Metamorphism and geochronology of the spinel−cordierite granulite in the Mirror Peninsula, East Antarctica
-
摘要: 东南极普里兹构造带被认为受到格林维尔期及泛非期两期构造热事件的影响,分别与罗迪尼亚和冈瓦纳超大陆的演化密切相关,但对两期构造热事件的性质还存在争议。为了进一步完善该构造带的演化历史,从矿物学、岩石学、相平衡模拟、锆石年代学等角度对普里兹构造带米洛半岛尖晶石−堇青石麻粒岩进行了研究。结果表明其主期矿物组合为尖晶石+堇青石+黑云母+矽线石+少量石榴子石+钾长石+钛铁矿,温压条件为870~910 ℃、0.64~0.69 GPa,晚期退变至810~820 ℃、0.49~0.53 GPa,并暗示了更高的峰期变质条件(T>910℃,P>0.69 GPa)。CL图像显示锆石具有明显的核−幔−边结构,LA−ICP−MS 锆石U–Pb年代学分析显示核部年龄主要集中在613±7 Ma到877±9 Ma,最大值916±11 Ma,比典型的格林维尔期年龄年轻。锆石边部加权平均年龄为526±8 Ma,其Th/U比值范围较大(0.06~1.23),多数Th/U比值较高(>0.1),应代表峰后冷却结晶阶段。尖晶石−堇青石麻粒岩记录了中低压/高温—超高温的变质条件,结合区域已有资料,可能具有顺时针轨迹,其变质演化历史可能反映了碰撞造山之后的伸展阶段,推测与冈瓦纳超大陆的聚合过程有关。
-
关键词:
- 东南极 /
- 尖晶石−堇青石麻粒岩 /
- P−T轨迹 /
- 高温—超高温变质 /
- 相平衡模拟
Abstract:Objective The Prydz Bay belt in East Antarctica recorded two significant tectono-thermal events, the Grenvillian event and the Pan-African event, which are considered to be closely related to the evolution of the Rodinia and Gondwana supercontinents. However, the geological history and the tectonic nature of the two events remain controversial. Methods Mineralogical and petrological analyses, phase equilibria modelling and zircon geochronology are combined to investigate the spinel−cordierite granulite from the Mirror Peninsula in order to better understand the tectono-thermal history of the Prydz Bay belt. Results The spinel−cordierite granulite contains different stages of mineral assemblages. The major stage of mineral assemblage involves cordierite, spinel, biotite, sillimanite, K-feldspar and minor garnet and ilmenite. The later stage of mineral assemblage is indicated by the emergence of magnetite as the increasing volumes of biotite and cordierite. Minor garnet and corundum are locally preserved, implying the mineral reaction ‘g+cor→sp+sill’ and more garnet and corundum in the peak stage. The garnet grains consist of 70%−72% almandine, 20%−22% pyrope, ~4% grossularite and ~4% spessartine. The XFe (Fe2+/(Fe2++Mg2+)) of representative garnet grains ranges from 0.77 to 0.80. The spinel exhibits an XFe range from 0.80 to 0.86. Different cordierite grains have similar compositions with Al of 3.89−3.93 a.p.f.u (atoms per formula unit) and XFe of 0.32−0.36. Biotite has high TiO2 (4.13%−5.23%) and Ti (0.23−0.30 a.p.f.u). K-feldspar grains consist of 78%−85% orthoclase, 15%−23% albite and ~1% anorthite. Based on the mineral compositions and phase equilibrium modelling, the pressure−temperature (P−T) conditions of the major stage of mineral assemblage are constrained to 870−910 °C and 0.64−0.69 GPa, followed by later retrogression to 810−820°C and 0.49−0.53 GPa. A peak stage with higher P−T conditions (T>910 ℃, P>0.69 GPa) can be inferred based on the relict peak minerals and characteristic mineral compositions (e.g. Ti in biotite). Zircon grains commonly show core-mantle-rim structures in cathodoluminescence (CL) images. The LA−ICP−MS zircon U−Pb dating analyses reveal a wide age range from 613±7 Ma to 877±9 Ma (except a maximum of 916±11 Ma) for the cores. The zircon bright rims yield a weighted mean age of 526±8 Ma with a wide range of Th/U (0.06−1.23), mostly higher than 0.1. Conclusion Based on the results, a few conclusions can be drawn: (1) The spinel−cordierite granulite recorded medium−low pressure/high-ultrahigh temperature metamorphism with a clockwise P−T evolution path and high dT/dP. (2) The results of zircon geochronological analysis show that zircon cores mainly record U−Pb ages in the range of 800~600 Ma, younger than typical ages of Grenvillian events, which may reflect younger inherited zircon cores or significant isotopic resetting. (3) The age of ~530 Ma of zircon rims is interpreted to represent the post-peak cooling stage of the Pan-African tectono-thermal event. [Significance] This study examined the P−T conditions and the zircon ages of the spinel−cordierite granulite in the Mirror Peninsula. In combination with previous results, the P−T−t path constructed for the spinel−cordierite granulite provides new constraints on the evolution of the Prydz Bay belt during the Pan-African period. -
东南极是世界上典型的高级变质地区之一,东南极地盾主要由太古宙陆核和元古宙活动带组成(陈廷愚等,1995)。东南极普里兹构造带与罗迪尼亚和冈瓦纳超大陆的演化密切相关,受到了新元古代早期格林维尔期(Sheraton et al.,1984;Harley,1987;仝来喜等,2012)和新元古代晚期—早古生代的泛非期构造热事件影响(Zhao et al.,1992,1995;Carson et al.,1996;Harley,1998)。由于格林维尔期和泛非期构造热事件不同程度的叠加作用,对不同地区两期构造热事件的演化历史还缺乏清晰认识,对于两期构造事件的性质尚存在较大争议。一种观点认为普里兹构造带新元古代格林维尔期构造热事件反映了与罗迪尼亚超大陆相关的碰撞造山过程,泛非期的构造热事件代表了陆内改造(Wilson et al.,2007;Tong et al.,2014);另一种观点认为早期格林维尔期构造热事件是局部的,而泛非期构造热事件反映了与冈瓦纳大陆的聚合相关的碰撞造山作用(Zhao et al.,1992,1995;Carson et al.,1997;Liu et al.,2009a)。对普里兹构造带不同地质单元变质演化历史的深入研究,有助于清晰理解格林维尔期和泛非期构造热事件的影响范围及性质。该研究对普里兹构造带拉斯曼丘陵米洛半岛的尖晶石−堇青石麻粒岩进行综合分析,限定了其形成条件及变质演化时代等,为进一步厘定普里兹构造带多期构造热事件的影响范围及性质提供了新的证据。
1. 区域地质背景
东南极普里兹构造带自普里兹湾沿岸向东南延伸直至格罗夫山(Grove Mountains;刘晓春等,2007),是东南极岩石出露最广泛的地区之一。普里兹湾沿岸包括西福尔丘陵(Vestfold Hills)、茹尔(赖于尔)群岛(Rauer Group)、布拉特滨海陡崖(Brattstrand Bluffs)、拉斯曼丘陵(Larsemann Hills)、伯灵恩群岛(Bolingen Islands)、姐妹岛(Søstrene Island)、兰丁陡崖(Landing Bluffs)、蒙罗克尔山(Munro Kerr Mountains)等大小不一的地质单元(图1a)。拉斯曼丘陵地区位于普里兹湾中段,主要由米洛半岛、斯图尔内斯半岛(斯托尼斯半岛)、布洛克内斯半岛等众多半岛和小岛组成(图1b)。主要出露高角闪岩相−麻粒岩相的泥质副片麻岩、杂砂质副片麻岩、铁镁质−长英质复合正片麻岩,以及少量泥质麻粒岩、基性麻粒岩和不同种类的岩浆岩(Kinny et al.,1993;李淼等,2007;周信等,2014;佘一民等,2020)。其中副片麻岩的主要类型有尖晶石−石榴子石−矽线石副片麻岩、尖晶石−堇青石−矽线石副片麻岩、含柱晶石副片麻岩等(Zhao et al.,1995);基性麻粒岩包括原地的超镁铁质−镁铁质麻粒岩及转石(周信等,2014;Tong et al.,2014);此外,在该地区紫苏石英岩中发现了假蓝宝石、磁铁矿、尖晶石、夕线石等多种高温矿物包裹体以及斜方辉石+矽线石、假蓝宝石+石英、尖晶石+石英等明确指示超高温变质作用的矿物组合(Tong and Wilson,2006;表璇等,2022;王伟等,2022),反映了该地区普遍存在的(超)高温/中低压变质作用。该地区岩浆岩主要有黑云母钾长花岗岩、花岗质伟晶岩等,多以岩脉、岩墙形式产出,其中泛非期的花岗岩类岩石一般被解释为同构造和后构造成因(李淼等,2007)。该研究的样品采自东南极拉斯曼丘陵米洛半岛东部,岩性为尖晶石−堇青石麻粒岩。矿物缩写代号依据Holland and Powell(1998)。
图 1 普里兹构造带及拉斯曼丘陵米洛半岛区域地质简图a—普里兹构造带示意图(据Grew et al.,2012修改);b—拉斯曼丘陵米洛半岛地质简图(据Carson et al.,2007修改)Figure 1. Regional geological maps of the Prydz Bay belt and Mirror Peninsula in Larsemann Hills(a) Schematic map of the Prydz Bay belt (modified after Grew et al., 2012); (b) Geological sketch map of Mirror Peninsula, Larsemann Hills (modified after Carson et al.,2007)2. 分析方法
全岩主量元素分析在河北省区域地质矿产调查研究所实验室完成。对选取样品的新鲜部分进行粉碎后用孔径为74 μm(200目)的网筛进行过筛,使用3080E型荧光光谱仪,采用常规的X射线荧光光谱(XRF,X-ray fluorescene spectrometry)方法测试分析。详细的样品分析精密度和准确度同Liu et al.(2008)。
矿物原位电子探针实验在中国地质科学院地质研究所完成。测试采用的仪器型号为JEOL JXA-8100。分析条件为加速电压15 kV、束流10 nA、束斑为5 μm(出溶的磁铁矿束斑为1~2 μm)、修正方法为ZAF,标样为美国SPI公司的53种标准矿物。主量元素的测试相对误差小于2%。
高分辨率BSE图片拍摄在自然资源部古地磁与古构造重建重点实验室完成。设备仪器型号为Zeiss Xradia 510 Versa,采用独特的二级放大(几何放大)和光学放大成像技术,3D空间分辨率<0.7 pm。高压范围为30~160 keV,最大功率为10W,X射线源移动范围为215 mm,探测器移动范围为290 mm,多探测器(物镜)可根据分辨率要求自动切换。利用全自动矿物分析系统AMICS(Automated Mineralogy System for SEM),对薄片进行扫描,并根据能谱建立矿物标准库,形成的图像可以清楚地观察到各种矿物的接触关系,较为准确获取不同矿物的体积含量。
锆石LA−ICP−MS定年和对应微量元素分析在武汉上谱实验室完成,同位素比值校正标样为91500,同位素比值监控标样为GJ-1,微量元素校准标样为NIST 610。激光剥蚀系统为GeoLas Pro,激光束斑为24 μm,具体运行条件参考Liu et al.(2010)和Hu et al.(2011)。
3. 岩石学特征
尖晶石−堇青石麻粒岩样品LSM5-1采集于东南极拉斯曼丘陵地区米洛半岛,岩性为含石榴子石−尖晶石−堇青石麻粒岩(图2a)。主要矿物的体积分数分别为堇青石(~40%),尖晶石(~25%),黑云母(~15%),矽线石(~10%),钾长石(~5%),石榴子石(~1%)等,以及少量磁铁矿、钛铁矿,局部可见刚玉,未见石英等矿物。
图 2 尖晶石−堇青石麻粒岩样品LSM5-1岩相学特征g—石榴子石;bi—黑云母;ksp—钾长石;crd—堇青石;sp—尖晶石;sill—矽线石;mt—磁铁矿;pl—斜长石;cor—刚玉a—手标本照片;b—残留的石榴子石颗粒;c—尖晶石、黑云母与堇青石共生;d—矽线石呈长柱状产出;e—尖晶石、磁铁矿与刚玉共生;f—尖晶石出溶磁铁矿;g—钾长石出溶细小斜长石条带;h—黑云母作为尖晶石的包裹体产出Figure 2. Petrographic characteristics of spinel-cordierite granulite sample LSM5-1(a) Photograph of the hand specimen; (b) Residual garnet grains; (c) Paragenetic mineral assemblages: spinel, biotite and cordierite; (d) Columnar sillimanite; (e) Paragenetic mineral assemblages of spinel, magnetite and corundum; (f) Dissolved magnetite in spinel; (g) Exsolution texture of plagioclase in k-feldspar; (h) Biotite occurs as inclusions in spinel g−garnet; bi−biotite; ksp−k-feldspar; crd−cordierite; sp−spinel; sill−sillimanite; mt−magnetite; pl−plagioclase; cor−corundum石榴子石颗粒较小(0.2~0.4 mm),呈不规则他形产出,边缘发育港湾状结构,内部存在大量裂隙,与黑云母、钾长石和堇青石直接接触(图2b)。广泛存在的尖晶石颗粒大小为1~3 mm,常与堇青石等共生(图2c)。堇青石含量较多,颗粒较大,内部包裹夕线石、黑云母等矿物颗粒(图2d)。局部可见刚玉、尖晶石、磁铁矿共生(图2e)。尖晶石存在明显的出溶结构(图2f),出溶细条带状磁铁矿,部分尖晶石颗粒含有0.1 mm左右黑云母包裹体。钾长石内部有细小的条带状斜长石出溶(图2g)。大多数黑云母颗粒与堇青石或石榴子石接触,部分黑云母也作为矿物包裹体产出于尖晶石中(图2h)。矽线石大都呈长柱状,长轴约0.3 mm,多与堇青石接触,少量矽线石呈不规则他形,作为尖晶石的包裹体产出(图2h)。
根据矿物特征和反应关系,主要矿物组合分成两个期次:主期矿物组合,可能包括石榴子石+尖晶石+堇青石+矽线石+黑云母+钛铁矿+钾长石等;晚期矿物组合,该阶段堇青石和黑云母大量生长,尖晶石出溶磁铁矿,在尖晶石等矿物附近出现少量磁铁矿。因此晚期矿物组合可能包括石榴子石+磁铁矿+尖晶石+堇青石+矽线石+黑云母+钾长石+钛铁矿等。薄片中局部出现的刚玉、残存极少的石榴子石、较多的尖晶石及矽线石可能代表了一个“g+cor→sp+sill”的矿物反应(Kelsey et al.,2005),反映了降压过程,也暗示更早期的矿物组合中可能存在较多的石榴子石和刚玉。
4. 矿物化学特征
4.1 石榴子石
尖晶石−堇青石麻粒岩样品LSM5-1石榴子石主要为铁铝榴石−镁铝榴石固溶体,只含有少量的钙铝榴石和锰铝榴石(Alm70-72Py20-22Gr4Spss4, Alm=Fe2+/(Fe2++Mg+Mn+Ca),Py=Mg/(Fe2++Mg+Mn+Ca),Gr=Ca/(Fe2++Mg+Mn+Ca),Spss=Mn/(Fe2++Mg+Mn+Ca))。石榴子石成分均一,剖面图显示从核到边各端元含量无明显的变化(图3)。代表性石榴子石电子探针成分见表1。
图 3 尖晶石−堇青石麻粒岩样品LSM5-1石榴子石成分剖面图(g1、g2为两个不同的石榴子石颗粒)注:Alm=Fe2+/(Fe2++Mg+Mn+Ca);Py=Mg/(Fe2++Mg+Mn+Ca);Gr=Ca/(Fe2++Mg+Mn+Ca);Spss=Mn/(Fe2++Mg+Mn+Ca)Figure 3. Compositional profile of garnet in spinel–cordierite granulite sample LSM5-1 (a and b are two different garnet grains)Note: Alm=Fe2+/(Fe2++Mg+Mn+Ca); Py=Mg/(Fe2++Mg+Mn+Ca); Gr=Ca/(Fe2++Mg+Mn+Ca); Spss=Mn/(Fe2++Mg+Mn+Ca)表 1 米洛半岛尖晶石−堇青石麻粒岩LSM5-1代表性石榴子石电子探针数据/%Table 1. EPMA data of representative garnet of spinel–cordierite granulite sample LSM5-1 in the Mirror Peninsula (%)矿物 g1-1 g1-2 g1-3 g1-4 g1-5 g1-6 g1-7 g1-8 g1-9 g1-10 g1-11 g1-12 g2-1 g2-2 g2-3 g2-4 g2-5 g2-6 g2-7 g2-8 g2-9 g2-10 g2-11 g2-12 SiO2 36.87 36.41 36.23 35.88 35.86 35.84 35.78 35.52 36.06 36.1 36.19 36.48 36.28 36.29 36.09 36.29 35.65 36.67 35.8 35.67 35.98 36.95 35.80 35.80 TiO2 0 0 0.04 0 0.01 0 0 0 0.04 0.02 0 0 0.01 0.01 0.02 0.03 0 0.01 0 0.01 0 0.01 0.03 0.06 Al2O3 22.14 21.97 22.11 22.07 22.24 21.87 22.1 22.16 22.05 21.82 21.76 22.06 21.51 21.94 21.57 22.00 22.25 21.62 21.97 21.85 21.88 20.79 21.88 22.32 Cr2O3 0 0.04 0.02 0.04 0.04 0.04 0 0.03 0.02 0.02 0 0.05 0.01 0.01 0.05 0 0.07 0.05 0.02 0.02 0.03 0.04 0.03 0 Fe2O3 1.53 1.97 1.99 3.01 3.49 3.65 3.32 3.83 2.65 3.42 3.55 1.96 2.89 1.87 3.23 1.62 3.17 1.77 3.52 4.28 3.40 1.54 3.10 2.63 FeO 31.47 30.88 31.04 30.35 30.05 30.05 30.11 29.86 30.40 29.94 30.17 30.87 31.07 31.50 31.53 31.60 30.44 31.77 30.76 30.06 30.45 32.13 30.67 30.98 MnO 1.80 1.75 1.76 1.79 1.72 1.79 1.87 1.78 1.76 1.87 1.74 1.83 1.86 1.93 1.81 1.86 1.87 1.68 1.89 1.98 1.87 1.92 1.88 1.87 MgO 5.03 5.10 4.83 4.93 4.99 5.07 5.07 5.22 5.11 5.41 5.37 5.16 4.77 4.59 4.40 4.62 4.72 4.83 4.72 4.89 5.00 4.73 4.77 4.61 CaO 1.24 1.23 1.26 1.32 1.30 1.24 1.20 1.08 1.20 1.21 1.20 1.22 1.22 1.30 1.22 1.17 1.28 1.19 1.16 1.21 1.13 1.19 1.23 1.30 Na2O 0.05 0.04 0.06 0.05 0.12 0.08 0.05 0.02 0.07 0.04 0.05 0.03 0.08 0.02 0.08 0.05 0.05 0.05 0.05 0.07 0.07 0.04 0.04 0.02 K2O 0 0.02 0.01 0.01 0 0 0 0.01 0 0 0 0 0.01 0 0.02 0 0 0 0 0 0 0 0 0 Total 100.14 99.39 99.34 99.43 99.82 99.61 99.49 99.51 99.36 99.84 100.02 99.66 99.70 99.46 100.01 99.21 99.50 99.64 99.90 100.04 99.80 99.34 99.41 99.58 O 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 Si 2.92 2.91 2.90 2.87 2.86 2.87 2.86 2.84 2.88 2.87 2.88 2.91 2.90 2.91 2.90 2.91 2.86 2.93 2.86 2.85 2.87 2.97 2.87 2.87 Ti 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Al 2.07 2.07 2.09 2.08 2.09 2.06 2.08 2.09 2.08 2.05 2.04 2.07 2.03 2.07 2.04 2.08 2.10 2.04 2.07 2.06 2.06 1.97 2.07 2.11 Cr 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Fe3+ 0.09 0.12 0.12 0.18 0.21 0.22 0.20 0.23 0.16 0.21 0.21 0.14 0.17 0.11 0.20 0.10 0.19 0.11 0.21 0.26 0.20 0.09 0.19 0.16 Fe2+ 2.09 2.06 2.08 2.03 2.00 2.01 2.01 2.00 2.03 1.99 2.01 2.06 2.08 2.11 2.11 2.12 2.04 2.12 2.06 2.01 2.03 2.16 2.06 2.07 Mn 0.12 0.12 0.10 0.12 0.12 0.12 0.13 0.12 0.12 0.13 0.12 0.12 0.13 0.13 0.12 0.13 0.13 0.11 0.13 0.13 0.13 0.13 0.13 0.13 Mg 0.59 0.61 0.58 0.59 0.59 0.60 0.61 0.62 0.61 0.64 0.64 0.61 0.57 0.55 0.53 0.55 0.56 0.58 0.56 0.58 0.60 0.57 0.57 0.55 Ca 0.11 0.11 0.11 0.11 0.11 0.11 0.10 0.09 0.10 0.10 0.10 0.10 0.10 0.11 0.11 0.10 0.11 0.10 0.10 0.10 0.10 0.10 0.11 0.11 Na 0.01 0.01 0.01 0.01 0.02 0.01 0.01 0 0.01 0.01 0.01 0 0.01 0 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0 K 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Sum 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 XFe 0.78 0.77 0.78 0.78 0.77 0.77 0.77 0.76 0.77 0.76 0.76 0.77 0.79 0.79 0.80 0.79 0.78 0.79 0.79 0.78 0.77 0.79 0.78 0.79 Gr 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.03 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.03 0.04 0.04 0.04 0.04 0.03 0.03 0.04 0.04 Spss 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.05 0.04 0.04 0.04 0.04 0.04 0.05 0.04 0.04 0.04 0.04 Py 0.20 0.21 0.20 0.21 0.21 0.21 0.21 0.22 0.21 0.22 0.22 0.21 0.20 0.19 0.18 0.19 0.20 0.20 0.20 0.21 0.21 0.19 0.20 0.19 Alm 0.72 0.71 0.72 0.71 0.71 0.71 0.71 0.70 0.71 0.70 0.70 0.71 0.72 0.73 0.74 0.73 0.72 0.73 0.72 0.71 0.71 0.73 0.72 0.72 注:XFe=Fe2+/(Fe2++Mg) 4.2 尖晶石族矿物
尖晶石族矿物通常由不同的端元成分组成,其通式为AB2O4,A=Mg2+或Fe2+,B=Al3+或Fe3+,样品中尖晶石族矿物主要是磁铁矿和铁尖晶石(图4)。铁尖晶石具有明显的出溶现象,成分分子式为(Mg0.14-0.19Fe2+0.80-0.86)Σ1.00(Fe3+0.11-0.15Al3+1.85-1.89)Σ2.00OΣ4.00,XFe(Fe2+/(Fe2++Mg2+))=0.80~0.86,同时含有很低的Ti、Mn、Zn元素。磁铁矿的成分分子式为Fe2+Σ1.00(Fe3+1.61-1.99Al3+0.01-0.39)Σ2.00OΣ4.00,具有较高的Al3+,并有少量的Cr、Mg、Zn等元素,表明出溶的磁铁矿并不是纯粹的端元。代表性尖晶石族矿物电子探针成分见表2。
图 4 尖晶石−堇青石麻粒岩样品LSM5-1尖晶石族矿物分类图解(据Deer et al.,1992修改)Figure 4. Classification diagram of the spinel group minerals of spinel–cordierite granulite sample LSM5-1(modified from Deer et al.,1992)表 2 米洛半岛尖晶石−堇青石麻粒岩LSM5-1代表性尖晶石与磁铁矿矿物电子探针数据/%Table 2. EPMA data of representative spinel and magnetite of spinel–cordierite granulite sample LSM5-1 in the Mirror Peninsula (%)矿物 sp-1 sp-2 sp-3 sp-4 sp-5 sp-6 sp-7 sp-8 sp-9 sp-10 mt-1 mt-2 mt-3 mt-4 mt-5 mt-6 mt-7 mt-8 mt-9 mt-10 SiO2 0.03 0 0 0.03 0 0.01 0.01 0.01 0.01 0.01 0.02 0 0.01 0.01 0.01 0.04 0.21 0.01 0 0.03 TiO2 0.03 0.03 0.03 0 0 0 0.01 0.01 0.01 0.01 0.01 0.04 0.05 0.01 0.03 0.01 0 0 0.15 0.06 Al2O3 55.05 55.52 55.61 54.51 55.87 55.96 55.51 55.43 54.85 55.22 3.10 1.11 1.47 0.18 0.90 0.17 0.54 2.72 8.86 0.26 Cr2O3 0.17 0.22 0.21 0.20 0.17 0.20 0.23 0.21 0.23 0.18 0.14 0.14 0.15 0.15 0.16 0.14 0.24 0.13 0.19 0.17 Fe2O3 5.70 5.02 5.37 6.81 5.12 5.45 5.43 5.20 6.06 5.79 65.46 67.30 65.28 67.98 67.86 68.72 67.14 65.76 59.07 68.27 FeO 35.62 35.07 35.58 34.85 35.21 33.58 34.83 34.68 35.03 35.12 31.27 30.96 30.22 30.74 31.20 30.90 30.96 31.02 31.90 31.15 MnO 0.21 0.25 0.21 0.23 0.27 0.27 0.22 0.24 0.25 0.25 0 0.03 0 0 0.01 0.03 0 0 0 0 MgO 3.22 3.44 3.35 3.68 3.52 4.58 3.74 3.69 3.49 3.50 0.23 0.12 0.11 0 0.06 0 0.11 0.28 0.65 0.02 CaO 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Na2O 0.01 0.02 0 0 0 0 0 0 0 0 0.01 0 0.03 0.01 0 0.05 0 0.01 0.02 0 K2O 0 0 0 0 0 0 0 0.01 0 0.01 0.01 0 0 0 0 0 0.01 0 0.01 0 ZnO 0.23 0.13 0.11 0.14 0.09 0 0.14 0.11 0.12 0.14 0.02 0.16 0.01 0 0 0 0 0.04 0 0.01 Total 100.27 99.70 100.47 100.45 100.25 100.05 100.12 99.59 100.05 100.23 100.27 99.86 97.33 99.08 100.23 100.06 99.21 99.97 100.85 99.97 O 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 Si 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.01 0 0 0 Ti 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Al 1.87 1.89 1.88 1.85 1.89 1.88 1.88 1.88 1.86 1.87 0.14 0.05 0.07 0.01 0.04 0.01 0.03 0.12 0.38 0.01 Cr 0 0.01 0.01 0.01 0 0.01 0.01 0.01 0.01 0 0 0 0.01 0.01 0.01 0 0.01 0 0.01 0.01 Fe3+ 0.12 0.11 0.12 0.15 0.11 0.12 0.12 0.11 0.13 0.13 1.86 1.94 1.93 1.99 1.95 1.99 1.95 1.88 1.61 1.98 Fe2+ 0.86 0.85 0.85 0.84 0.84 0.80 0.84 0.84 0.84 0.84 0.99 0.99 0.99 1.00 1.00 0.99 1.00 0.98 0.97 1.00 Mn 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0 0 0 0 0 0 0 0 0 0 Mg 0.14 0.15 0.14 0.16 0.15 0.19 0.16 0.16 0.15 0.15 0.01 0.01 0.01 0 0 0 0.01 0.02 0.04 0 Ca 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Na 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 K 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Sum 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 4.3 黑云母
根据云母的分类图解,样品LSM5-1中黑云母颗粒在成分上都属于铁质黑云母(图5)。 XFe(Fe2+/(Fe2++Mg))值普遍较高(0.41~0.52),TiO2含量为4.13%~5.23%,Ti=0.23~0.30 a.p.f.u(atoms per formula unit,每单位分子原子数),较高的Ti含量可能暗示较高的温度(Indares and Martignole, 1985)。代表性黑云母电子探针成分见表3。
图 5 尖晶石−堇青石麻粒岩样品LSM5-1云母分类图解(底图据Foster,1960修改)Figure 5. Classification diagram of micas of spinel–cordierite granulite sample LSM5-1 (base map modified after Foster,1960)表 3 米洛半岛尖晶石−堇青石麻粒岩LSM5-1代表性黑云母电子探针数据/%Table 3. EPMA data of representative biotite of spinel–cordierite granulite sample LSM5-1 in the Mirror Peninsula (%)矿物 bi-1 bi-2 bi-3 bi-4 bi-5 bi-6 bi-7 bi-8 bi-9 bi-10 bi-11 bi-12 SiO2 36.91 36.63 35.77 37.12 35.69 36.96 37.07 35.78 35.8 35.78 36.05 35.52 TiO2 4.36 4.13 4.03 5.21 5.23 5.08 4.86 4.94 4.72 5.10 4.86 4.85 Al2O3 15.20 14.93 15.11 14.61 14.78 14.4 14.65 14.84 15.06 14.65 14.69 14.86 Cr2O3 0.01 0.06 0.04 0.02 0.04 0.05 0.02 0.02 0.06 0.11 0.09 0.10 Fe2O3 0 0 0 0 0 0 0 0 0 0 0 0 FeO 15.83 15.89 17.79 18.47 19.54 18.82 18.42 18.51 18.19 18.13 17.80 18.57 MnO 0.05 0.05 0.03 0.02 0.03 0.06 0.07 0.11 0.05 0.08 0.08 0.09 MgO 12.71 12.64 12.66 10.55 10.23 10.36 10.53 11.13 11.51 11.15 11.50 11.35 CaO 0 0 0 0 0 0 0 0.02 0.05 0.06 0.06 0.04 Na2O 0.37 0.37 0.18 0.13 0.14 0.13 0.20 0.20 0.21 0.22 0.20 0.20 K2O 9.70 10.14 9.88 9.81 9.70 9.93 9.87 9.96 9.82 9.82 9.83 9.84 Total 95.12 94.84 95.48 95.95 95.40 95.80 95.69 95.53 95.46 95.10 95.17 95.41 O 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 Si 2.78 2.78 2.72 2.81 2.74 2.81 2.81 2.73 2.73 2.74 2.75 2.72 Ti 0.25 0.24 0.23 0.30 0.30 0.29 0.28 0.28 0.27 0.29 0.28 0.28 Al 1.35 1.34 1.36 1.30 1.34 1.29 1.31 1.34 1.35 1.32 1.32 1.34 Cr 0 0 0 0 0 0 0 0 0 0.01 0.01 0.01 Fe3+ 0 0 0 0 0 0 0 0 0 0 0 0 Fe2+ 1.00 1.01 1.13 1.17 1.25 1.20 1.17 1.18 1.16 1.16 1.14 1.19 Mn 0 0 0 0 0 0 0 0.01 0 0.01 0.01 0.01 Mg 1.43 1.43 1.44 1.19 1.17 1.17 1.19 1.27 1.31 1.27 1.31 1.29 Ca 0 0 0 0 0 0 0 0 0 0.01 0.01 0 Na 0.05 0.05 0.03 0.02 0.02 0.02 0.03 0.03 0.03 0.03 0.03 0.03 K 0.93 0.98 0.96 0.95 0.95 0.96 0.96 0.97 0.96 0.96 0.96 0.96 Sum 7.79 7.83 7.86 7.73 7.78 7.75 7.75 7.82 7.82 7.80 7.80 7.83 XMg 0.59 0.59 0.56 0.50 0.48 0.50 0.50 0.52 0.53 0.52 0.54 0.52 XFe 0.41 0.41 0.44 0.50 0.52 0.50 0.50 0.48 0.47 0.48 0.46 0.48 注:XMg=Mg/(Fe2++Mg);XFe=Fe2+/(Fe2++Mg) 4.4 堇青石
堇青石在薄片中广泛分布,其内部包裹黑云母和具有明显片理的矽线石。不同堇青石颗粒化学成分基本一致,未见明显的成分含量差异:Al=3.89~3.93(a.p.f.u);Fe2+=0.64~0.73;XFe(Fe2+/(Fe2++Mg))=0.32~0.36。代表性堇青石矿物电子探针成分见表4。
表 4 米洛半岛尖晶石−堇青石麻粒岩LSM5-1代表性堇青石、钾长石电子探针数据/%Table 4. EPMA data of representative cordierite and k-feldspar of spinel–cordierite granulite sample LSM5-1 in the Mirror Peninsula (%)矿物 crd-1 crd-2 crd-3 crd-4 ksp-1 ksp-2 ksp-3 ksp-4 SiO2 49.42 49.07 49.53 48.78 64.82 64.55 65.06 64.03 TiO2 0 0.01 0 0 0.08 0 0.08 0.06 Al2O3 32.31 32.27 32.17 32.43 18.48 18.12 18.32 18.38 Cr2O3 0.01 0.06 0 0 0 0 0.03 0 Fe2O3 0 0.06 0 0.89 0.04 0.22 0.05 0.67 FeO 8.34 8.32 8.45 7.48 0 0 0 0 MnO 0.12 0.14 0.13 0.08 0 0.01 0 0 MgO 8.08 8.27 8.14 8.77 0 0.08 0.03 0.02 CaO 0.01 0.03 0.02 0 0.11 0.14 0.18 0.11 Na2O 0.08 0.12 0.06 0.03 1.90 1.93 2.42 1.69 K2O 0 0.02 0 0.01 14.34 14.23 13.4 14.39 Total 98.38 98.36 98.5 98.48 99.77 99.27 99.57 99.34 O 18.00 18.00 18.00 18.00 8.00 8.00 8.00 8.00 Si 5.08 5.05 5.08 5.01 2.99 2.99 2.99 2.97 Ti 0 0 0 0 0 0 0 0 Al 3.91 3.92 3.89 3.93 1.00 0.99 0.99 1.01 Cr 0 0 0 0 0 0 0 0 Fe3+ 0 0.01 0 0.07 0 0.01 0 0.02 Fe2+ 0.72 0.72 0.73 0.64 0 0 0 0 Mn 0.01 0.01 0.01 0.01 0 0 0 0 Mg 1.24 1.27 1.25 1.34 0 0.01 0 0 Ca 0 0 0 0 0.01 0.01 0.01 0.01 Na 0.02 0.02 0.01 0.01 0.17 0.17 0.22 0.15 K 0 0 0 0 0.84 0.84 0.79 0.85 Sum 10.97 11.00 10.98 11.00 5.01 5.02 5.01 5.01 4.5 钾长石
钾长石主要分布在石榴子石、堇青石和尖晶石边缘,成分为An1Ab15-23Or78-85,内部出溶条带状斜长石,可能暗示着较高的变质温度,代表性钾长石电子探针成分见表4。
5. 相平衡模拟
相平衡模拟计算使用内部一致热力学数据集DS62(Holland and Powell,2011),利用THERMOCALC3.45程序(Powell and Holland,1988;Holland and Powell,2011,更新于2016),在MnO−Na2O−CaO−K2O−FeO−MgO−Al2O3−SiO2−H2O−TiO2−O(MnNCKFMASHTO)体系中进行模拟,使用的矿物和固溶体模型参考White et al.(2014)。尖晶石−堇青石麻粒岩样品LSM5-1矿物分布较均匀,实测全岩成分含量为:w(SiO2)=38.78%,w(Al2O3)=34.80%,w(TiO2)=2.05%,w(TFe2O3)=16.15%,w(CaO)=0.04%,w(MgO)=5.14%,w(K2O)=2.24%,w(Na2O)=0.21%,w(MnO2)=0.10%,w(P2O5)=0.01%,LOI=0.21%,w(Total)=99.73%。在XRF测试成分的基础上,Fe3+含量依靠滴定法进行限制。水含量根据含水矿物及T–x图,基于固相线附近矿物组合与最终观察到的矿物组合相一致的原则进行估算。
5.1 T−xH2O视剖面图
尖晶石−堇青石麻粒岩是典型的低压麻粒岩,假定P=0.5 GPa进行T−xH2O相图计算,温度范围设定为700~950 ℃,水的摩尔分数x范围变化为0~10%(x0=0,x1=10%)。样品主要矿物组成为石榴子石(g)、堇青石(crd)、尖晶石(sp)、磁铁矿(mt)、黑云母(bi)、钛铁矿(ilm)、钾长石(ksp)、夕线石(sill)等。在T−xH2O视剖面图(图6a)中,石榴子石稳定域范围较大。在低水条件下,模拟温度范围内矿物组合均包含石榴子石;随着xH2O增加至>3.0%后,石榴子石转变线的温度在820℃左右趋于稳定;xH2O>6.5%后,石榴子石转变线的温度持续降低,含石榴子石矿物组合的稳定域逐渐变小。尖晶石在较高的温度下普遍存在,水含量对含尖晶石的矿物组合稳定域影响较小。钛铁矿、夕线石和堇青石在给定温度和水含量范围内均稳定存在。随着水含量的增加,黑云母的稳定域向高温扩展。矿物组合g+crd+bi+sill+ksp+ilm+sp+liq与图中绿色区域对应(图6a),该矿物组合的出现需xH2O>~3.4%,因此选取xH2O=3.4%为假设条件进行P−T视剖面图计算。
图 6 尖晶石−堇青石麻粒岩样品LSM5-1在MnNCKFMASHTO体系下模拟T−xH2O与P−T视剖面图及等值线a—样品T− 模拟图;b—样品P−T模拟图;c—不同矿物转变线(堇青石、石榴子石、黑云母)及黑云母Ti成分等值线;d—石榴子石镁铝榴石成分等值线、黑云母Ti成分等值线xH2O Figure 6. T−xH2O and P−T pseudosections and composition isopleths for spinel−cordierite granulite sample LSM5-1 in system MnNCKFMASHTO(a) T– pseudosection; (b) P–T pseudosection; (c) Different mineral transformation curves (cordierite, garnet, biotite) and mineral composition isopleths of Ti (bi); (d) Mineral composition isopleths of Py and Ti (bi)xH2O 5.2 P−T视剖面图
样品LSM5-1模拟用全岩摩尔分数为:xH2O=3.4%,xSiO2=44.798%,xAl2O3=23.692%,xCaO=0.050%,xMgO=8.851%,xTFeO=14.040%,xK2O=1.651%,xNa2O=0.235%,xTiO2=1.782%,xMnO=0.098%,xO=1.404%。P−T视剖面图温压范围为700~1100 ℃、0.1~1.2 GPa,主要由五变域和六变域组成(图6b、6c)。低温条件下石榴子石在P>0.3GPa的范围内稳定存在,随温度升高石榴子石稳定的最低压力逐渐升高。堇青石在P<0.6~0.7 GPa范围内存在。黑云母的转变线呈正斜率,含黑云母的矿物组合稳定域随压力升高而向高温扩展。石英在T<850 ℃、P>0.4 GPa的范围内稳定,与尖晶石稳定域不重叠,和岩相观察中尖晶石与石英不共生相一致。矽线石和钛铁矿在模拟范围内稳定存在。视剖面中并未出现斜长石,可能是由于全岩中CaO含量较低。
P−T视剖面图中标注有堇青石、熔体、石榴子石及黑云母转变线(图6c)以及相关区域的镁铝榴石等值线(Py)及黑云母Ti矿物成分等值线(图6d)。根据岩相学的观察与研究,主期矿物组合最可能对应图中的五变域(绿色区域):g+crd+sp+ksp+bi+sill+ilm+liq,对应较宽的温压条件为800~910 ℃,0.47~0.69 GPa。结合黑云母Ti成分等值线(0.23~0.24)进一步限定温压条件为870~910 ℃、0.64~0.69 GPa(图6d红色区域)。根据镁铝榴石等值线(0.20~0.22)与晚期矿物组合g+crd+sp+ksp+bi+sill+ilm+mt+liq,晚期温压条件被限定为810~820 ℃,0.49~0.53 GPa(图6d蓝色区域)。黑云母的电子探针成分显示Ti含量为0.23~0.30,视剖面图中主期矿物组合区域中Ti成分等值线范围为0.23~0.24,暗示了样品峰期可能经历了更高的温度和压力,结合相图初步推测可能的峰期条件为T>910 ℃,P>0.69 GPa。这些条件可能暗示了顺时针的演化轨迹。
5.3 尖晶石单矿物温度计
尖晶石−堇青石麻粒岩样品LSM5-1中,发育丰富Fe−Ti氧化物,包括粒状尖晶石、钛铁矿、磁铁矿等,出溶现象主要表现为铁尖晶石中磁铁矿出溶。对于固溶体出溶现象,根据出溶矿物与基质矿物的化学成分、体积比例,可以恢复出溶前矿物固溶体的成分,利用温度计计算的温度可以代表原先固溶体的温度极小值(吴春明和陈泓旭,2013)。根据ImageJ 1.52i软件提取BSE图像下尖晶石颗粒中磁铁矿的面积比(约12%),分别将尖晶石和磁铁矿面积百分比近似为体积百分比除以尖晶石和磁铁矿标准摩尔体积,即可得到各端元的近似摩尔数。固溶体(Fe2+/(Fe2++Mg2+))=Σ各端元(Fe2+/(Fe2++Mg2+))×对应摩尔分数,Fe3+/(Fe3++Al3+)值同理。用回归成分的固溶体进行温度投图(图7),得到稳定固溶体出溶之前的温度极小值在750~810 ℃,与相平衡模拟得到的晚期退变温度条件810~820 ℃基本一致,说明尖晶石与磁铁矿在退变阶段达到平衡。
图 7 尖晶石单矿物温度计(底图据Sack and Ghiorso,1991修改)Figure 7. Calculated miscibility gaps for spinel (Base map modified from Sack and Ghiorso,1991)6. 锆石U–Pb年代学
样品LSM5-1中分选锆石颗粒大多呈椭圆形,粒径多处在40~150 μm之间。阴极发光(CL)图像显示,锆石颗粒具有明显的核−幔−边结构(图8)。多数锆石核部呈灰色,未见典型的震荡环带;部分锆石核部具扇状或不规则分区,具有变质锆石特征,可能为继承的变质锆石。幔部呈暗灰色,边部呈亮灰色。
对锆石的核部和变质边进行分析,结果显示暗色核部具有较宽的表观年龄范围916±11~613±7 Ma(图9a;表5),在~730 Ma左右有一个相对的高峰(图9b)。在球粒陨石标准化图解中(图10a),锆石核部显示出明显的Ce正异常和弱Eu负异常。多数锆石核部呈现轻稀土亏损、重稀土富集的左倾型配分曲线。部分锆石核部重稀土较亏损。核部锆石的Th/U较低,主要分布于0.1~0.3之间,个别高值达到0.6(图10b)。
图 9 尖晶石−堇青石麻粒岩样品LSM5-1锆石U−Pb年代学相关图解a—核部年龄范围;b—核部年龄分布;c—边部谐和年龄;d—边部加权平均年龄Figure 9. Correlation diagrams of zircon U-Pb ages in spinel-cordierite granulite sample LSM5-1(a) Age range of zircon cores; (b) Distribution of U-Pb age; (c) Concordia age of zircon rims; (d) Weighted average age of zircon rims表 5 锆石LA-ICP-MS测试结果Table 5. Zircon LA-ICP-MS data样品点 Th U Th/U 207Pb/206Pb 207Pb/235U 206Pb/238U 207Pb/206Pb 207Pb/235U 206Pb/238U ×10−6 比值 ±1σ 比值 ±1σ 比值 ±1σ 年龄/Ma ±1σ 年龄/Ma ±1σ 年龄/Ma ±1σ LSM5-1-核部 C-01 21 281 0.08 0.0654 0.0022 1.2051 0.0422 0.1318 0.0020 787 69 803 19 798 12 C-02 27 317 0.08 0.0678 0.0021 1.3390 0.0400 0.1418 0.0014 863 64 863 17 855 8 C-03 13 210 0.06 0.0642 0.0026 1.0265 0.0403 0.1152 0.0012 750 85 717 20 703 7 C-04 37 245 0.15 0.0668 0.0022 1.3200 0.0421 0.1419 0.0016 831 67 854 18 855 9 C-05 23 273 0.08 0.0659 0.0025 0.9560 0.0359 0.1039 0.0011 1200 79 681 19 637 7 C-06 45 257 0.17 0.0645 0.0024 0.9978 0.0395 0.1106 0.0017 759 78 703 20 676 10 C-07 38 135 0.28 0.0587 0.0028 0.8168 0.0400 0.0997 0.0011 554 101 606 22 613 7 C-08 39 160 0.25 0.0617 0.0023 1.0162 0.0360 0.1189 0.0012 661 75 712 18 724 7 C-09 33 112 0.30 0.0703 0.0033 1.3298 0.0655 0.1354 0.0017 1000 98 859 29 819 10 C-10 59 235 0.25 0.0647 0.0023 1.2448 0.0439 0.1380 0.0016 765 69 821 20 833 9 C-11 71 316 0.23 0.0673 0.0020 1.3682 0.0412 0.1458 0.0015 850 63 875 18 877 9 C-12 38 217 0.17 0.0654 0.0024 1.2366 0.0440 0.1369 0.0019 787 77 817 20 827 11 C-13 24 232 0.10 0.0646 0.0023 1.0751 0.0388 0.1200 0.0014 761 75 741 19 731 8 C-14 25 219 0.11 0.0624 0.0025 0.8818 0.0358 0.1022 0.0011 687 79 642 19 627 7 C-15 23 249 0.09 0.0645 0.0023 0.9714 0.0356 0.1093 0.0015 767 76 689 18 669 9 C-16 51 230 0.22 0.0657 0.0024 1.1262 0.0412 0.1241 0.0013 798 76 766 20 754 8 C-17 32 180 0.18 0.0671 0.0026 1.1508 0.0426 0.1253 0.0015 839 77 778 20 761 9 C-18 50 92 0.54 0.0591 0.0031 0.8192 0.0429 0.1012 0.0017 572 113 608 24 621 10 C-19 44 213 0.21 0.0644 0.0023 1.0682 0.0387 0.1200 0.0015 754 76 738 19 731 9 C-20 46 651 0.07 0.0707 0.0020 1.5039 0.0455 0.1528 0.0019 948 59 932 19 916 11 C-21 42 299 0.14 0.0689 0.0023 1.3918 0.0496 0.1451 0.0026 894 64 885 22 874 15 C-22 17 128 0.13 0.0690 0.0028 1.1107 0.0461 0.1161 0.0016 898 89 758 22 708 9 C-23 28 151 0.19 0.0639 0.0026 1.0613 0.0414 0.1200 0.0014 739 90 734 20 730 8 C-24 41 227 0.18 0.0711 0.0026 1.1991 0.0475 0.1213 0.0025 959 74 800 22 738 14 C-25 30 114 0.26 0.0713 0.0030 1.3275 0.0546 0.1340 0.0020 965 87 858 24 811 11 LSM5-1-边部 Rr-01 107 358 0.30 0.0621 0.0021 0.7302 0.0238 0.0850 0.0008 680 72 557 14 526 5 Rr-06 52 518 0.10 0.0579 0.0019 0.6565 0.0212 0.0819 0.0009 524 72 512 13 508 5 Rr-08 125 153 0.82 0.0566 0.0025 0.6652 0.0309 0.0842 0.0010 476 98 518 19 521 6 Rr-10 131 107 1.23 0.0577 0.0034 0.6548 0.0379 0.0831 0.0012 517 127 511 23 515 7 Rr-15 119 104 1.14 0.0580 0.0036 0.7099 0.0444 0.0872 0.0014 532 137 545 26 539 8 Rr-05 73 363 0.20 0.0607 0.0024 0.7472 0.0278 0.0891 0.0012 629 84 567 16 550 7 Rr-07 110 293 0.37 0.0554 0.0020 0.6238 0.0227 0.0810 0.0009 428 82 492 14 502 6 Rr-09 129 282 0.46 0.0605 0.0024 0.7184 0.0282 0.0860 0.0010 633 53 550 17 532 6 Rr-12 122 202 0.60 0.0614 0.0027 0.7226 0.0302 0.0854 0.0011 654 95 552 18 528 7 Rr-13 100 181 0.55 0.0620 0.0029 0.7608 0.0366 0.0886 0.0012 672 102 574 21 547 7 Rr-14 85 368 0.23 0.0606 0.0022 0.6923 0.0239 0.0826 0.0009 633 79 534 14 512 5 Rr-04 96 267 0.36 0.0629 0.0030 0.7414 0.0322 0.0856 0.0010 706 294 563 19 530 6 Rr-03 46 760 0.06 0.0640 0.0019 0.7729 0.0218 0.0872 0.0007 743 262 581 13 539 4 Rr-02 157 150 1.05 0.0653 0.0029 0.7636 0.0309 0.0855 0.0012 787 88 576 18 529 7 锆石亮灰色边部Th/U值变化范围较大(0.06~1.23),多数Th/U值较高(>0.1;表5)。在锆石球粒陨石标准化图解中,轻稀土亏损、重稀土富集,配分曲线呈现明显的左倾趋势,同时具有明显的Ce、Sm正异常和Eu负异常。Eu负异常表明在锆石亮灰色边部形成时,长石在矿物组合中稳定。分析显示亮灰色边部的年龄范围为502±6~550±7 Ma,谐和年龄为528±7 Ma(2σ,MSWD=16),加权平均年龄为526±8 Ma(95%,MSWD=5.9)(图9c、9d)。
7. 讨论
7.1 变质P–T轨迹
早期研究认为拉斯曼丘陵地区的变质作用记录了较低的温压条件。Stüwe and Powell(1989)基于矿物组合平衡关系估算来自拉斯曼丘陵的片麻岩峰期变质条件为0.45 GPa、~750 ℃,随后退变至~0.3 GPa、600 ℃;Carson et al.(1997)运用石榴子石−紫苏辉石温度计及相平衡模拟将该地区片麻岩峰期变质条件限定为0.7 GPa、800℃,峰后沿近等温降压路径退变至0.4~0.5 GPa、750 ℃,具有顺时针的演化轨迹。Tong et al.(2014)对拉斯曼丘陵变泥质岩样品进行研究,确定峰期M1阶段变质条件为~0.9 GPa、~900 ℃,后期M2阶段的变质条件为~0.7 GPa、~820 ℃,M3阶段的变质条件为~0.43 GPa、~760 ℃,具有逆时针的P–T演化轨迹;宗师等(2020)对米洛半岛的矽线石榴二长片麻岩进行相平衡模拟得到了~0.96 GPa、~820 ℃的峰期变质条件。然而,最近部分研究表明拉斯曼丘陵在局部地区可能也经历过高温甚至超高温变质作用的改造。佘一民等(2020)对斯图尔内斯半岛的2个泥质麻粒岩样品进行研究,给出了较宽的变质峰期条件,分别为0.61~0.89 GPa、830~870 ℃ (LSM178-2)和0.48~1.02 GPa、860~1050℃(LSM302-10),推测具有顺时针的P–T演化轨迹;Shah et al.(2021)对拉斯曼丘陵的二辉麻粒岩运用二辉石温度计估算峰期变质条件为~0.61 GPa、834~920 ℃;Wang et al.(2022)对米洛半岛具有尖晶石+石英矿物组合以及反条纹长石的泥质麻粒岩进行研究,基于相平衡模拟、三元长石及铁钛氧化物温度计估算峰期温压条件可能达到0.75~0.9 GPa、951~1016 ℃,具有顺时针P–T轨迹。文中研究的米洛半岛尖晶石−堇青石麻粒岩样品(LSM5-1)矿物组合没有明显的叠加变质特征,应代表了同一期变质热事件的产物。相平衡模拟估算其主期矿物组合对应的变质条件为0.64~0.69 GPa、870~910 ℃,晚期矿物组合记录了0.49~0.53 GPa、810~820 ℃的变质条件。结合样品中含有较少的残留状石榴子石、局部出现刚玉,部分黑云母具有很高TiO2含量并在相图中对应很高的温压条件,推测样品经历了更高的变质条件(T>910 ℃、P>0.69 GPa)。这些结果表明主要矿物组合应形成于退变质过程,峰期矿物组合已被较彻底地改造。结合区域上已有的研究成果,样品变质阶段和变质条件也暗示了顺时针的演化轨迹和很高的地热梯度(~1318 ℃/GPa)。
Harley and Fitzsimons(1991)对茹尔(赖于尔)群岛的泥质麻粒岩运用传统温压计估算峰期变质条件为~1.2 GPa、1050℃。Kelsey et al.(2003)限定该类泥质麻粒岩的峰期温压条件为1~1.06 GPa、950~975℃。这些样品记录了高温—超高温的变质条件,同时记录了较高的峰期压力,与文中研究米洛半岛的尖晶石−堇青石麻粒岩样品记录的温压条件存在明显的差异,可能反映了不同的地壳层次。综合区域上已有的研究成果,尽管在峰期条件及具体的演化路径上存在差异,各类样品基本记录了顺时针P–T演化轨迹(图11)。
图 11 普里兹构造带及其邻区岩石变质P−T轨迹(据Wang et al.,2022修改)LH—拉斯曼丘陵基性和泥质麻粒岩(Carson et al.,1997);GM1—格罗夫山基性麻粒岩(Liu et al.,2009a);GM2—格罗夫山高压变质岩(Chen et al.,2018);RG1&RG3—茹尔群岛中马瑟副片麻岩(Harley et al.,1998;Kelsey et al.,2007);RG2—茹尔群岛中基性麻粒岩(Tong and Wilson,2006);BB1—布拉特滨海陡崖的片麻岩(Fitzsimons,1996);BB2—布拉特滨海陡崖的泥质麻粒岩(Arora et al.,2020);BI—伯灵恩群岛的钙硅酸岩(Motoyoshi et al.,1991);c.530 Ma代表年龄为530 Ma左右。Figure 11. Metamorphic P−T path from samples in Prydz Bay belt and adjacent regions (modified from Wang et al.,2022)LH–mafic granulite and pelitic granulite in Larsemann Hills (Carson et al.,1997); GM1–mafic granulite in Grove Mountains (Liu et al.,2009a); GM2–HP(high-pressure) metapelite in Grove Mountains (Chen et al.,2018); RG1&RG3–Mg-Al-rich Mather paragneiss in Rauer Group (Harley et al.,1998;Kelsey et al.,2007); RG2–Mafic granulite in Rauer Group (Tong and Wilson,2006); BB1–Paragneiss in Brattstrand Bluffs (Fitzsimons,1996); BB2–Pelitic granulite in Brattstrand Bluffs (Arora et al.,2020); BI–Calc-silicates in Bolingen Islands (Motoyoshi et al.,1991)7.2 变质时代
东南极普里兹构造带受到新元古代早期格林维尔期构造热事件和晚新元古代—早古生代泛非期构造热事件的影响(Hensen and Zhou,1995;Zhao et al.,1995;Wang et al.,2008,2022;Liu et al.,2009a;Grew et al.,2012;任留东,2021;仝来喜等,2021),但不同地区受到两期构造热事件的影响程度不同。格林威尔期构造热事件在普里兹构造带不同地区均被识别出来,但年龄差异较大。Tong et al.(2014)确定拉斯曼丘陵泥质麻粒岩的峰期条件为~0.9 GPa、~900 ℃,并认为发生于格林维尔期(1000~900 Ma);宗师等(2020)对来自米洛半岛的矽线石榴二长片麻岩进行研究,岩浆成因高Th/U比值碎屑锆石的核部最小结晶U–Pb年龄集中在1073±49 Ma,Th/U比值较低锆石的边部年龄集中在980±19 Ma,被认为代表了变质年龄;Sadiq et al.(2021)从布拉特滨海陡崖副片麻岩中得到了约1000~900 Ma的独居石核部U−Th−Pb年龄。拉斯曼丘陵同构造紫苏花岗岩形成于格林维尔期,年龄为971±17 Ma (Wang et al.,2008)。拉斯曼丘陵以西埃默里冰架东缘蒙罗克尔山地区的长英质片麻岩的锆石SHRIMP U–Pb年龄指示其经历了~970 Ma和~930~900 Ma的两期高级变质事件(Liu et al.,2009b);拉斯曼丘陵之东西福尔丘陵的中元古代基性岩墙中得到的SHRIMP锆石U–Pb年龄为957±7 Ma~938±9 Ma(Liu et al.,2014);这些地区记录的年龄有一定差异,可能是后期热事件导致锆石不同程度重结晶的结果,也可能显示格林维尔期变质作用存在多个阶段。Zhao et al.(1992)在进步花岗岩中获得了~546 Ma的泛非期年龄,并指出泛非期是一期重要的构造热事件。随后普里兹构造带的泛非期构造热事件在广泛的地区被逐渐确认。伯灵恩群岛的花岗质片麻岩具有~550 Ma的锆石U–Pb年龄(Dirks and Hand,1995);Fitzsimons(1997)在斯图尔内斯半岛深熔成因的淡色片麻岩中得到了536~527 Ma的锆石和独居石U–Pb年龄;佘一民等(2020)在斯图尔内斯半岛的片麻岩样品中得到了~543±6 Ma和~531±6 Ma的锆石U–Pb年龄;Wang et al.(2022)对拉斯曼地区不同类型的麻粒岩样品进行研究,报道了不同阶段的锆石和独居石年龄,并推测峰期变质时代约为550~540 Ma。
尖晶石–堇青石麻粒岩(LSM5-1)中的锆石结构与该地区长英质片麻岩(Wang et al.,2008)等岩石类型中的锆石具有相似的核–幔–边结构,但其年龄存在明显差异。Wang et al. (2008)较为系统地报道了拉斯曼丘陵不同地区副片麻岩中锆石SHRIMP U–Pb年龄,其中核部普遍记录了~1130 Ma的岩浆锆石年龄,幔部普遍记录了1000~980 Ma的格林维尔期年龄,只有少量~700 Ma的记录,边部记录了~530 Ma的泛非期年龄。尖晶石−堇青石麻粒岩只有个别暗色的锆石核部记录了格林维尔期年龄(916±11 Ma),大多数锆石核部表观年龄集中于800~600 Ma,这可能表明不同类型岩石的继承锆石存在差异,也可能表明在晚期变质过程中锆石核部同位素体系受到更彻底重置。
尖晶石–堇青石麻粒岩(LSM5-1)的锆石边部年龄较为集中,表观年龄范围为550±7~502±6 Ma,加权平均年龄为526±8 Ma。尖晶石–堇青石麻粒岩(LSM5-1)矿物组合没有记录明显的叠加变质作用,应代表了同一期变质事件的产物。样品中边部锆石加权平均年龄526±8 Ma应代表了该期变质事件的时间。有关麻粒岩相变质作用中锆石行为的研究显示锆石的大规模结晶一般发生在降温冷却阶段,伴随熔体的结晶过程(Kelsey et al.,2008;Wang et al.,2014;Yakymchuk and Brown,2014)。尖晶石−堇青石麻粒岩(LSM5-1)中锆石的边部具有较宽的Th/U比值范围,多数Th/U比值较高,应形成于变质熔体的结晶过程(Wang et al.,2022),其年龄526±8 Ma应反映了变质作用峰后冷却结晶阶段,变质峰期时间应在此之前。Spreitzer et al. (2021)对拉斯曼丘陵及其临近地区副片麻岩以及正片麻岩进行了详细的原位独居石U–Th–Pb定年分析,限定了峰后熔体结晶时间为527±2 Ma,尖晶石–堇青石麻粒岩(LSM5-1)的锆石U–Pb年代学限定的冷却结晶时间与该独居石研究限定的峰后熔体结晶时间相一致。这些结果也支持该地区泛非期变质作用峰期发生于550~540 Ma之间的认识(Wang et al.,2022)。
7.3 构造意义
普里兹构造带受到多期变质–构造事件的影响,对于普里兹构造带泛非期的构造属性仍存在争议。一种观点认为泛非期变质作用主要反映了碰撞造山作用(Zhao et al.,1992;Hensen and Zhou,1995;Carson et al.,1997;Liu et al.,2009a;Wang et al.,2022),可能与冈瓦纳大陆的最终聚合有关。另一种观点认为泛非期变质作用是东非碰撞造山带在东冈瓦纳大陆的远程陆内响应(Wilson et al.,2007;Wang et al.,2008;Tong et al.,2014)。区域上缺乏广泛出露的岩石、复杂的叠加变质作用,以及研究程度的相对不足是制约解决这些问题的因素。尖晶石–堇青石麻粒岩(LSM5-1)矿物组合没有明显的叠加特征,可能代表了同一期变质事件的产物。锆石U–Pb年代学结果表明核部除个别显示出格林维尔期年龄(916±11 Ma),表观年龄集中于600~800 Ma,比典型的格林维尔期变质事件年轻;锆石边部加权平均年龄为526±8 Ma,代表了峰后退变结晶阶段的时间,反映了泛非期构造热事件。尖晶石–堇青石麻粒岩(LSM5-1)主期矿物组合对应较高的温压条件(0.64~0.69 GPa、870~910 ℃),推测具有顺时针的P–T演化轨迹,记录了(中)低压高温麻粒岩相变质作用。来自拉斯曼丘陵不同地区的岩石记录了类似的泛非期低压高温麻粒岩相变质作用。斯图尔内斯半岛2个泥质麻粒岩样品分别记录了峰期温压条件为0.61~0.89 GPa、830~870 ℃(LSM178-2)和0.48~1.02 GPa、860~1050 ℃(LSM302-10)(佘一民等,2020);格罗夫斯岛二辉麻粒岩样品的峰期温压条件为~0.61 GPa、834~920 ℃(Shah et al.,2021),局部地区甚至达到超高温条件;米洛半岛具有尖晶石+石英及反条纹长石的麻粒岩峰期温压条件达到了0.75~0.9 GPa、951~1016 ℃(Wang et al.,2022)。拉斯曼丘陵南侧格罗夫山地区冰碛岩中得到了较高的峰期压力(1.18~1.4 GPa、770~840 ℃),可能反映了不同的地壳层次。结合已有的研究成果(图11),尽管峰期压力以及具体的演化轨迹存在一定差异,普里兹构造带不同地区的岩石基本记录了顺时针P–T演化轨迹和较高的地热梯度(Motoyoshi et al.,1991;Fitzsimons,1996;Carson et al.,1997;Harley et al.,1998;Liu et al.,2009a;Wang et al.,2022)。顺时针的P–T演化轨迹常指示地壳的加厚过程(Brown,2007),具有较高地热梯度可能与碰撞造山作用相关的软流圈上涌及下地壳拆沉等多种构造环境相关(Lustrino,2005;Brown and Johnson,2018)。普里兹构造带不同地区发育的(超)高温变质作用反映了高热的中下地壳,可能对应碰撞造山作用之后的伸展垮塌过程,推测与冈瓦纳超大陆的聚合过程有关。
8. 结论
通过详细的岩石学、相平衡模拟和地质年代学分析,对拉斯曼丘陵米洛半岛尖晶石麻粒岩进行综合研究,根据结果得到如下认识。
(1)米洛半岛尖晶石–堇青石麻粒岩经历了中低压高温麻粒岩相变质作用。主期矿物组合主要记录的温压条件约为870~910℃、0.64~0.69 GPa,晚期矿物组合对应条件约为810~820 ℃、0.47~0.53 GPa。推测峰期变质条件可能达到更高的变质条件(T>910 ℃、P>0.69 GPa),暗示了顺时针的P–T演化轨迹和很高的地温梯度。
(2)米洛半岛尖晶石–堇青石麻粒岩样品只有个别锆石核部记录了格林维尔期年龄(916±11 Ma),大多数锆石核部表观年龄集中于800~600 Ma,年轻于典型的格林维尔期年龄。可能表明继承锆石不同,或在晚期变质过程中锆石核部同位素体系受到更多重置。边部加权平均年龄为526±8 Ma,应代表了泛非期变质作用的峰后冷却结晶时间。
(3)尖晶石–堇青石麻粒岩的温压条件及变质P–T轨迹可能反映了陆陆碰撞造山作用后期的伸展,可能与冈瓦纳大陆的最终聚合相关。
-
图 1 普里兹构造带及拉斯曼丘陵米洛半岛区域地质简图
a—普里兹构造带示意图(据Grew et al.,2012修改);b—拉斯曼丘陵米洛半岛地质简图(据Carson et al.,2007修改)
Figure 1. Regional geological maps of the Prydz Bay belt and Mirror Peninsula in Larsemann Hills
(a) Schematic map of the Prydz Bay belt (modified after Grew et al., 2012); (b) Geological sketch map of Mirror Peninsula, Larsemann Hills (modified after Carson et al.,2007)
图 2 尖晶石−堇青石麻粒岩样品LSM5-1岩相学特征
g—石榴子石;bi—黑云母;ksp—钾长石;crd—堇青石;sp—尖晶石;sill—矽线石;mt—磁铁矿;pl—斜长石;cor—刚玉a—手标本照片;b—残留的石榴子石颗粒;c—尖晶石、黑云母与堇青石共生;d—矽线石呈长柱状产出;e—尖晶石、磁铁矿与刚玉共生;f—尖晶石出溶磁铁矿;g—钾长石出溶细小斜长石条带;h—黑云母作为尖晶石的包裹体产出
Figure 2. Petrographic characteristics of spinel-cordierite granulite sample LSM5-1
(a) Photograph of the hand specimen; (b) Residual garnet grains; (c) Paragenetic mineral assemblages: spinel, biotite and cordierite; (d) Columnar sillimanite; (e) Paragenetic mineral assemblages of spinel, magnetite and corundum; (f) Dissolved magnetite in spinel; (g) Exsolution texture of plagioclase in k-feldspar; (h) Biotite occurs as inclusions in spinel g−garnet; bi−biotite; ksp−k-feldspar; crd−cordierite; sp−spinel; sill−sillimanite; mt−magnetite; pl−plagioclase; cor−corundum
图 3 尖晶石−堇青石麻粒岩样品LSM5-1石榴子石成分剖面图(g1、g2为两个不同的石榴子石颗粒)
注:Alm=Fe2+/(Fe2++Mg+Mn+Ca);Py=Mg/(Fe2++Mg+Mn+Ca);Gr=Ca/(Fe2++Mg+Mn+Ca);Spss=Mn/(Fe2++Mg+Mn+Ca)
Figure 3. Compositional profile of garnet in spinel–cordierite granulite sample LSM5-1 (a and b are two different garnet grains)
Note: Alm=Fe2+/(Fe2++Mg+Mn+Ca); Py=Mg/(Fe2++Mg+Mn+Ca); Gr=Ca/(Fe2++Mg+Mn+Ca); Spss=Mn/(Fe2++Mg+Mn+Ca)
图 4 尖晶石−堇青石麻粒岩样品LSM5-1尖晶石族矿物分类图解(据Deer et al.,1992修改)
Figure 4. Classification diagram of the spinel group minerals of spinel–cordierite granulite sample LSM5-1(modified from Deer et al.,1992)
图 5 尖晶石−堇青石麻粒岩样品LSM5-1云母分类图解(底图据Foster,1960修改)
Figure 5. Classification diagram of micas of spinel–cordierite granulite sample LSM5-1 (base map modified after Foster,1960)
图 6 尖晶石−堇青石麻粒岩样品LSM5-1在MnNCKFMASHTO体系下模拟T−xH2O与P−T视剖面图及等值线
a—样品T−xH2O模拟图;b—样品P−T模拟图;c—不同矿物转变线(堇青石、石榴子石、黑云母)及黑云母Ti成分等值线;d—石榴子石镁铝榴石成分等值线、黑云母Ti成分等值线
Figure 6. T−xH2O and P−T pseudosections and composition isopleths for spinel−cordierite granulite sample LSM5-1 in system MnNCKFMASHTO
(a) T–xH2O pseudosection; (b) P–T pseudosection; (c) Different mineral transformation curves (cordierite, garnet, biotite) and mineral composition isopleths of Ti (bi); (d) Mineral composition isopleths of Py and Ti (bi)
图 7 尖晶石单矿物温度计(底图据Sack and Ghiorso,1991修改)
Figure 7. Calculated miscibility gaps for spinel (Base map modified from Sack and Ghiorso,1991)
图 9 尖晶石−堇青石麻粒岩样品LSM5-1锆石U−Pb年代学相关图解
a—核部年龄范围;b—核部年龄分布;c—边部谐和年龄;d—边部加权平均年龄
Figure 9. Correlation diagrams of zircon U-Pb ages in spinel-cordierite granulite sample LSM5-1
(a) Age range of zircon cores; (b) Distribution of U-Pb age; (c) Concordia age of zircon rims; (d) Weighted average age of zircon rims
图 11 普里兹构造带及其邻区岩石变质P−T轨迹(据Wang et al.,2022修改)
LH—拉斯曼丘陵基性和泥质麻粒岩(Carson et al.,1997);GM1—格罗夫山基性麻粒岩(Liu et al.,2009a);GM2—格罗夫山高压变质岩(Chen et al.,2018);RG1&RG3—茹尔群岛中马瑟副片麻岩(Harley et al.,1998;Kelsey et al.,2007);RG2—茹尔群岛中基性麻粒岩(Tong and Wilson,2006);BB1—布拉特滨海陡崖的片麻岩(Fitzsimons,1996);BB2—布拉特滨海陡崖的泥质麻粒岩(Arora et al.,2020);BI—伯灵恩群岛的钙硅酸岩(Motoyoshi et al.,1991);c.530 Ma代表年龄为530 Ma左右。
Figure 11. Metamorphic P−T path from samples in Prydz Bay belt and adjacent regions (modified from Wang et al.,2022)
LH–mafic granulite and pelitic granulite in Larsemann Hills (Carson et al.,1997); GM1–mafic granulite in Grove Mountains (Liu et al.,2009a); GM2–HP(high-pressure) metapelite in Grove Mountains (Chen et al.,2018); RG1&RG3–Mg-Al-rich Mather paragneiss in Rauer Group (Harley et al.,1998;Kelsey et al.,2007); RG2–Mafic granulite in Rauer Group (Tong and Wilson,2006); BB1–Paragneiss in Brattstrand Bluffs (Fitzsimons,1996); BB2–Pelitic granulite in Brattstrand Bluffs (Arora et al.,2020); BI–Calc-silicates in Bolingen Islands (Motoyoshi et al.,1991)
表 1 米洛半岛尖晶石−堇青石麻粒岩LSM5-1代表性石榴子石电子探针数据/%
Table 1. EPMA data of representative garnet of spinel–cordierite granulite sample LSM5-1 in the Mirror Peninsula (%)
矿物 g1-1 g1-2 g1-3 g1-4 g1-5 g1-6 g1-7 g1-8 g1-9 g1-10 g1-11 g1-12 g2-1 g2-2 g2-3 g2-4 g2-5 g2-6 g2-7 g2-8 g2-9 g2-10 g2-11 g2-12 SiO2 36.87 36.41 36.23 35.88 35.86 35.84 35.78 35.52 36.06 36.1 36.19 36.48 36.28 36.29 36.09 36.29 35.65 36.67 35.8 35.67 35.98 36.95 35.80 35.80 TiO2 0 0 0.04 0 0.01 0 0 0 0.04 0.02 0 0 0.01 0.01 0.02 0.03 0 0.01 0 0.01 0 0.01 0.03 0.06 Al2O3 22.14 21.97 22.11 22.07 22.24 21.87 22.1 22.16 22.05 21.82 21.76 22.06 21.51 21.94 21.57 22.00 22.25 21.62 21.97 21.85 21.88 20.79 21.88 22.32 Cr2O3 0 0.04 0.02 0.04 0.04 0.04 0 0.03 0.02 0.02 0 0.05 0.01 0.01 0.05 0 0.07 0.05 0.02 0.02 0.03 0.04 0.03 0 Fe2O3 1.53 1.97 1.99 3.01 3.49 3.65 3.32 3.83 2.65 3.42 3.55 1.96 2.89 1.87 3.23 1.62 3.17 1.77 3.52 4.28 3.40 1.54 3.10 2.63 FeO 31.47 30.88 31.04 30.35 30.05 30.05 30.11 29.86 30.40 29.94 30.17 30.87 31.07 31.50 31.53 31.60 30.44 31.77 30.76 30.06 30.45 32.13 30.67 30.98 MnO 1.80 1.75 1.76 1.79 1.72 1.79 1.87 1.78 1.76 1.87 1.74 1.83 1.86 1.93 1.81 1.86 1.87 1.68 1.89 1.98 1.87 1.92 1.88 1.87 MgO 5.03 5.10 4.83 4.93 4.99 5.07 5.07 5.22 5.11 5.41 5.37 5.16 4.77 4.59 4.40 4.62 4.72 4.83 4.72 4.89 5.00 4.73 4.77 4.61 CaO 1.24 1.23 1.26 1.32 1.30 1.24 1.20 1.08 1.20 1.21 1.20 1.22 1.22 1.30 1.22 1.17 1.28 1.19 1.16 1.21 1.13 1.19 1.23 1.30 Na2O 0.05 0.04 0.06 0.05 0.12 0.08 0.05 0.02 0.07 0.04 0.05 0.03 0.08 0.02 0.08 0.05 0.05 0.05 0.05 0.07 0.07 0.04 0.04 0.02 K2O 0 0.02 0.01 0.01 0 0 0 0.01 0 0 0 0 0.01 0 0.02 0 0 0 0 0 0 0 0 0 Total 100.14 99.39 99.34 99.43 99.82 99.61 99.49 99.51 99.36 99.84 100.02 99.66 99.70 99.46 100.01 99.21 99.50 99.64 99.90 100.04 99.80 99.34 99.41 99.58 O 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 Si 2.92 2.91 2.90 2.87 2.86 2.87 2.86 2.84 2.88 2.87 2.88 2.91 2.90 2.91 2.90 2.91 2.86 2.93 2.86 2.85 2.87 2.97 2.87 2.87 Ti 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Al 2.07 2.07 2.09 2.08 2.09 2.06 2.08 2.09 2.08 2.05 2.04 2.07 2.03 2.07 2.04 2.08 2.10 2.04 2.07 2.06 2.06 1.97 2.07 2.11 Cr 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Fe3+ 0.09 0.12 0.12 0.18 0.21 0.22 0.20 0.23 0.16 0.21 0.21 0.14 0.17 0.11 0.20 0.10 0.19 0.11 0.21 0.26 0.20 0.09 0.19 0.16 Fe2+ 2.09 2.06 2.08 2.03 2.00 2.01 2.01 2.00 2.03 1.99 2.01 2.06 2.08 2.11 2.11 2.12 2.04 2.12 2.06 2.01 2.03 2.16 2.06 2.07 Mn 0.12 0.12 0.10 0.12 0.12 0.12 0.13 0.12 0.12 0.13 0.12 0.12 0.13 0.13 0.12 0.13 0.13 0.11 0.13 0.13 0.13 0.13 0.13 0.13 Mg 0.59 0.61 0.58 0.59 0.59 0.60 0.61 0.62 0.61 0.64 0.64 0.61 0.57 0.55 0.53 0.55 0.56 0.58 0.56 0.58 0.60 0.57 0.57 0.55 Ca 0.11 0.11 0.11 0.11 0.11 0.11 0.10 0.09 0.10 0.10 0.10 0.10 0.10 0.11 0.11 0.10 0.11 0.10 0.10 0.10 0.10 0.10 0.11 0.11 Na 0.01 0.01 0.01 0.01 0.02 0.01 0.01 0 0.01 0.01 0.01 0 0.01 0 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0 K 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Sum 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 XFe 0.78 0.77 0.78 0.78 0.77 0.77 0.77 0.76 0.77 0.76 0.76 0.77 0.79 0.79 0.80 0.79 0.78 0.79 0.79 0.78 0.77 0.79 0.78 0.79 Gr 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.03 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.03 0.04 0.04 0.04 0.04 0.03 0.03 0.04 0.04 Spss 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.05 0.04 0.04 0.04 0.04 0.04 0.05 0.04 0.04 0.04 0.04 Py 0.20 0.21 0.20 0.21 0.21 0.21 0.21 0.22 0.21 0.22 0.22 0.21 0.20 0.19 0.18 0.19 0.20 0.20 0.20 0.21 0.21 0.19 0.20 0.19 Alm 0.72 0.71 0.72 0.71 0.71 0.71 0.71 0.70 0.71 0.70 0.70 0.71 0.72 0.73 0.74 0.73 0.72 0.73 0.72 0.71 0.71 0.73 0.72 0.72 注:XFe=Fe2+/(Fe2++Mg) 表 2 米洛半岛尖晶石−堇青石麻粒岩LSM5-1代表性尖晶石与磁铁矿矿物电子探针数据/%
Table 2. EPMA data of representative spinel and magnetite of spinel–cordierite granulite sample LSM5-1 in the Mirror Peninsula (%)
矿物 sp-1 sp-2 sp-3 sp-4 sp-5 sp-6 sp-7 sp-8 sp-9 sp-10 mt-1 mt-2 mt-3 mt-4 mt-5 mt-6 mt-7 mt-8 mt-9 mt-10 SiO2 0.03 0 0 0.03 0 0.01 0.01 0.01 0.01 0.01 0.02 0 0.01 0.01 0.01 0.04 0.21 0.01 0 0.03 TiO2 0.03 0.03 0.03 0 0 0 0.01 0.01 0.01 0.01 0.01 0.04 0.05 0.01 0.03 0.01 0 0 0.15 0.06 Al2O3 55.05 55.52 55.61 54.51 55.87 55.96 55.51 55.43 54.85 55.22 3.10 1.11 1.47 0.18 0.90 0.17 0.54 2.72 8.86 0.26 Cr2O3 0.17 0.22 0.21 0.20 0.17 0.20 0.23 0.21 0.23 0.18 0.14 0.14 0.15 0.15 0.16 0.14 0.24 0.13 0.19 0.17 Fe2O3 5.70 5.02 5.37 6.81 5.12 5.45 5.43 5.20 6.06 5.79 65.46 67.30 65.28 67.98 67.86 68.72 67.14 65.76 59.07 68.27 FeO 35.62 35.07 35.58 34.85 35.21 33.58 34.83 34.68 35.03 35.12 31.27 30.96 30.22 30.74 31.20 30.90 30.96 31.02 31.90 31.15 MnO 0.21 0.25 0.21 0.23 0.27 0.27 0.22 0.24 0.25 0.25 0 0.03 0 0 0.01 0.03 0 0 0 0 MgO 3.22 3.44 3.35 3.68 3.52 4.58 3.74 3.69 3.49 3.50 0.23 0.12 0.11 0 0.06 0 0.11 0.28 0.65 0.02 CaO 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Na2O 0.01 0.02 0 0 0 0 0 0 0 0 0.01 0 0.03 0.01 0 0.05 0 0.01 0.02 0 K2O 0 0 0 0 0 0 0 0.01 0 0.01 0.01 0 0 0 0 0 0.01 0 0.01 0 ZnO 0.23 0.13 0.11 0.14 0.09 0 0.14 0.11 0.12 0.14 0.02 0.16 0.01 0 0 0 0 0.04 0 0.01 Total 100.27 99.70 100.47 100.45 100.25 100.05 100.12 99.59 100.05 100.23 100.27 99.86 97.33 99.08 100.23 100.06 99.21 99.97 100.85 99.97 O 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 Si 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.01 0 0 0 Ti 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Al 1.87 1.89 1.88 1.85 1.89 1.88 1.88 1.88 1.86 1.87 0.14 0.05 0.07 0.01 0.04 0.01 0.03 0.12 0.38 0.01 Cr 0 0.01 0.01 0.01 0 0.01 0.01 0.01 0.01 0 0 0 0.01 0.01 0.01 0 0.01 0 0.01 0.01 Fe3+ 0.12 0.11 0.12 0.15 0.11 0.12 0.12 0.11 0.13 0.13 1.86 1.94 1.93 1.99 1.95 1.99 1.95 1.88 1.61 1.98 Fe2+ 0.86 0.85 0.85 0.84 0.84 0.80 0.84 0.84 0.84 0.84 0.99 0.99 0.99 1.00 1.00 0.99 1.00 0.98 0.97 1.00 Mn 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0 0 0 0 0 0 0 0 0 0 Mg 0.14 0.15 0.14 0.16 0.15 0.19 0.16 0.16 0.15 0.15 0.01 0.01 0.01 0 0 0 0.01 0.02 0.04 0 Ca 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Na 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 K 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Sum 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 表 3 米洛半岛尖晶石−堇青石麻粒岩LSM5-1代表性黑云母电子探针数据/%
Table 3. EPMA data of representative biotite of spinel–cordierite granulite sample LSM5-1 in the Mirror Peninsula (%)
矿物 bi-1 bi-2 bi-3 bi-4 bi-5 bi-6 bi-7 bi-8 bi-9 bi-10 bi-11 bi-12 SiO2 36.91 36.63 35.77 37.12 35.69 36.96 37.07 35.78 35.8 35.78 36.05 35.52 TiO2 4.36 4.13 4.03 5.21 5.23 5.08 4.86 4.94 4.72 5.10 4.86 4.85 Al2O3 15.20 14.93 15.11 14.61 14.78 14.4 14.65 14.84 15.06 14.65 14.69 14.86 Cr2O3 0.01 0.06 0.04 0.02 0.04 0.05 0.02 0.02 0.06 0.11 0.09 0.10 Fe2O3 0 0 0 0 0 0 0 0 0 0 0 0 FeO 15.83 15.89 17.79 18.47 19.54 18.82 18.42 18.51 18.19 18.13 17.80 18.57 MnO 0.05 0.05 0.03 0.02 0.03 0.06 0.07 0.11 0.05 0.08 0.08 0.09 MgO 12.71 12.64 12.66 10.55 10.23 10.36 10.53 11.13 11.51 11.15 11.50 11.35 CaO 0 0 0 0 0 0 0 0.02 0.05 0.06 0.06 0.04 Na2O 0.37 0.37 0.18 0.13 0.14 0.13 0.20 0.20 0.21 0.22 0.20 0.20 K2O 9.70 10.14 9.88 9.81 9.70 9.93 9.87 9.96 9.82 9.82 9.83 9.84 Total 95.12 94.84 95.48 95.95 95.40 95.80 95.69 95.53 95.46 95.10 95.17 95.41 O 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 Si 2.78 2.78 2.72 2.81 2.74 2.81 2.81 2.73 2.73 2.74 2.75 2.72 Ti 0.25 0.24 0.23 0.30 0.30 0.29 0.28 0.28 0.27 0.29 0.28 0.28 Al 1.35 1.34 1.36 1.30 1.34 1.29 1.31 1.34 1.35 1.32 1.32 1.34 Cr 0 0 0 0 0 0 0 0 0 0.01 0.01 0.01 Fe3+ 0 0 0 0 0 0 0 0 0 0 0 0 Fe2+ 1.00 1.01 1.13 1.17 1.25 1.20 1.17 1.18 1.16 1.16 1.14 1.19 Mn 0 0 0 0 0 0 0 0.01 0 0.01 0.01 0.01 Mg 1.43 1.43 1.44 1.19 1.17 1.17 1.19 1.27 1.31 1.27 1.31 1.29 Ca 0 0 0 0 0 0 0 0 0 0.01 0.01 0 Na 0.05 0.05 0.03 0.02 0.02 0.02 0.03 0.03 0.03 0.03 0.03 0.03 K 0.93 0.98 0.96 0.95 0.95 0.96 0.96 0.97 0.96 0.96 0.96 0.96 Sum 7.79 7.83 7.86 7.73 7.78 7.75 7.75 7.82 7.82 7.80 7.80 7.83 XMg 0.59 0.59 0.56 0.50 0.48 0.50 0.50 0.52 0.53 0.52 0.54 0.52 XFe 0.41 0.41 0.44 0.50 0.52 0.50 0.50 0.48 0.47 0.48 0.46 0.48 注:XMg=Mg/(Fe2++Mg);XFe=Fe2+/(Fe2++Mg) 表 4 米洛半岛尖晶石−堇青石麻粒岩LSM5-1代表性堇青石、钾长石电子探针数据/%
Table 4. EPMA data of representative cordierite and k-feldspar of spinel–cordierite granulite sample LSM5-1 in the Mirror Peninsula (%)
矿物 crd-1 crd-2 crd-3 crd-4 ksp-1 ksp-2 ksp-3 ksp-4 SiO2 49.42 49.07 49.53 48.78 64.82 64.55 65.06 64.03 TiO2 0 0.01 0 0 0.08 0 0.08 0.06 Al2O3 32.31 32.27 32.17 32.43 18.48 18.12 18.32 18.38 Cr2O3 0.01 0.06 0 0 0 0 0.03 0 Fe2O3 0 0.06 0 0.89 0.04 0.22 0.05 0.67 FeO 8.34 8.32 8.45 7.48 0 0 0 0 MnO 0.12 0.14 0.13 0.08 0 0.01 0 0 MgO 8.08 8.27 8.14 8.77 0 0.08 0.03 0.02 CaO 0.01 0.03 0.02 0 0.11 0.14 0.18 0.11 Na2O 0.08 0.12 0.06 0.03 1.90 1.93 2.42 1.69 K2O 0 0.02 0 0.01 14.34 14.23 13.4 14.39 Total 98.38 98.36 98.5 98.48 99.77 99.27 99.57 99.34 O 18.00 18.00 18.00 18.00 8.00 8.00 8.00 8.00 Si 5.08 5.05 5.08 5.01 2.99 2.99 2.99 2.97 Ti 0 0 0 0 0 0 0 0 Al 3.91 3.92 3.89 3.93 1.00 0.99 0.99 1.01 Cr 0 0 0 0 0 0 0 0 Fe3+ 0 0.01 0 0.07 0 0.01 0 0.02 Fe2+ 0.72 0.72 0.73 0.64 0 0 0 0 Mn 0.01 0.01 0.01 0.01 0 0 0 0 Mg 1.24 1.27 1.25 1.34 0 0.01 0 0 Ca 0 0 0 0 0.01 0.01 0.01 0.01 Na 0.02 0.02 0.01 0.01 0.17 0.17 0.22 0.15 K 0 0 0 0 0.84 0.84 0.79 0.85 Sum 10.97 11.00 10.98 11.00 5.01 5.02 5.01 5.01 表 5 锆石LA-ICP-MS测试结果
Table 5. Zircon LA-ICP-MS data
样品点 Th U Th/U 207Pb/206Pb 207Pb/235U 206Pb/238U 207Pb/206Pb 207Pb/235U 206Pb/238U ×10−6 比值 ±1σ 比值 ±1σ 比值 ±1σ 年龄/Ma ±1σ 年龄/Ma ±1σ 年龄/Ma ±1σ LSM5-1-核部 C-01 21 281 0.08 0.0654 0.0022 1.2051 0.0422 0.1318 0.0020 787 69 803 19 798 12 C-02 27 317 0.08 0.0678 0.0021 1.3390 0.0400 0.1418 0.0014 863 64 863 17 855 8 C-03 13 210 0.06 0.0642 0.0026 1.0265 0.0403 0.1152 0.0012 750 85 717 20 703 7 C-04 37 245 0.15 0.0668 0.0022 1.3200 0.0421 0.1419 0.0016 831 67 854 18 855 9 C-05 23 273 0.08 0.0659 0.0025 0.9560 0.0359 0.1039 0.0011 1200 79 681 19 637 7 C-06 45 257 0.17 0.0645 0.0024 0.9978 0.0395 0.1106 0.0017 759 78 703 20 676 10 C-07 38 135 0.28 0.0587 0.0028 0.8168 0.0400 0.0997 0.0011 554 101 606 22 613 7 C-08 39 160 0.25 0.0617 0.0023 1.0162 0.0360 0.1189 0.0012 661 75 712 18 724 7 C-09 33 112 0.30 0.0703 0.0033 1.3298 0.0655 0.1354 0.0017 1000 98 859 29 819 10 C-10 59 235 0.25 0.0647 0.0023 1.2448 0.0439 0.1380 0.0016 765 69 821 20 833 9 C-11 71 316 0.23 0.0673 0.0020 1.3682 0.0412 0.1458 0.0015 850 63 875 18 877 9 C-12 38 217 0.17 0.0654 0.0024 1.2366 0.0440 0.1369 0.0019 787 77 817 20 827 11 C-13 24 232 0.10 0.0646 0.0023 1.0751 0.0388 0.1200 0.0014 761 75 741 19 731 8 C-14 25 219 0.11 0.0624 0.0025 0.8818 0.0358 0.1022 0.0011 687 79 642 19 627 7 C-15 23 249 0.09 0.0645 0.0023 0.9714 0.0356 0.1093 0.0015 767 76 689 18 669 9 C-16 51 230 0.22 0.0657 0.0024 1.1262 0.0412 0.1241 0.0013 798 76 766 20 754 8 C-17 32 180 0.18 0.0671 0.0026 1.1508 0.0426 0.1253 0.0015 839 77 778 20 761 9 C-18 50 92 0.54 0.0591 0.0031 0.8192 0.0429 0.1012 0.0017 572 113 608 24 621 10 C-19 44 213 0.21 0.0644 0.0023 1.0682 0.0387 0.1200 0.0015 754 76 738 19 731 9 C-20 46 651 0.07 0.0707 0.0020 1.5039 0.0455 0.1528 0.0019 948 59 932 19 916 11 C-21 42 299 0.14 0.0689 0.0023 1.3918 0.0496 0.1451 0.0026 894 64 885 22 874 15 C-22 17 128 0.13 0.0690 0.0028 1.1107 0.0461 0.1161 0.0016 898 89 758 22 708 9 C-23 28 151 0.19 0.0639 0.0026 1.0613 0.0414 0.1200 0.0014 739 90 734 20 730 8 C-24 41 227 0.18 0.0711 0.0026 1.1991 0.0475 0.1213 0.0025 959 74 800 22 738 14 C-25 30 114 0.26 0.0713 0.0030 1.3275 0.0546 0.1340 0.0020 965 87 858 24 811 11 LSM5-1-边部 Rr-01 107 358 0.30 0.0621 0.0021 0.7302 0.0238 0.0850 0.0008 680 72 557 14 526 5 Rr-06 52 518 0.10 0.0579 0.0019 0.6565 0.0212 0.0819 0.0009 524 72 512 13 508 5 Rr-08 125 153 0.82 0.0566 0.0025 0.6652 0.0309 0.0842 0.0010 476 98 518 19 521 6 Rr-10 131 107 1.23 0.0577 0.0034 0.6548 0.0379 0.0831 0.0012 517 127 511 23 515 7 Rr-15 119 104 1.14 0.0580 0.0036 0.7099 0.0444 0.0872 0.0014 532 137 545 26 539 8 Rr-05 73 363 0.20 0.0607 0.0024 0.7472 0.0278 0.0891 0.0012 629 84 567 16 550 7 Rr-07 110 293 0.37 0.0554 0.0020 0.6238 0.0227 0.0810 0.0009 428 82 492 14 502 6 Rr-09 129 282 0.46 0.0605 0.0024 0.7184 0.0282 0.0860 0.0010 633 53 550 17 532 6 Rr-12 122 202 0.60 0.0614 0.0027 0.7226 0.0302 0.0854 0.0011 654 95 552 18 528 7 Rr-13 100 181 0.55 0.0620 0.0029 0.7608 0.0366 0.0886 0.0012 672 102 574 21 547 7 Rr-14 85 368 0.23 0.0606 0.0022 0.6923 0.0239 0.0826 0.0009 633 79 534 14 512 5 Rr-04 96 267 0.36 0.0629 0.0030 0.7414 0.0322 0.0856 0.0010 706 294 563 19 530 6 Rr-03 46 760 0.06 0.0640 0.0019 0.7729 0.0218 0.0872 0.0007 743 262 581 13 539 4 Rr-02 157 150 1.05 0.0653 0.0029 0.7636 0.0309 0.0855 0.0012 787 88 576 18 529 7 -
[1] ARORA D, PANT N, PANDEY M, et al, 2020. Insights into geological evolution of Princess Elizabeth Land, East Antarctica-clues for continental suturing and breakup since Rodinian time[J]. Gondwana Research, 84: 260-283. doi: 10.1016/j.gr.2020.05.002 [2] BIAO X, WANG W, WU J, et al, 2022. Ultra-high temperature metamorphism in the Prydz Bay region, East Antarctica[J]. Chinese Journal of Polar Research, 34(4): 516-529. (in Chinese with English abstract [3] BROWN M, 2007. Metamorphic conditions in orogenic belts: A record of secular change[J]. International Geology Review, 49(3): 193-234. doi: 10.2747/0020-6814.49.3.193 [4] BROWN M, JOHNSON T, 2018. Secular change in metamorphism and the onset of global plate tectonics[J]. American Mineralogist, 103(2): 181-196. doi: 10.2138/am-2018-6166 [5] CARSON C J, FANNING C M, WILSON C J L, 1996. Timing of the Progress Granite, Larsemann Hills: additional evidence for early Palaeozoic orogenesis within the east Antarctic Shield and implications for Gondwana assembly[J]. Australian Journal of Earth Sciences, 43(5): 539-553. doi: 10.1080/08120099608728275 [6] CARSON C J, POWELL R, WILSON C J L, et al, 1997. Partial melting during tectonic exhumation of a granulite terrane: an example from the Larsemann Hills, East Antarctica[J]. Journal of Metamorphic Geology, 15(1): 105-126. doi: 10.1111/j.1525-1314.1997.00059.x [7] CARSON C J, GREW E S, BOGER S D, et al , 2007. Age of boron- and phosphorus-rich paragneisses and associated orthogneisses in the Larsemann Hills: New constraints from SHRIMP U-Pb zircon geochronology. In: (Cooper A. K. &Raymond C. R. (eds)) [C]//A Keystone in a Changing World–Online Proceedings of the 10th ISAES USGS Open-File Report 1047, 1–4. [8] CHEN L Y, WANG W, LIU X C, et al, 2018. Metamorphism and zircon U-Pb dating of high-pressure pelitic granulites from glacial moraines in the Grove Mountains, East Antarctica[J]. Advances in Polar Science, 29(2): 118-134. [9] CHEN T Y, LI G C, XIE L Z, et al , 1995. Geological map and description of Antarctica (1: 5000000)[M]. Beijing: Geology Press: 1-36. (in Chinese) [10] DEER W A, HOWIE R A, ZUSSMAN J, 1992. An introduction to the rock-forming minerals[M]. 2nd ed. London: Longman Scientific & Technical: 695. [11] DIRKS P H G M, HAND M, 1995. Clarifying temperature-pressure paths via structures in granulite from the Bolingen Islands, Antarctica[J]. Australian Journal of Earth Sciences, 42(2): 157-172. doi: 10.1080/08120099508728189 [12] FITZSIMONS I C W, 1996. Metapelitic migmatites from brattstrand bluffs, East Antarctica-metamorphism, melting and exhumation of the mid crust[J]. Journal of Petrology, 37(2): 395-414. doi: 10.1093/petrology/37.2.395 [13] FITZSIMONS I C W, 1997. The brattstrand paragneiss and the Søstrene orthogneiss: a review of Pan-African metamorphism and Grenvillian relics in southern Prydz Bay[M]//RICCI C A. The Antarctic region: geological evolution and processes. Siena: Terra Antartica Publication: 121-130. [14] FOSTER M D, 1960. Interpretation of the composition of trioctahedral micas[R]. United States Department of the Interior, Washington: 11-49. [15] GREW E S, CARSON C J, CHRISTY A G, et al, 2012. New constraints from U-Pb, Lu-Hf and Sm-Nd isotopic data on the timing of sedimentation and felsic magmatism in the Larsemann Hills, Prydz Bay, East Antarctica[J]. Precambrian Research, 206-207: 87-108. doi: 10.1016/j.precamres.2012.02.016 [16] HARLEY S L, 1987. Precambrian geological relationships in high-grade gneisses of the Rauer Islands, East Antarctica[J]. Australian Journal of Earth Sciences, 34(2): 175-207. doi: 10.1080/08120098708729404 [17] HARLEY S L, 1998. On the occurrence and characterization of ultrahigh-temperature crustal metamorphism[J]. Geological Society, London, Special Publications, 138(1): 81-107. doi: 10.1144/GSL.SP.1996.138.01.06 [18] HARLEY S L, FITZSIMONS I C W, 1991. Pressure-temperature evolution of metapelitic granulites in a polymetamorphic terrane: the Rauer Group, East Antarctica[J]. Journal of Metamorphic Geology, 9(3): 231-243. doi: 10.1111/j.1525-1314.1991.tb00519.x [19] HARLEY S L, SNAPE I, BLACK L P, 1998. The evolution of a layered metaigneous complex in the Rauer Group, East Antarctica: evidence for a distinct Archaean terrane[J]. Precambrian Research, 89(3-4): 175-205. doi: 10.1016/S0301-9268(98)00031-X [20] HENSEN B J, ZHOU B, 1995. Retention of isotopic memory in garnets partially broken down during an overprinting granulite-facies metamorphism: Implications for the Sm-Nd closure temperature[J]. Geology, 23(3): 225-228. doi: 10.1130/0091-7613(1995)023<0225:ROIMIG>2.3.CO;2 [21] HOLLAND T J B, POWELL R, 1998. An internally consistent thermodynamic data set for phases of petrological interest[J]. Journal of Metamorphic Geology, 16(3): 309-343. doi: 10.1111/j.1525-1314.1998.00140.x [22] HOLLAND T J B, POWELL R, 2011. An improved and extended internally consistent thermodynamic dataset for phases of petrological interest, involving a new equation of state for solids[J]. Journal of Metamorphic Geology, 29(3): 333-383. doi: 10.1111/j.1525-1314.2010.00923.x [23] HU Z C, LIU Y S, CHEN L, et al, 2011. Contrasting matrix induced elemental fractionation in NIST SRM and rock glasses during laser ablation ICP-MS analysis at high spatial resolution[J]. Journal of Analytical Atomic Spectrometry, 26(2): 425-430. doi: 10.1039/C0JA00145G [24] INDARES A, MARTIGNOLE J, 1985. Biotite-garnet geothermometry in the granulite facies: the influence of Ti and Al in biotite[J]. American Mineralogist, 70(3-4): 272-278. [25] KELSEY D E, WHITE R W, POWELL R, et al, 2003. New constraints on metamorphism in the Rauer Group, Prydz Bay, East Antarctica[J]. Journal of Metamorphic Geology, 21(8): 739-759. doi: 10.1046/j.1525-1314.2003.00476.x [26] KELSEY D E, WHITE R W, POWELL R, 2005. Calculated phase equilibria in K2O-FeO-MgO-Al2O3-SiO2-H2O for silica-undersaturated sapphirine-bearing mineral assemblages[J]. Journal of Metamorphic Geology, 23(4): 217-239. doi: 10.1111/j.1525-1314.2005.00573.x [27] KELSEY D E, HAND M, CLARK C, et al, 2007. On the application of in situ monazite chemical geochronology to constraining P-T-t histories in high-temperature (>850 °C) polymetamorphic granulites from Prydz Bay, East Antarctica[J]. Journal of the Geological Society, 164(3): 667-683. doi: 10.1144/0016-76492006-013 [28] KELSEY D E, CLARK C, HAND M, 2008. Thermobarometric modelling of zircon and monazite growth in melt-bearing systems: examples using model metapelitic and metapsammiticgranulites[J]. Journal of Metamorphic Geology, 26(2): 199-212. doi: 10.1111/j.1525-1314.2007.00757.x [29] KINNY P D, BLACK L P, SHERATON J W, 1993. Zircon ages and the distribution of Archaean and Proterozoic rocks in the Rauer Islands[J]. Antarctic Science, 5(2): 193-206. doi: 10.1017/S0954102093000252 [30] LI M, LIU X C, ZHAO Y, 2007. Zircon U-Pb ages and geochemistry of granitoids from Prydz Bay, East Antarctica, and their tectonic significance[J]. Acta Petrologica Sinica, 23(5): 1055-1066. (in Chinese with English abstract [31] LIU X C, ZHAO Y, LIU X H, et al, 2007. Evolution of high-grade metamorphism in the Prydz Belt, East Antarctica[J]. Earth Science Frontiers, 14(1): 56-63. (in Chinese with English abstract [32] LIU X C, HU J M, ZHAO Y, et al, 2009a. Late Neoproterozoic/Cambrian high-pressure mafic granulites from the Grove Mountains, East Antarctica: P-T-t path, collisional orogeny and implications for assembly of East Gondwana[J]. Precambrian Research, 174(1-2): 181-199. doi: 10.1016/j.precamres.2009.07.001 [33] LIU X C, ZHAO Y, SONG B, et al, 2009b. SHRIMP U-Pb zircon geochronology of high-grade rocks and charnockites from the eastern Amery Ice Shelf and southwestern Prydz Bay, East Antarctica: Constraints on Late Mesoproterozoic to Cambrian tectonothermal events related to supercontinent assembly[J]. Gondwana Research, 16(2): 342-361. doi: 10.1016/j.gr.2009.02.003 [34] LIU X C, WANG W, ZHAO Y, et al, 2014. Early Neoproterozoic granulite facies metamorphism of mafic dykes from the Vestfold Block, East Antarctica[J]. Journal of Metamorphic Geology, 32(9): 1041-1062. doi: 10.1111/jmg.12106 [35] LIU Y S, ZONG K Q, KELEMEN P B, et al, 2008. Geochemistry and magmatic history of eclogites and ultramafic rocks from the Chinese continental scientific drill hole: Subduction and ultrahigh-pressure metamorphism of lower crustal cumulates[J]. Chemical Geology, 247(1-2): 133-153. doi: 10.1016/j.chemgeo.2007.10.016 [36] LIU Y S, GAO S, HU Z C, et al, 2010. Continental and oceanic crust recycling-induced melt-peridotite interactions in the Trans-North China Orogen: U-Pb Dating, Hf isotopes and trace elements in zircons from mantle xenoliths[J]. Journal of Petrology, 51(1-2): 537-571. doi: 10.1093/petrology/egp082 [37] LUSTRINO M, 2005. How the delamination and detachment of lower crust can influence basaltic magmatism[J]. Earth-Science Reviews, 72(1-2): 21-38. doi: 10.1016/j.earscirev.2005.03.004 [38] MOTOYOSHI Y, THOST D E, HENSEN B J, 1991. Reaction textures in calc-silicate granulites from the Bolingen Islands, Prydz Bay, East Antarctica: implications for the retrograde P-T path[J]. Journal of Metamorphic Geology, 9(3): 293-300. doi: 10.1111/j.1525-1314.1991.tb00524.x [39] POWELL R, HOLLAND T J B, 1988. An internally consistent dataset with uncertainties and correlations: 3. Applications to geobarometry, worked examples and a computer program[J]. Journal of Metamorphic Geology, 6(2): 173-204. doi: 10.1111/j.1525-1314.1988.tb00415.x [40] REN L D, 2021. Anatexis and enrichment mechanism of the Fe-Ti oxide minerals in the quartzofeldspathic gneisses from the Larsemann Hills, East Antarctica[J]. Journal of Geomechanics, 27(5): 736-746. (in Chinese with English abstract [41] SACK R O, GHIORSO M S, 1991. An internally consistent model for the thermodynamic properties of Fe-Mg-titanomagnetite-aluminate spinels[J]. Contributions to Mineralogy and Petrology, 107(3): 415. doi: 10.1007/BF00325108 [42] SADIQ M, DHARWADKAR A, ROY S K, et al, 2021. Thermal evolution of mafic granulites of Princess Elizabeth Land, East Antarctica[J]. Polar Science, 30: 100641. doi: 10.1016/j.polar.2021.100641 [43] SHAH M Y, SADIQ M, AYEMI K K, et al, 2021. P-T-t-d evolution of Brattnevet Peninsula, Larsemann Hills, East Antarctica[J]. Polar Science, 30: 100728. doi: 10.1016/j.polar.2021.100728 [44] SHE Y M, WANG W, CHENG S H, et al, 2020. Metamorphism of gneisses in the Stornes Peninsula and adjacent region of the Larsemann Hills: Phase equilibrium modelling and zircon geochronology[J]. Acta Petrologica Sinica, 36(9): 2799-2814. (in Chinese with English abstract doi: 10.18654/1000-0569/2020.09.12 [45] SHERATON J W, BLACK L P, MCCULLOCH M T, 1984. Regional geochemical and isotopic characteristics of high-grade metamorphics of the Prydz bay area: The extent of proterozoic reworking of Qrchaean continental crust in East Antarctica[J]. Precambrian Research, 26(2): 169-198. doi: 10.1016/0301-9268(84)90043-3 [46] SPREITZER S K, WALTERS J B, CRUZ-URIBE A, et al , 2021. Monazite petrochronology of polymetamorphic granulite-facies rocks of the Larsemann Hills, Prydz Bay, East Antarctica. Journal of Metamorphic Geology, 39(9): 1205-1228. [47] STÜWE K, POWELL R, 1989. Metamorphic segregations associated with garnet and orthopyroxene porphyroblast growth: two examples from the Larsemann Hills, East Antarctica[J]. Contributions to Mineralogy and Petrology, 103(4): 523-530. doi: 10.1007/BF01041757 [48] TONG L X, WILSON C J L, 2006. Tectonothermal evolution of the ultrahigh temperature metapelites in the Rauer Group, East Antarctica[J]. Precambrian Research, 149(1-2): 1-20. doi: 10.1016/j.precamres.2006.04.004 [49] TONG L X, LIU X H, WANG Y B, et al, 2012. Metamorphism evolution of Pelitic Granulites from the Larsemann Hills, East Antarctica[J]. Acta Geologica Sinica, 86(8): 1273-1290. (in Chinese with English abstract [50] TONG L X, LIU X H, WANG Y B, et al, 2014. Metamorphic P-T paths of metapelitic granulites from the Larsemann Hills, East Antarctica[J]. Lithos, 192-195: 102-115. doi: 10.1016/j.lithos.2014.01.013 [51] TONG L X, LIU Z, WANG Y B, 2021. Research progress of the ultrahigh-temperature granulites in the Rauer Group, East Antarctica[J]. Journal of Geomechanics, 27(5): 705-718. (in Chinese with English abstract [52] WANG W, LIU X S, HU J M, et al, 2014. Late Paleoproterozoic medium-P high grade metamorphism of basement rocks beneath the northern margin of the Ordos Basin, NW China: Petrology, phase equilibrium modelling and U–Pb geochronology[J]. Precambrian Research, 251: 181-196. doi: 10.1016/j.precamres.2014.06.016 [53] WANG W, ZHAO Y, WEI C J, et al, 2022. High-ultrahigh temperature metamorphism in the Larsemann Hills: Insights into the tectono-thermal evolution of the Prydz Bay Region, East Antarctica[J]. Journal of Petrology, 63(2): egac002. doi: 10.1093/petrology/egac002 [54] WANG W, ZHAO Y, WEI C J, et al, 2022. Ultrahigh temperature metamorphism in Antarctica and its tectonic setting[J]. Acta Geologica Sinica, 96(9): 3102-3119. (in Chinese with English abstract [55] WANG Y B, LIU D Y, CHUNG S L, et al, 2008. SHRIMP zircon age constraints from the Larsemann Hills region, Prydz Bay, for a late Mesoproterozoic to early Neoproterozoic tectono-thermal event in East Antarctica[J]. American Journal of Science, 308(4): 573-617. doi: 10.2475/04.2008.07 [56] WHITE R W, POWELL R, HOLLAND T J B, et al, 2014. New mineral activity-composition relations for thermodynamic calculations in metapelitic systems[J]. Journal of Metamorphic Geology, 32(3): 261-286. doi: 10.1111/jmg.12071 [57] WILSON C J L, QUINN C, TONG L X, et al, 2007. Early Palaeozoic intracratonic shears and post-tectonic cooling in the Rauer Group, Prydz Bay, East Antarctica constrained by 40Ar/39Ar thermochronology[J]. Antarctic Science, 19(3): 339-353. doi: 10.1017/S0954102007000478 [58] WU C M, CHEN H X, 2013. Estimation of minimum or maximum pressure or temperature conditions in metamorphic rocks[J]. Acta Petrologica Sinica, 29(5): 1499-1510. (in Chinese with English abstract [59] YAKYMCHUK C, BROWN M, 2014. Behaviour of zircon and monazite during crustal melting[J]. Journal of the Geological Society, 171(4): 465-479. doi: 10.1144/jgs2013-115 [60] ZHAO Y, SONG B, WANG Y J, et al , 1992. Geochronology of the late granite in the Larsemann Hills, East Antarctica[M]//YOSHIDA Y, KAMINUMA K, SHIRAISHI K. Recent progress in Antarctic earth science. Tokyo: Terra Scientific Publishing Company: 155-161. [61] ZHAO Y, LIU X H, SONG B, et al, 1995. Constraints on the stratigraphic age of metasedimentary rocks from the Larsemann Hills, East Antarctica: possible implications for Neoproterozoic tectonics[J]. Precambrian Research, 75(3-4): 175-188. doi: 10.1016/0301-9268(95)00038-0 [62] ZHOU X, TONG L X, LIU X H, et al, 2014. Metamorphism evolution of mafic granulite from the Larsemann Hills, East Antarctica[J]. Acta Petrologica Sinica, 30(6): 1731-1747. (in Chinese with English abstract [63] ZONG S, REN L D, WU M Q, 2020. Grenvillian metamorphism of sillimanite-garnet feldspar paragneiss in the Larsemann Hills, East Antarctica and tectonic implications[J]. Acta Petrologica Sinica, 36(6): 1931-1944. (in Chinese with English abstract doi: 10.18654/1000-0569/2020.06.18 [64] 表璇,王伟,吴江,等,2022. 东南极普里兹湾地区超高温变质作用[J]. 极地研究,34(4):516-529. [65] 陈廷愚,李光岑,谢良珍,等,1995. 南极洲地质图及说明书(1:500万)[M]. 北京:地质出版社:1-36. [66] 李淼,刘晓春,赵越,2007. 东南极普里兹湾地区花岗岩类的锆石U-Pb年龄、地球化学特征及其构造意义[J]. 岩石学报,23(5):1055-1066. [67] 刘晓春,赵越,刘小汉,等,2007. 东南极普里兹带高级变质作用演化[J]. 地学前缘,14(1):56-63. [68] 任留东,2021. 东南极拉斯曼丘陵长英质片麻岩的深熔作用与铁钛氧化物的聚集机制[J]. 地质力学学报,27(5):736-746. [69] 佘一民,王伟,程素华,等,2020. 东南极拉斯曼丘陵斯图尔内斯半岛及邻区片麻岩变质作用:相平衡模拟与锆石年代学[J]. 岩石学报,36(9):2799-2814. [70] 仝来喜,刘小汉,王彦斌,等,2012. 东南极拉斯曼丘陵泥质麻粒岩的变质作用演化[J]. 地质学报,86(8):1273-1290. [71] 仝来喜,刘兆,王彦斌,2021. 东南极茹尔群岛超高温麻粒岩的研究进展[J]. 地质力学学报,27(5):705-718. [72] 王伟,赵越,魏春景,等,2022. 南极大陆超高温变质作用及其大地构造背景[J]. 地质学报,96(9):3102-3119. [73] 吴春明,陈泓旭,2013. 变质作用温度与压力极限值的估算方法[J]. 岩石学报,29(5):1499-1510. [74] 周信,仝来喜,刘小汉,等,2014. 东南极拉斯曼丘陵镁铁质麻粒岩的变质作用演化[J]. 岩石学报,30(6):1731-1747. [75] 宗师,任留东,武梅千,2020. 东南极拉斯曼丘陵夕线石榴二长片麻岩的格林威尔期变质作用和构造意义[J]. 岩石学报,36(6):1931-1944. 期刊类型引用(1)
1. 崔迎春,陈绍聪,张浩,宗师,王雪娇,潘荣昊,王伟轩,马立杰,李升贵,张晓波,黄巨澜,陈鸿宇. 中国在东南极拉斯曼丘陵变质岩系研究的进展. 极地研究. 2024(04): 505-517 . 百度学术
其他类型引用(0)
-