留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于SAR/InSAR技术的雅鲁藏布江下游高位地质灾害早期识别

赵超英 刘晓杰 高杨 冯晓松

赵超英, 刘晓杰, 高杨, 等, 2022. 基于SAR/InSAR技术的雅鲁藏布江下游高位地质灾害早期识别. 地质力学学报, 28 (6): 981-994. DOI: 10.12090/j.issn.1006-6616.20222825
引用本文: 赵超英, 刘晓杰, 高杨, 等, 2022. 基于SAR/InSAR技术的雅鲁藏布江下游高位地质灾害早期识别. 地质力学学报, 28 (6): 981-994. DOI: 10.12090/j.issn.1006-6616.20222825
ZHAO Chaoying, LIU Xiaojie, GAO Yang, et al., 2022. Early identification of high-elevation geohazards in the lower Yarlung Zangbo River based on the SAR/InSAR technology. Journal of Geomechanics, 28 (6): 981-994. DOI: 10.12090/j.issn.1006-6616.20222825
Citation: ZHAO Chaoying, LIU Xiaojie, GAO Yang, et al., 2022. Early identification of high-elevation geohazards in the lower Yarlung Zangbo River based on the SAR/InSAR technology. Journal of Geomechanics, 28 (6): 981-994. DOI: 10.12090/j.issn.1006-6616.20222825

基于SAR/InSAR技术的雅鲁藏布江下游高位地质灾害早期识别

doi: 10.12090/j.issn.1006-6616.20222825
基金项目: 

国家重点研发项目 2022YFC3004302

国家自然科学基金项目 41929001

国家自然科学基金项目 41874005

详细信息
    作者简介:

    赵超英(1976—), 男, 博士, 教授, 主要从事雷达遥感形变监测与地质灾害调查与监测方面的科研与教学工作。E-mail: cyzhao@chd.edu.cn

    通讯作者:

    刘晓杰(1994—), 男, 在读博士, 主要从事雷达遥感滑坡早期识别与监测预报方面的科研工作。E-mail: Xiaojie_Liu_cd@163.com

  • 中图分类号: P694;P237

Early identification of high-elevation geohazards in the lower Yarlung Zangbo River based on the SAR/InSAR technology

Funds: 

the National Key R&D Program of China 2022YFC3004302

the Natural Science Foundation of China 41929001

the Natural Science Foundation of China 41874005

  • 摘要:

    雅鲁藏布江下游位于印度板块和欧亚板块碰撞的前缘地带, 区域内新构造运动活跃, 高山分布众多, 属典型高山深切割区。由于独特的地质构造以及气候变化的影响, 区域内崩塌、滑坡、泥石流等地质灾害频发。文章采用Sentinel-1影像以及ALOS/PALSAR-2影像通过多种时序InSAR技术和SAR偏移量技术联合的方式对区域内2014—2020年高位地质灾害进行了识别。文章研究结果表明: 在研究区内共存在260处地质灾害形变区, 且大多位于海拔较高的沟道与山峰; 泽巴隆巴冰川沟中的岩崩形变体已经形成多条大型拉张裂缝, 一旦发生崩落极有可能形成堰塞湖; 受米林地震影响而复活的达波古滑坡后缘已经完全脱离, 左右两侧裂缝完全贯通, 滑坡一旦失稳会完全堵塞雅鲁藏布江。此研究提供了识别高山峡谷区高位地质灾害的SAR/InSAR技术方法, 为类似的地质灾害识别提供了参考。

     

  • 图  1  研究区位置及所用SAR影像空间覆盖(位置图据公开的SRTM DEM数据绘制)

    Figure  1.  Location of the study area and coverage of SAR images (Location map based on publicly available SRTM DEM data)

    图  2  高山峡谷区高位地质灾害SAR/InSAR识别技术流程图

    Figure  2.  Flow chart of the SAR/InSAR identification technology for high-elevation geohazard in a mountain-valley area

    图  3  大气误差改正前后解缠图

    a—大气误差改正前解缠图;b—大气误差改正后解缠图

    Figure  3.  Unwrapping images before and after the correction of atmospheric error

    (a)Unwrapping images before the correction of atmospheric error; (b)Unwrapping images after the correction of atmospheric error

    图  4  相位解缠误差改正前后解缠图

    a—相位解缠误差改正前;b—相位解缠误差改正后

    Figure  4.  Unwrapping images before and after the correction of phase error

    (a) Unwrapping images before the correction of phase error; (b)Unwrapping images after the correction of phase error

    图  5  米林-墨脱段2017年3月至2020年7月Sentinel-1数据地表形变速率

    负值(红色)表示远离卫星视线方向的变形;正值(蓝色)表示朝着卫星视线方向的变形

    Figure  5.  Surface deformation rate of the Sentinel-1 data from March 2017 to July 2020 for the Milin-Motuo section

    Negative values (red) indicate the deformation away from the LOS direction of the satellite, and positive values (blue) indicate the deformation towards the LOS direction of the satellite

    图  6  米林-墨脱段2014年9月至2020年5月ALOS/PALSAR-2数据地表形变速率

    负值(红色)表示远离卫星视线方向的变形;正值(蓝色)表示朝着卫星视线方向的变形

    Figure  6.  Surface deformation rate of the ALOS/PALSAR-2 data from September 2014 to May 2020 for the Milin-Motuo section

    Negative values (red) indicate the deformation away from the LOS direction of the satellite, positive values (blue) indicate the deformation towards the LOS direction of the satellite

    图  7  米林-墨脱段地质灾害编目图

    Figure  7.  Catalogued map of geohazards in the Milin-Metuo section

    图  8  距离雅鲁藏布江不同距离地质灾害分布

    Figure  8.  Distribution of geohazards at different distances from the Yarlung Zangbo River

    图  9  距离雅鲁藏布江不同距离地质灾害分布统计

    Figure  9.  Distribution statistics of geohazards at different distances from the Yarlung Zangbo River

    图  10  探测大冰川运动位置分布

    Figure  10.  Location distribution of detected large glacier movements

    图  11  培龙贡支大冰川2019年8月29日至2019年9月29日方位向与视线向二维地表形变

    a—培龙贡支大冰川方位向形变;b—培龙贡支大冰川视线向形变

    Figure  11.  Two dimensional azimuthal and LOS deformation of the Peilonggongzhi Glacier from August 29, 2019 to September 29, 2019

    (a)Azimuthal deformation of the Peilonggongzhi Glacier; (b)LOS deformation of the Peilonggongzhi Glacier

    图  12  果登冰川2020年1月至2020年4月南北向与东西向形变

    a—果登冰川南北向形变;b—果登冰川东西向形变

    Figure  12.  North-south and east-west deformation of the Guodeng Glacier from January 2020 to April 2020

    (a)North-south deformation of the Guodeng Glacier; (b)East-west deformation of the Guodeng Glacier

    图  13  泽巴隆巴沟岩崩危险隐患点2016年6月15日至2018年3月7日方位向与视线向二维形变

    a—泽巴隆巴沟岩崩危险隐患点方位向形变;b—泽巴隆巴沟岩崩危险隐患点视线向形变

    Figure  13.  Two-dimensional azimuthal and LOS deformation from June 15, 2016 to March 7, 2018 at the rock avalanche potential sites in the Zebalongba gorge

    (a)Azimuthal deformation at the rock avalanche potential sites in the Zebalongba gorge; (b)LOS deformation at the rock avalanche potential sites in the Zebalongba gorge

    图  14  靠近雅鲁藏布江部分典型滑坡光学遥感影像

    红色曲线表示滑坡边界

    Figure  14.  Optical remote sensing images of typical landslides near the Yarlung Zangbo River

    Red curves indicate the landslide boundary

    图  15  达波滑坡2016年6月15日至2018年3月7日方位向与视线向二维形变

    a—达波滑坡方位向形变;b—达波滑坡视线向形变

    Figure  15.  Two-dimensional azimuthal and LOS deformation of the Dapo landslide from June 15, 2016 to March 7, 2018

    (a)Azimuthal deformation of the Dapo landslide; (b)LOS deformation of the Dapo landslide

    表  1  所用SAR数据基本参数

    Table  1.   Fundamental parameters for SAR images used in this study

    传感器 波长 飞行方向 数量 覆盖时间 轨道号
    Sentinel-1 C 升轨 284 20170316—20200729 143、70、172
    ALOS/PALSAR-2 L 升轨 111 20140908—20200507 151、152
    下载: 导出CSV

    表  2  17处滑坡详细信息

    Table  2.   Detailed information of 17 landslides

    名称 纬度/(°) 经度/(°) 长度/m 宽度/m
    1# 29.786468 95.152247 963 371
    2# 29.793564 95.149608 355 300
    3# 29.796444 95.146486 371 323
    4# 29.803274 95.141786 167 180
    达波 29.870677 95.148463 1054 1089
    巴玉 29.843294 95.240246 2181 460
    落古#1 29.774817 95.250962 1151 708
    落古#2 29.773159 95.241469 394 597
    甘登#1 29.722749 95.302412 1127 565
    甘登#2 29.716898 95.293642 702 143
    龙列 29.706122 95.341190 462 322
    更帮 29.672205 95.351797 799 316
    根登 29.602529 95.359356 382 256
    帮辛 29.580460 95.372772 179 187
    宗荣 29.570525 95.308290 1254 449
    #5 28.626808 95.012731 657 793
    #6 28.369373 95.065375 594 915
    注:表中滑坡的名称基于地名命名,部分未命名原因是由于其分布在无人区;滑坡的长宽基于InSAR测量的形变区域而确定。
    下载: 导出CSV
  • BIAN Z X, 2021. Provenance analyses on the Paleogene clastic rocks in Gonjo Basin: implications for Tectonic Evolution[D]. Kunming: Yunnan University. (in Chinese with English abstract)
    DAI K R, DENG J, XU Q, et al., 2022. Interpretation and sensitivity analysis of the InSAR line of sight displacements in landslide measurements[J]. GIScience & Remote Sensing, 59(1): 1226-1242.
    DUN J W, FENG W K, YI X Y, et al., 2021. Detection and mapping of active landslides before impoundment in the Baihetan Reservoir Area (China) based on the time-series InSAR method[J]. Remote Sensing, 13(16): 3213. doi: 10.3390/rs13163213
    GAO P, 2010. Risk assessment and forecast of geological disaster in Southeast Tibet[D]. Beijing: China University of Geosciences (Beijing). (in Chinese with English abstract)
    GU Z R, MA C H, ZHANG X Q, et al., 2022. The use of SAR offset tracking for detecting mountain glacier movement[C]//2022 3rd international conference on geology, mapping and remote sensing (ICGMRS). Zhoushan: IEEE: 5-10.
    JIANG P, ZHANG Q F, LI S Y, 2022. Hydrochemical evolution in the Yarlung Zangbo River basin[J]. Environmental Science, 1-13 (2022-09-19). https://doi.org/10.13227/j.hjkx.202206297. (in Chinese with English abstract)
    KANG Y, 2020. Research on key issues of landslide deformation monitoring and landslide mechanism analysis with InSAR technique[D]. Xi'an: Chang'an University. (in Chinese with English abstract)
    KANG Y, LU Z, ZHAO C Y, et al., 2021. InSAR monitoring of creeping landslides in mountainous regions: A case study in Eldorado National Forest, California[J]. Remote Sensing of Environment, 258: 112400. doi: 10.1016/j.rse.2021.112400
    LI B, GAO Y, WAN J W, et al., 2020. The chain of the major geological disasters and related strategies in the Yalu-Zangbu River canyon region[J]. Hydropower and Pumped Storage, 6(2): 11-14, 35. (in Chinese with English abstract)
    LI J C, 2007. Research on route selection scheme of Lhasa-Rikaze railway in Brahmaputra's Canyon area[J]. Railway Investigation and Surveying, 33(5): 1-6. (in Chinese with English abstract) doi: 10.3969/j.issn.1672-7479.2007.05.001
    LI L J, YAO X, ZHOU Z K, et al., 2022. The applicability assessment of Sentinel-1 data in InSAR monitoring of the deformed slopes of reservoir in the mountains of southwest China: A case study in the Xiluodu Reservoir[J]. Journal of Geomechanics, 28(2): 281-293. (in Chinese with English abstract)
    LI S W, XU W B, LI Z W, 2022. Review of the SBAS InSAR Time-series algorithms, applications, and challenges[J]. Geodesy and Geodynamics, 13(2): 114-126. doi: 10.1016/j.geog.2021.09.007
    LI W H, ZHANG H C, ZHANG H, 2020. InSAR DEM reconstruction method based on StereoSAR[J]. Modern Radar, 42(1): 55-63. (in Chinese with English abstract)
    LI X, 2019. Study on the relationship between the development of large landslides and the evolution of neotectonic geomorphology in the Motuhe section of the Yarlung Zangbo River[D]. Chengdu: Chengdu University of Technology. (in Chinese with English abstract)
    LIU C Z, LV J T, TONG L Q, et al., 2019. Research on glacial/rock fall-landslide-debris flows in Sedongpu basin along Yarlung Zangbo River in Tibet[J]. Geology in China, 46(2): 219-234. (in Chinese with English abstract)
    LIU G X, ZHANG B, ZHANG R, et al., 2019. Monitoring dynamics of Hailuogou glacier and the secondary landslide disasters based on combination of satellite SAR and ground-based SAR[J]. Geomatics and Information Science of Wuhan University, 44(7): 980-995. (in Chinese with English abstract)
    LIU L H, WANG A Y, CHEN N S, et al., 2022. The spatial distribution and main controlling factors of collapse-landslides along the downstream of Yalung Zangbo River[J]. Scientific and Technological Innovation, 26(17): 131-134. (in Chinese with English abstract)
    LIU X J, ZHAO C Y, ZHANG Q, et al., 2021. Integration of Sentinel-1 and ALOS/PALSAR-2 SAR datasets for mapping active landslides along the Jinsha River corridor, China[J]. Engineering Geology, 284: 106033. doi: 10.1016/j.enggeo.2021.106033
    LIU Z, LI B, HE K, et al., 2020. An analysis of dynamic response characteristics of the Yigong Landslide in Tibet under strong earthquake[J]. Journal of Geomechanics, 26(4): 471-480. (in Chinese with English abstract)
    MOREIRA A, PRATS-IRAOLA P, YOUNIS M, et al., 2013. A tutorial on synthetic aperture radar[J]. IEEE Geoscience and Remote Sensing Magazine, 1(1): 6-43. doi: 10.1109/MGRS.2013.2248301
    OSMANOǦLU B, SUNAR F, WDOWINSKI S, et al., 2016. Time series analysis of InSAR data: Methods and trends[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 115: 90-102. doi: 10.1016/j.isprsjprs.2015.10.003
    SHI X G, LIAO M S, LI M H, et al., 2016. Wide-area landslide deformation mapping with multi-path ALOS PALSAR data stacks: a case study of three Gorges Area, China[J]. Remote Sensing, 8(2): 136. doi: 10.3390/rs8020136
    SIVALINGAM S, MURUGESAN G P, DHULIPALA K, et al., 2022. Temporal fluctuations of Siachen glacier velocity: a repeat pass SAR interferometry based approach[J]. Geocarto International, 37(17): 4888-4910. doi: 10.1080/10106049.2021.1899306
    STROZZI T, WEGMULLER U, WERNER C, et al., 2007. Potential of a C-band SAR mission with 12-day repeat cycle to derive ice surface velocity with interferometry and offset tracking[C]//2007 IEEE international geoscience and remote sensing symposium. Barcelona: IEEE: 4229-4232.
    TIZZANI P, BERARDINO P, CASU F, et al., 2007. Surface deformation of Long Valley caldera and Mono Basin, California, investigated with the SBAS-InSAR approach[J]. Remote Sensing of Environment, 108(3): 277-289. doi: 10.1016/j.rse.2006.11.015
    WANG J, LIU T C, YI G, 2000. Characteristics of isotope distribution in precipitation in the middle-lower reaches of Yarlung Zangbo River[J]. Earth and Environment, 28(1): 63-67. (in Chinese with English abstract)
    WANG X Y, ZHAO C Y, LIU Y Y, et al., 2018. InSAR unwrapping error detection method study based on closed loops[J]. Journal of Geodesy and Geodynamics, 38(3): 321-325. (in Chinese with English abstract)
    WANG Y A, DONG J, ZHANG L, et al., 2022. Refined InSAR tropospheric delay correction for wide-area landslide identification and monitoring[J]. Remote Sensing of Environment, 275: 113013. doi: 10.1016/j.rse.2022.113013
    XIN C C, 2019. Geomorphology and geological environment effect analysis of the Eastern Structural junction valley of Yarlung Zangbo River based on DEM[D]. Chengdu: Chengdu University of Technology. (in Chinese with English abstract)
    YIN Y P, 2000. Rapid huge landslide and hazard reduction of Yigong River in the Bomi, Tibet[J]. Hydrogeology & Engineering Geology, 44(4): 8-11. (in Chinese with English abstract)
    YUAN Z, LI Y, YANG Z Y, et al., 2014. Spatio-temporal variation characteristics of extreme precipitation events in Tibet in last 50 Years[J]. Water Resources and Hydropower Engineering, 45(10): 19-23, 27. (in Chinese with English abstract)
    ZHAI Y F, 2022. The distribution and scale and outbreak frequency characteristics of glacial debris flow in southeast Tibet[D]. Lhasa: Tibet University. (in Chinese with English abstract)
    ZHANG P Q, LIU X H, 2008. Debris flow distribution and preventions at the great turning in the gorge of Yarlung Zangbo River, southeastern Tibet[J]. The Chinese Journal of Geological Hazard and Control, 19(1): 12-17. (in Chinese with English abstract)
    ZHAO D Z, QU C Y, CHEN H, et al., 2021. Tectonic and geometric control on fault kinematics of the 2021 MW7.3 Maduo (China) earthquake inferred from interseismic, coseismic, and postseismic InSAR observations[J]. Geophysical Research Letters, 48(18): e2021GL09541712.
    ZHU S, 2012. River landform and geology environment evolution in the Yarlung Zangbo River valley[D]. Beijing: Chinese Academy of Geological Sciences. (in Chinese with English abstract)
    ZHU Y F, YAO X, YAO L H, et al., 2022. Identification and risk assessment of coal mining-induced landslides in Guizhou Province by InSAR and optical remote sensing[J]. Journal of Geomechanics, 28(2): 268-280. (in Chinese with English abstract)
    边紫璇, 2021. 藏东南贡觉盆地古近系碎屑岩物源示踪及其构造意义[D]. 昆明: 云南大学.
    高鹏, 2010. 藏东南地质灾害危险性评估及预测[D]. 北京: 中国地质大学(北京).
    江平, 张全发, 李思悦, 2022. 雅鲁藏布江水化学演变规律[J]. 环境科学, 1-13 (2022-09-19). 鲁藏布江水化学演变规.
    康亚, 2020. 滑坡形变InSAR监测关键技术研究与机理分析[D]. 西安: 长安大学.
    李滨, 高杨, 万佳威, 等, 2020. 雅鲁藏布江大峡谷地区特大地质灾害链发育现状及对策[J]. 水电与抽水蓄能, 6(2): 11-14, 35. https://www.cnki.com.cn/Article/CJFDTOTAL-DBGC202002003.htm
    李金城, 2007. 拉日铁路雅鲁藏布江峡谷区线路方案比选研究[J]. 铁道勘察, 33(5): 1-6. https://www.cnki.com.cn/Article/CJFDTOTAL-TLHC200705002.htm
    李凌婧, 姚鑫, 周振凯, 等, 2022. Sentinel-1数据在西南山区水库变形斜坡InSAR监测中的适用性评价: 以溪洛渡水库为例[J]. 地质力学学报, 28(2): 281-293. doi: 10.12090/j.issn.1006-6616.2021109
    李伟华, 张华春, 张衡, 2020. 基于StereoSAR辅助的InSAR DEM重建方法研究[J]. 现代雷达, 42(1): 55-63. https://www.cnki.com.cn/Article/CJFDTOTAL-XDLD202001012.htm
    李翔, 2019. 雅鲁藏布江墨脱河段大型滑坡发育与新构造地貌演化关联性研究[D]. 成都: 成都理工大学.
    刘传正, 吕杰堂, 童立强, 等, 2019. 雅鲁藏布江色东普沟崩滑-碎屑流堵江灾害初步研究[J]. 中国地质, 46(2): 219-234. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201902002.htm
    刘国祥, 张波, 张瑞, 等, 2019. 联合卫星SAR和地基SAR的海螺沟冰川动态变化及次生滑坡灾害监测[J]. 武汉大学学报·信息科学版, 44(7): 980-995. https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH201907004.htm
    刘丽红, 王翱宇, 陈宁生, 等, 2022. 雅鲁藏布江下游沿河段滑坡崩塌空间分布特征及其主控因素[J]. 科学技术创新, 26(17): 131-134. https://www.cnki.com.cn/Article/CJFDTOTAL-HLKX202217032.htm
    刘铮, 李滨, 贺凯, 等, 2020. 地震作用下西藏易贡滑坡动力响应特征分析[J]. 地质力学学报, 26(4): 471-480. doi: 10.12090/j.issn.1006-6616.2020.26.04.040
    王军, 刘天仇, 尹观, 2000. 西藏雅鲁藏布江中、下游地区大气降水同位素分布特征[J]. 地质地球化学, 28(1): 63-67. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDQ200001010.htm
    王霞迎, 赵超英, 刘媛媛, 等, 2018. 基于闭合环的InSAR解缠误差探测方法研究[J]. 大地测量与地球动力学, 38(3): 321-325. https://www.cnki.com.cn/Article/CJFDTOTAL-DKXB201803020.htm
    辛聪聪, 2019. 基于DEM雅鲁藏布江东构造结河谷地貌及其地质环境效应研究[D]. 成都: 成都理工大学.
    殷跃平, 2000. 西藏波密易贡高速巨型滑坡特征及减灾研究[J]. 水文地质工程地质, 27(4): 8-11. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG200004002.htm
    袁喆, 李艳, 杨志勇, 等, 2014. 近50年来西藏极端降水时空变化特征[J]. 水利水电技术, 45(10): 19-23, 27. https://www.cnki.com.cn/Article/CJFDTOTAL-SJWJ201410008.htm
    翟毅飞, 2022. 藏东南地区冰川泥石流分布规律与规模频率特征研究[D]. 拉萨: 西藏大学.
    张沛全, 刘小汉, 2008. 雅鲁藏布江大拐弯入口段泥石流特征及应对措施[J]. 中国地质灾害与防治学报, 19(1): 12-17. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDH200801004.htm
    祝嵩, 2012. 雅鲁藏布江河谷地貌与地质环境演化[D]. 北京: 中国地质科学院.
    朱怡飞, 姚鑫, 姚磊华, 等, 2022. 基于InSAR和光学遥感的贵州鬃岭采煤滑坡识别与危险性评价[J]. 地质力学学报, 28(2): 268-280. doi: 10.12090/j.issn.1006-6616.2021054
  • 加载中
图(15) / 表(2)
计量
  • 文章访问数:  936
  • HTML全文浏览量:  454
  • PDF下载量:  169
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-20
  • 修回日期:  2022-10-14

目录

    /

    返回文章
    返回