/j.issn.1006-6616.2020.26.05.054.
    易桂喜, 龙锋, 张致伟, 2012. 汶川MS8.0地震余震震源机制时空分布特征[J]. 地球物理学报, 55(4): 1213-1227. doi: 10.6038/j.issn.0001-5733.2012.04.017.
    尹力, 罗纲, 2018. 有限元数值模拟龙门山断裂带地震循环的地壳变形演化[J]. 地球物理学报, 61(4): 1238-1257. doi: 10.6038/cjg2018L0248.
    尹祥础, 2011. 固体力学[M]. 2版. 北京: 地震出版社: 337-360.
    张国宏, 屈春燕, 汪驰升, 等, 2010. 基于GPS和InSAR反演汶川MW7.9地震断层滑动分布[J]. 大地测量与地球动力学, 30(4): 19-24.
    张勇, 冯万鹏, 许力生, 等, 2008. 2008年汶川大地震的时空破裂过程[J]. 中国科学D辑: 地球科学, 38(10): 1186-1194. doi: 10.3321/j.issn:1006-9267.2008.10.002
    赵根模, 吴中海, 刘杰, 2020. 地震迁移的类型、特征及机制讨论[J]. 地质力学学报, 26(1): 13-32. doi: 10.12090/j.issn.1006-6616.2020.26.01.002.
    朱介寿, 2008. 汶川地震的岩石圈深部结构与动力学背景[J]. 成都理工大学学报(自然科学版), 35(4): 348-356. doi: 10.3969/j.issn.1671-9727.2008.04.002
  • 加载中
图(14) / 表(1)
计量
  • 文章访问数:  863
  • HTML全文浏览量:  260
  • PDF下载量:  108
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-11-30
  • 修回日期:  2021-01-15
  • 刊出日期:  2021-08-28

目录

    /

    返回文章
    返回