Petrogenesis and geodynamic implications of Neoproterozoic typical intermediate-felsic magmatism in the western margin of the Yangtze Block, South China
-
摘要: 华南板块发育有巨量新元古代岩浆岩,因而是研究罗迪尼亚(Rodinia)超大陆演化期间华南板块地幔属性、地壳演化和壳幔相互作用最理想的场所。虽然在扬子西缘新元古代镁铁质和酸性岩浆作用方面已有大量的研究,但是在系统研究中酸性花岗岩类所代表的不同深部动力学意义的方面还较为薄弱。文章基于团队近期对于扬子板块西缘新元古代典型花岗岩类的研究成果,系统揭示不同深度层次的岩浆作用。最新研究支持扬子西缘新元古代受控于俯冲构造背景,除发生俯冲流体和板片熔体交代地幔作用外,最新识别的ca.850~835 Ma高Mg#闪长岩指示俯冲沉积物熔体也参与了地幔交代作用。Ca.840~835 Ma过铝质花岗岩的发现说明扬子西缘新元古代时期不仅存在新生镁铁质下地壳的熔融,也发生了俯冲背景下成熟大陆地壳物质的重熔。Ca.780 Ma Ⅰ型花岗闪长岩-花岗岩组合揭示了俯冲阶段后期板片回撤断离后软流圈地幔瞬时上涌引发的不同地壳层次的岩浆响应。从ca.800 Ma的增厚下地壳来源的埃达克质花岗岩到ca.750 Ma的酸性地壳来源的A型花岗岩的出现,表明扬子西缘新元古代时期经历了俯冲有关的地壳增厚到俯冲后期弧后扩张背景下的区域性地壳减薄。
-
关键词:
- 扬子西缘 /
- 中酸性岩浆事件 /
- 俯冲背景 /
- 不同深度层次岩浆作用
Abstract: The South China Block preserves voluminous Neoproterozoic magmatism, it is thus an ideal site for understanding the mantle nature, crustal evolution, and crust-mantle interaction during the assembly and breakup of the Rodinia supercontinent. Although the previous studies have paid more attention to the mafic and felsic rocks, the systematic deep dynamics of intermediate-felsic intrusive rocks is unsubstantial. Based on the recent studies on the Neoproterozoic typical granitoid magmatism, this study provides a systematic insight on the magmatic response of different depth under subduction setting. The new study reveals that the western margin of the Yangtze Block was located at the subduction setting. Apart from the subduction fluids- and slab melts-related mantle metasomatism, the newly recognized ca.850~835 Ma high-Mg# diorites suggest that there existed the subducted sediment melts-related mantle metasomatism. In addition, the identification of ca.840~835 Ma peraluminous granites indicates that the western margin of the Yangtze Block underwent not only the melting of the juvenile mafic lower crust but also the reworking of the mature continental crust during the Neoproterozoic. Moreover, the ca.780 Ma Ⅰ-type granodiorites-granites stand for the magmatic response of different crustal depth induced by the upwelling of asthenosphere mantle. The occurrence from ca.800 Ma thickened lower crust-derived adakitic granites to ca.750 Ma felsic crust-derived A-type granites suggest the geodynamic transition from regionally crustal thickening to extensional thinning under subduction background. -
图 1 华南地理位置与区域地质简图(据Zhao and Cawood, 2012;Zhao et al., 2018修改)
a—华南地理位置;b—华南区域地质简图
Figure 1. Geological position and simplified geological map of South China (modified after Zhao and Cawood, 2012; Zhao et al., 2018)
图 2 扬子板块西缘区域地质图及研究岩体地理位置(据Zhao et al., 2019修改)
1—水陆地区高Mg#闪长岩;2—米易地区过铝质花岗岩;3—大陆地区Ⅰ型花岗质岩石;4—攀枝花—盐边地区辉长闪长岩-埃达克花岗岩-A型花岗岩
a—扬子西缘地理位置;b—扬子西缘区域地质简图Figure 2. Simplified geological map of the western margin of the Yangtze Block and the geological position of the studied plutons (modified after Zhao et al., 2019)
图 3 扬子板块西缘新元古代水陆岩体地理位置与区域地质简图(据Zhu et al., 2020a修改)
a—华南区域地质简图; b—扬子西缘区域地质简图; c—水陆岩体区域地质简图
Figure 3. Geological position and simplified geological sketch map of the Neoproterozoic shuilu pluton of the Yangtze Block(modified after Zhu et al., 2020a)
图 4 扬子板块西缘新元古代水陆高Mg#闪长岩主微量图解(据Zhu et al., 2020a修改)
a—Na2+Ka2O vs. SiO2图解(Middlemost, 1994);b—K2O vs. SiO2图解(Roberts and Clemens, 1993);c—A/NK vs. A/CNK图解(Frost et al., 2001);d—Mg# vs. SiO2图解;e—Sr/Y vs. Y图解;f—(La/Yb)N vs. (Yb)N图解(Defant and Drummond, 1990)
Figure 4. Major and trace elements diagrams for the Neoproterozoic Shuilu high-Mg# diorites in the western margin of the Yangtze Block (modified after Zhu et al., 2020a)
图 5 扬子板块西缘新元古代水陆高Mg#闪长岩球粒陨石标准化蛛网图和原始地幔标准化微量元素蛛网图(Sun and McDonough, 1989;据Zhu et al., 2020a修改)
a—水陆高Mg#闪长岩球粒陨石标准化图;b—水陆高Mg#闪长岩原始地幔标准化微量元素蛛网图
Figure 5. Diagrams of chondrite-normalized REE patterns and primitive mantle-normalized trace-element patterns for the Neoproterozoic Shuilu high-Mg# diorites in the western margin of the Yangtze Block (Sun and McDonough, 1989; modified after Zhu et al., 2020a)
图 6 扬子板块西缘新元古代水陆高Mg#闪长岩全岩Sr-Nd同位素和锆石Hf同位素图解(据Zhu et al., 2020a修改)
a—水陆高Mg#闪长岩全岩εNd(t) vs. (87Sr/86Sr)i图解;b—水陆高Mg#闪长岩锆石εHf(t) vs.锆石U-Pb年龄图解
Figure 6. Diagrams of whole-rock Sr-Nd isotopes and zircon Hf isotopes for the Neoproterozoic Shuilu high-Mg# diorites in the western margin of the Yangtze Block (modified after Zhu et al., 2020a)
图 7 扬子板块西缘新元古代水陆高Mg#闪长岩俯冲组分判别图(据Zhu et al., 2020a修改)
a—Rb/Y vs. Nb/Y图解(Kepezhinskas et al., 1997);b—Ba vs. Nb/Y图解(Kepezhinskas et al., 1997);c—锆石εHf(t) vs.全岩εNd(t)图解(Zhao et al., 2019);d—Th/Ce vs. Th/Sm图解(Guo et al., 2015; Zhang et al., 2019);e—Ba/La vs. Th/Yb图解(Hanyu et al., 2006修改)
Figure 7. Discriminant diagrams of subduction components for the Neoproterozoic Shuilu high-Mg# diorites in the western margin of the Yangtze Block (modified after Zhu et al., 2020a)
图 8 扬子板块西缘新元古代水陆高Mg#闪长岩锆石微量元素图解(Zhu et al., 2020a)
a—水陆高Mg#闪长岩锆石U/Yb vs. Hf图解;b—水陆高Mg#闪长岩锆石U/Yb vs. 10000*Nb/Yb图解(Grimes et al., 2015; Zhao et al., 2019)
Figure 8. Diagrams of zircon trace elements for the Neoproterozoic Shuilu high-Mg# diorites in the western margin of the Yangtze Block (Zhu et al., 2020a)
图 9 扬子板块西缘新元古代宽裕-茨达过铝质花岗岩体区域地质简图(据Zhu et al., 2019c修改;研究区位置见图 3b)
Figure 9. Simplified geological sketch map of the Neoproterozoic Kuanyu and Cida peraluminous granitic plutons in the western margin of the Yangtze Block (modified after Zhu et al., 2019c. The geological positon of the study area is shown in Fig. 3b)
图 10 扬子板块西缘新元古代宽裕-茨达过铝质花岗岩主量元素图解(据Zhu et al., 2019c修改)
a—A/NK vs. A/CNK图解(Frost et al., 2001);b—(Na2O+K2O - CaO) vs. SiO2图解(Frost et al., 2001);c—K2O/Na2O vs. SiO2图解(Moyen and Martin, 2012);d—Mg# vs. SiO2图解
Figure 10. Major elements diagrams for the Neoproterozoic Kuanyu and Cida peraluminous granites in the western margin of the Yangtze Block (modified after Zhu et al., 2019c)
图 11 扬子板块西缘新元古代宽裕-茨达过铝质花岗岩全岩Sr-Nd同位素和锆石Hf同位素图解(据Zhu et al., 2020c修改)
a—宽裕-茨达过铝质花岗岩全岩εNd(t) vs. (87Sr/86Sr)i图解;b—宽裕-茨达过铝质花岗岩锆石εHf(t) vs.锆石U-Pb年龄图解
Figure 11. Diagrams of whole-rock Sr-Nd isotopes and zircon Hf isotopes for the Neoproterozoic Kuanyu and Cida peraluminous granites in the western margin of the Yangtze Block (modified after Zhu et al., 2020c)
图 12 扬子板块西缘新元古代宽裕-茨达过铝质花岗岩岩浆源区图解(据Zhu et al., 2019c修改)
a—CaO/Na2O vs. Al2O3/TiO2图解(Sylvester, 1998);b—Rb/Ba vs. Rb/Sr图解(Patiño Douce 1999);c—molar Al2O3/(MgO+FeOT) vs. molar CaO/(MgO+FeOT)图解(Altherr et al., 2000)
Figure 12. Discriminant diagrams of magma source for the Neoproterozoic Kuanyu and Cida peraluminous granites in the western margin of the Yangtze Block (modified after Zhu et al., 2019c)
图 13 扬子板块西缘新元古代大陆Ⅰ型花岗岩体区域地质简图(据Zhu et al., 2019a修改;研究区位置见图 3b)
Figure 13. Simplified geological sketch map of the Neoproterozoic Dalu Ⅰ-type granitic pluton in the western margin of the Yangtze Block (modified after Zhu et al., 2019a. The geological positon of the study area is shown in Fig. 3b)
图 14 扬子板块西缘新元古代大陆Ⅰ型花岗闪长岩-花岗岩主微量元素图解(据Zhu et al., 2019a修改)
a—Q-A-P-F图解(Middlemost, 1994);b—K2O vs. SiO2图解(Roberts and Clemens, 1993);c—A/NK vs. A/CNK图解(Frost et al., 2001);d—Na2O+K2O vs. SiO2图解(Middlemost, 1994);e—Rb-Ba-Sr
Figure 14. Major and trace elements diagrams for the Neoproterozoic Dalu Ⅰ-type granodiorites-granites in the western margin of the Yangtze Block (modified after Zhu et al., 2019a)
图 15 扬子板块西缘新元古代大陆Ⅰ型花岗闪长岩-花岗岩岩体岩浆源区判别图解(据Zhu et al., 2019a修改)
a—Mg# vs. SiO2图解;b—Nb/Y vs. Rb/Y图解;c—CaO/Na2O vs. Al2O3/TiO2图解(Sylvester, 1998);d—Rb/Ba vs. Rb/Sr图解(Patiño Douce 1999);e—(Na2O+K2O)/(FeOT+MgO+TiO2) vs. Na2O+K2O+FeOT+MgO+TiO2图解(Patiño Douce 1999);f—CaO/(MgO+FeOT+TiO2) vs. CaO+MgO+FeOT+TiO2图解(Patiño Douce 1999)
Figure 15. Discriminant diagrams of magma source for the Neoproterozoic Dalu Ⅰ-type granodiorites-granites in the western margin of the Yangtze Block (modified after Zhu et al., 2019a)
图 16 扬子板块西缘攀枝花—盐边地区地理位置和区域地质简图(据Zhu et al., 2019b修改)
a—攀枝花—盐边地区地理位置;b—攀枝花—盐边地区区域地质简图
Figure 16. Geological position and simplified geological sketch map of the Panzhihua-Yanbian region in the western margin of the Yangtze Block (modified after Zhu et al., 2019b)
图 17 扬子板块西缘新元古代大尖山辉长闪长岩和埃达克花岗岩主微量元素图解(据Zhu et al., 2019c修改)
a—(La/Yb)N vs. (Yb)N图解(Defant and Drummond, 1990; Martin et al., 2005);b—Sr/Y vs. Y图解(Defant and Drummond, 1990; Martin et al., 2005);c—全岩εNd(t) vs. (87Sr/86Sr)i图解;d—Th/Yb vs. Nb/Yb图解(Pearce, 2008);e—Nb/Zr vs. Th/Zr图解(Kepezhinskas et al., 1997);f—Rb/Y vs. Nb/Y图解(Kepezhinskas et al., 1997);g—MgO vs. SiO2图解;h—Mg# vs. SiO2图解
Figure 17. Major and trace elements diagrams for the Neoproterozoic Dajianshan gabbro-diorites and adakitic granites in the western margin of the Yangtze Block(modified after Zhu et al., 2019c)
图 18 扬子板块西缘新元古代攀枝花高分异A2型花岗岩主微量元素图解(据Zhu et al., 2019c修改)
a—Nb vs.10000*Ga/Al图解(Whalen et al., 1987);b—Nb-Y-Zr/4图解(Eby, 1992);c—Sr vs. Rb图解(Sami et al., 2018);d—Ba vs. Rb图解(Sami et al., 2018);e—FeOT/(FeOT+MgO) vs. SiO2图解(Patiño Douce, 1997);f—CaO/(FeO+MgO+TiO2) vs. CaO+FeO+MgO+TiO2图解(Patiño Douce, 1999)
Figure 18. Major and trace elements diagrams for the Neoproterozoic Panzhihua highly fractionated A2-type granites in the western margin of the Yangtze Block(modified after Zhu et al., 2019c)
图 19 扬子板块西缘新元古代俯冲背景下地幔交代作用(据Zhu et al., 2020a修改)
a—扬子西缘ca.870~820 Ma俯冲进程及主要俯冲组分;b—扬子西缘ca.820~740 Ma俯冲进程及主要俯冲组分;c—扬子西缘ca.870~740 Ma地幔源区涉及的俯冲组分
Figure 19. A sketch map and summary for the Neoproterozoic metasomatized mantle magmatism under subduction setting in the western margin of the Yangtze Block (modified after Zhu et al., 2020a)
-
ALTHERR R, HOLL A, HEGNER E, et al., 2000. High-potassium, calc-alkaline Ⅰ-type plutonism in the European Variscides:northern Vosges (France) and northern Schwarzwald (Germany)[J]. Lithos, 50(1-3):51-73. doi: 10.1016/S0024-4937(99)00052-3 BAU M, 1991. Rare-earth element mobility during hydrothermal and metamorphic fluid-rock interaction and the significance of the oxidation state of europium[J]. Chemical Geology, 93(3-4):219-230. doi: 10.1016/0009-2541(91)90115-8 CAI K D, SUN M, YUAN C, et al., 2011. Geochronology, petrogenesis and tectonic significance of peraluminous granites from the Chinese Altai, NW China[J]. Lithos, 127(1-2):261-281. doi: 10.1016/j.lithos.2011.09.001 CASTRO A, 2013. Tonalite-granodiorite suites as cotectic systems:a review of experimental studies with applications to granitoid petrogenesis[J]. Earth-Science Reviews, 124:68-95. doi: 10.1016/j.earscirev.2013.05.006 CASTRO A, 2014. The off-crust origin of granite batholiths[J]. Geoscience Frontiers, 5(1):63-75. http://www.cqvip.com/QK/71129X/201401/48382394.html CAWOOD P A, HAWKESWORTH C J, 2019. Continental crustal volume, thickness and area, and their geodynamic implications[J]. Gondwana Research, 66:116-125. doi: 10.1016/j.gr.2018.11.001 CAWOOD P A, STRACHAN R A, PISAREVSKY S A, et al., 2016. Linking collisional and accretionary orogens during Rodinia assembly and breakup:implications for models of supercontinent cycles[J]. Earth and Planetary Science Letters, 449:118-126. doi: 10.1016/j.epsl.2016.05.049 CHAPPELL B W, 1999. Aluminium saturation in I-and S-type granites and the characterization of fractionated haplogranites[J]. Lithos, 46(3):535-551. doi: 10.1016/S0024-4937(98)00086-3 CHAPPELL B W, BRYANT C J, WYBORN D, 2012. Peraluminous Ⅰ-type granites[J]. Lithos, 153:142-153. doi: 10.1016/j.lithos.2012.07.008 CHAPPELL B W, WHITE A J R, 1992. I-and S-type granites in the Lachlan fold belt[J]. Transactions of the Royal Society of Edinburgh:Earth Sciences, 83(1-2):1-26. doi: 10.1017/S0263593300007720 CHEN W T, SUN W H, WANG W, et al., 2014a. "Grenvillian" intra-plate mafic magmatism in the southwestern Yangtze Block, SW China[J]. Precambrian Research, 242:138-153. doi: 10.1016/j.precamres.2013.12.019 CHEN W T, SUN W H, ZHOU M F, et al., 2018. Ca. 1050 Ma intra-continental rift-related A-type felsic rocks in the southwestern Yangtze Block, South China[J]. Precambrian Research, 309:22-44. doi: 10.1016/j.precamres.2017.02.011 CHEN W T, ZHOU M F, ZHAO X F, 2013. Late Paleoproterozoic sedimentary and mafic rocks in the Hekou area, SW China:implication for the reconstruction of the Yangtze Block in Columbia[J]. Precambrian Research, 231:61-77. doi: 10.1016/j.precamres.2013.03.011 CHEN Y X, SONG S G, NIU Y L, et al., 2014b. Melting of continental crust during subduction initiation:a case study from the Chaidanuo peraluminous granite in the north Qilian suture zone[J]. Geochimica et Cosmochimica Acta, 132:311-336. doi: 10.1016/j.gca.2014.02.011 CLEMENS J D, 2003. S-type granitic magmas-petrogenetic issues, models and evidence[J]. Earth-Science Reviews, 61(1-2):1-18. doi: 10.1016/S0012-8252(02)00107-1 CLEMENS J D, 2018. Granitic magmas with Ⅰ-type affinities, from mainly metasedimentary sources:the Harcourt batholith of southeastern Australia[J]. Contributions to Mineralogy and Petrology, 173(11):93. doi: 10.1007/s00410-018-1520-z CLEMENS J D, ELBURG M A, HARRIS C, 2017. Origins of igneous microgranular enclaves in granites:the example of central victoria, Australia[J]. Contributions to Mineralogy and Petrology, 172(10):88. doi: 10.1007/s00410-017-1409-2 CLEMENS J D, HELPS P A, STEVENS G, 2009. Chemical structure in granitic magmas-a signal from the source?[J]. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 100(1-2):159-172. doi: 10.1017/S1755691009016053 CLEMENS J D, REGMI K, NICHOLLS I A, et al., 2016. The Tynong pluton, its mafic synplutonic sheets and igneous microgranular enclaves:the nature of the mantle connection in Ⅰ-type granitic magmas[J]. Contributions to Mineralogy and Petrology, 171(4):35. doi: 10.1007/s00410-016-1251-y CLEMENS J D, STEVENS G, 2012. What controls chemical variation in granitic magmas?[J]. Lithos, 134-135:317-329. doi: 10.1016/j.lithos.2012.01.001 CLEMENS J D, STEVENS G, FARINA F, 2011. The enigmatic sources of Ⅰ-type granites:the peritectic connexion[J]. Lithos, 126(3-4):174-181. doi: 10.1016/j.lithos.2011.07.004 COLLINS W J, 1996. Lachlan fold belt granitoids:products of three-component mixing[J]. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 87(1-2):171-181. doi: 10.1017/S0263593300006581 COLLINS W J, 2002. Hot orogens, tectonic switching, and creation of continental crust[J]. Geology, 30(6):535-538. doi: 10.1130/0091-7613(2002)030<0535:HOTSAC>2.0.CO;2 COLLINS W J, RICHARDS S W, 2008. Geodynamic significance of S-type granites in circum-Pacific orogens[J]. Geology, 36(7):559-562. doi: 10.1130/G24658A.1 CRAWFORD A J, 1989. Boninites and related rocks[M]. London:Unwin Hyman. DEFANT M J, DRUMMOND M S, 1990. Derivation of some modern arc magmas by melting of young subducted lithosphere[J]. Nature, 347(6294):662-665. doi: 10.1038/347662a0 DU L L, GUO J H, NUTMAN A P, et al., 2014. Implications for Rodinia reconstructions for the initiation of Neoproterozoic subduction at~860 Ma on the western margin of the Yangtze Block:evidence from the Guandaoshan Pluton[J]. Lithos, 196-197:67-82. http://www.sciencedirect.com/science/article/pii/S0024493714000838 EBY G N, 1992. Chemical subdivision of the A-type granitoids:granitoids:petrogenetic and tectonic implications[J]. Geology, 20(7):641-644. doi: 10.1130/0091-7613(1992)020<0641:CSOTAT>2.3.CO;2 FLOWERDEW M J, MILLAR I L, VAUGHAN A P M, et al., 2006. The source of granitic gneisses and migmatites in the Antarctic Peninsula:a combined U-Pb SHRIMP and laser ablation Hf isotope study of complex zircons[J]. Contributions to Mineralogy and Petrology, 151(6):751-768. doi: 10.1007/s00410-006-0091-6 FROST B R, BARNES C G, COLLINS W J, et al., 2001. A geochemical classification for granitic rocks[J]. Journal of Petrology, 42(11):2033-2048. doi: 10.1093/petrology/42.11.2033 GAO R, CHEN C, WANG H Y, et al., 2016. SINOPROBE deep reflection profile reveals a Neo-proterozoic subduction zone beneath Sichuan basin[J]. Earth and Planetary Science Letters, 454:86-91. doi: 10.1016/j.epsl.2016.08.030 GAO S, LING W L, QIU Y M, et al., 1999. Contrasting geochemical and Sm-Nd isotopic compositions of Archean metasediments from the Kongling high-grade terrain of the Yangtze craton:evidence for cratonic evolution and redistribution of REE during crustal anatexis[J]. Geochimica et Cosmochimica Acta, 63(13-14):2071-2088. doi: 10.1016/S0016-7037(99)00153-2 GAO S, YANG J, ZHOU L, et al., 2011. Age and growth of the Archean Kongling terrain, South China, with emphasis on 3.3 Ga granitoid gneisses[J]. American Journal of Science, 311(2):153-182. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=324512196fea98c950ec2cc2b7c4f3ae GERYA T, 2011. Future directions in subduction modeling[J]. Journal of Geodynamics, 52(5):344-378. doi: 10.1016/j.jog.2011.06.005 GERYA T V, MEILICK F I, 2011. Geodynamic regimes of subduction under an active margin:effects of rheological weakening by fluids and melts[J]. Journal of Metamorphic Geology, 29(1):7-31. doi: 10.1111/j.1525-1314.2010.00904.x GREENTREE M R, LI Z X, LI X H, et al., 2006. Late Mesoproterozoic to earliest Neoproterozoic basin record of the Sibao orogenesis in western south China and relationship to the assembly of rodinia[J]. Precambrian Research, 151(1-2):79-100. doi: 10.1016/j.precamres.2006.08.002 GRIMES C B, WOODEN J L, CHEADLE M J, et al., 2015. "Fingerprinting" tectono-magmatic provenance using trace elements in igneous zircon[J]. Contributions to Mineralogy and Petrology, 170(5-6):46. doi: 10.1007/s00410-015-1199-3 GROVE T, PARMAN S, BOWRING S, et al., 2002. The role of an H2O-rich fluid component in the generation of primitive basaltic andesites and andesites from the Mt. Shasta region, N California[J]. Contributions to Mineralogy and Petrology, 142(4):375-396. doi: 10.1007/s004100100299 GUO C L, WANG D H, CHEN Y C, et al., 2007. SHRIMP U-Pb zircon ages and major element, trace element and Nd-Sr isotope geochemical studies of a Neoproterozoic granitic complex in western Sichuan:petrogenesis and tectonic significance[J]. Acta Petrologica Sinica, 23(10):2457-2470. (in Chinese with English abstract) http://www.oalib.com/paper/1472885 GUO F, LI H X, FAN W M, et al., 2015. Early Jurassic subduction of the Paleo-Pacific Ocean in NE China:petrologic and geochemical evidence from the Tumen mafic intrusive complex[J]. Lithos, 224-225:46-60. doi: 10.1016/j.lithos.2015.02.014 GUO J L, GAO S, WU Y B, et al., 2014.3.45 Ga granitic gneisses from the Yangtze Craton, South China:implications for Early Archean crustal growth[J]. Precambrian Research, 242:82-95. doi: 10.1016/j.precamres.2013.12.018 HANYU T, TATSUMI Y, NAKAI S, et al., 2006. Contribution of slab melting and slab dehydration to magmatism in the NE Japan arc for the last 25 Myr:constraints from geochemistry[J]. Geochemistry, Geophysics, Geosystems, 7(8):Q08002. doi: 10.1029/2005GC001220 HAWKESWORTH C J, KEMP A I S, 2006. The differentiation and rates of generation of the continental crust[J]. Chemical Geology, 226(3-4):134-143. doi: 10.1016/j.chemgeo.2005.09.017 HAWKESWORTH C J, TURNER S P, MCDERMOTT F, et al., 1997. U-Th isotopes in arc magmas:implications for element transfer from the subducted crust[J]. Science, 276(5312):551-555. doi: 10.1126/science.276.5312.551 HUANG X L, XU Y G, LAN J B, et al., 2009. Neoproterozoic adakitic rocks from Mopanshan in the Western Yangtze craton:partial melts of a thickened lower crust[J]. Lithos, 112(3-4):367-381. doi: 10.1016/j.lithos.2009.03.028 HUANG X L, XU Y G, LI X H, et al., 2008. Petrogenesis and tectonic implications of Neoproterozoic, highly fractionated A-type granites from Mianning, South China[J]. Precambrian Research, 165(3-4):190-204. doi: 10.1016/j.precamres.2008.06.010 JIANG Y D, SUN M, ZHAO G C, et al., 2010. The 390 Ma high-T metamorphism in the Chinese Altai:consequence of ridgesubduction?[J] American Journal of Science, 310 (10):1421-1452. doi: 10.2475/10.2010.08 JIANG Y H, ZHU S Q, 2017. Petrogenesis of the Late Jurassic peraluminous biotite granites and muscovite-bearing granites in SE China:geochronological, elemental and Sr-Nd-O-Hf isotopic constraints[J]. Contributions to Mineralogy and Petrology, 172(11-12):101. doi: 10.1007/s00410-017-1422-5 JOHNSON M C, PLANK T, 2000. Dehydration and melting experiments constrain the fate of subducted sediments[J]. Geochemistry, Geophysics, Geosystems, 1(12):1007. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1029/1999GC000014 KAMEI A, OWADA M, NAGAO T, et al., 2004. High-Mg diorites derived from sanukitic HMA magmas, Kyushu Island, southwest Japan arc:evidence from clinopyroxene and whole rock compositions[J]. Lithos, 75(3-4):359-371. doi: 10.1016/j.lithos.2004.03.006 KARSLI O, CHEN B, AYDIN F, et al., 2007. Geochemical and Sr-Nd-Pb isotopic compositions of the Eocene Dölek and Sariçiçek Plutons, Eastern Turkey:implications for magma interaction in the genesis of high-K calc-alkaline granitoids in a post-collision extensional setting[J]. Lithos, 98(1-4):67-96. doi: 10.1016/j.lithos.2007.03.005 KARSLI O, DOKUZ A, KANDEMIR R, 2017. Zircon Lu-Hf isotope systematics and U-Pb geochronology, whole-rock Sr-Nd isotopes and geochemistry of the early Jurassic Gokcedere pluton, Sakarya zone-NE Turkey:a magmatic response to roll-back of the Paleo-Tethyan oceanic lithosphere[J]. Contributions to Mineralogy and Petrology, 172(5):31. doi: 10.1007/s00410-017-1346-0 KELEMEN P B, HANGHØJ K, GREENE A R, 2007. One view of the geochemistry of subduction-related magmatic arcs, with an emphasis on primitive andesite and lower crust[J]. Treatise on Geochemistry, 3:1-70. KELEMEN P B, YOGODZINSKI G M, SCHOLL D W, 2004. Along-strike variation in the Aleutian Island arc: genesis of high Mg# andesite and implications for continental crust[M]//EILER J. Inside the Subduction Factory. Washington, DC: American Geophysical Union, 223-276. KEMP A I S, HAWKESWORTH C J, 2014. Growth and differentiation of the continental crust from isotope studies of accessory minerals[J]. Treatise on Geochemistry, 4:379-421. http://www.sciencedirect.com/science/article/pii/B9780080959757003120 KEMP A I S, HAWKESWORTH C J, FOSTER G L, et al., 2007. Magmatic and crustal differentiation history of granitic rocks from Hf-O isotopes in zircon[J]. Science, 315(5814):980-983. doi: 10.1126/science.1136154 KEPEZHINSKAS P, MCDERMOTT F, DEFANT M J, et al., 1997. Trace element and Sr-Nd-Pb isotopic constraints on a three-component model of Kamchatka Arc petrogenesis[J]. Geochimica et Cosmochimica Acta, 61(3):577-600. doi: 10.1016/S0016-7037(96)00349-3 KONG X Y, ZHANG C, LIU D D, et al., 2019. Disequilibrium partial melting of metasediments in subduction zones:evidence from O-Nd-Hf isotopes and trace elements in S-type granites of the Chinese Altai[J]. Lithosphere, 11(1):149-168. doi: 10.1130/L1039.1 KOU C H, LIU Y X, HUANG H, et al., 2018. The Neoproterozoic arc-type and OIB-type mafic-ultramafic rocks in the western Jiangnan Orogen:implications for tectonic settings[J]. Lithos, 312-313:38-56. doi: 10.1016/j.lithos.2018.05.004 LAI S C, QIN J F, ZHU R Z, et al., 2015a. Neoproterozoic quartz monzodiorite-granodiorite association from the Luding-Kangding area:implications for the interpretation of an active continental margin along the Yangtze Block (South China Block)[J]. Precambrian Research, 267:196-208. doi: 10.1016/j.precamres.2015.06.016 LAI S C, QIN J F, ZHU R Z, et al., 2015b. Petrogenesis and tectonic implication of the Neoproterozoic peraluminous granitoids from the Tianquan area, western Yangtze Block, South China[J]. Acta Petrologica Sinica, 31(8):2245-2258. (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201508009 LI H K, ZHANG C L, YAO C Y, et al., 2013. U-Pb zircon age and Hf isotope compositions of Mesoproterozoic sedimentary strata on the western margin of the Yangtze massif[J]. Science China Earth Sciences, 56(4):628-639. doi: 10.1007/s11430-013-4590-9 LI Q W, 2018. Petrogenesis and tectonic implications of the Neoproterozoic mafic dikes in the Yangtze Block, South China[D]. Wuhan: China University of Geosciences. (in Chinese) LI Q W, ZHAO J H, 2018. The Neoproterozoic high-Mg dioritic dikes in south China formed by high pressures fractional crystallization of hydrous basaltic melts[J]. Precambrian Research, 309:198-211. doi: 10.1016/j.precamres.2017.04.009 LI X H, LI W X, HE B, 2012. Building of the South China Block and its relevance to assembly and breakup of Rodinia supercontinent:observations, interpretations and tests[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 31(6):543-559. (in Chinese with English abstract) http://www.researchgate.net/publication/286123654_Building_of_the_South_China_Block_and_its_relevance_to_assembly_and_breakup_of_Rodinia_supercontinent_Observations_interpretations_and_tests LI X H, LI W X, LI Z X, et al., 2008b. 850-790 Ma bimodal volcanic and intrusive rocks in northern Zhejiang, South China:a major episode of continental rift magmatism during the breakup of Rodinia[J]. Lithos, 102(1-2):341-357. doi: 10.1016/j.lithos.2007.04.007 LI X H, LI Z X, GE W C, et al., 2003. Neoproterozoic granitoids in South China:crustal melting above a mantle plume at ca. 825 Ma?[J]. Precambrian Research, 122(1-4):45-83. doi: 10.1016/S0301-9268(02)00207-3 LI X H, LI Z X, SINCLAIR J A, et al., 2006. Revisiting the "Yanbian Terrane":implications for Neoproterozoic tectonic evolution of the western Yangtze block, South China[J]. Precambrian Research, 151(1-2):14-30. doi: 10.1016/j.precamres.2006.07.009 LI X H, LI Z X, ZHOU H W, et al., 2002. U-Pb zircon geochronology, geochemistry and Nd isotopic study of Neoproterozoic bimodal volcanic rocks in the Kangdian Rift of South China:implications for the initial rifting of Rodinia[J]. Precambrian Research, 113(1-2):135-154. doi: 10.1016/S0301-9268(01)00207-8 LI Z X, BOGDANOVA S V, COLLINS A S, et al., 2008a. Assembly, configuration, and break-up history of Rodinia:a synthesis[J]. Precambrian Research, 160(1-2):179-210. doi: 10.1016/j.precamres.2007.04.021 LI Z X, LI X H, KINNY P D, et al., 1999. The breakup of Rodinia:did it start with a mantle plume beneath South China?[J]. Earth and Planetary Science Letters, 173(3):171-181. doi: 10.1016/S0012-821X(99)00240-X LI Z X, ZHANG L H, POWELL C M, 1995. South China in Rodinia:part of the missing link between Australia-East Antarctica and Laurentia?[J]. Geology, 23(5):407-410. doi: 10.1130/0091-7613(1995)023<0407:SCIRPO>2.3.CO;2 LIN G C, 2006. SHRIMP U-Pb zircon geochronology, geochemistry and Nd-Hf isotope of Neoproterozoic magmatic rocks in western Sichuan: petrogenesis and tectonic significance[D]. Guangzhou: Guangzhou Institute of Geochemistry, Chinese Academy of Sciences. (in Chinese with English abstract) LING W L, GAO S, ZHANG B R, et al., 2003. Neoproterozoic tectonic evolution of the northwestern Yangtze craton, South China:implications for amalgamation and break-up of the Rodinia Supercontinent[J]. Precambrian Research, 122(1-4):111-140. doi: 10.1016/S0301-9268(02)00222-X LIU H, ZHAO J H, 2018. Neoproterozoic peraluminous granitoids in the Jiangnan Fold Belt:implications for lithospheric differentiation and crustal growth[J]. Precambrian Research, 309:152-165. doi: 10.1016/j.precamres.2017.05.001 LIU J H, XIE C M, LI C, et al., 2018. Early Carboniferous adakite-like and Ⅰ-type granites in central Qiangtang, northern Tibet:implications for intra-oceanic subduction and back-arc basin formation within the Paleo-Tethys Ocean[J]. Lithos, 296-299:265-280. doi: 10.1016/j.lithos.2017.11.005 LU Y H, ZHAO Z F, ZHENG Y F, 2016. Geochemical constraints on the source nature and melting conditions of Triassic granites from South Qinling in central China[J]. Lithos, 264:141-157. doi: 10.1016/j.lithos.2016.08.018 LU Y H, ZHAO Z F, ZHENG Y F, 2017. Geochemical constraints on the nature of magma sources for Triassic granitoids from South Qinling in central China[J]. Lithos, 284-285:30-49. doi: 10.1016/j.lithos.2017.03.028 MARTIN H, SMITHIES R H, RAPP R, et al., 2005. An overview of adakite, tonalite-trondhjemite-granodiorite (TTG), and sanukitoid:relationships and some implications for crustal evolution[J]. Lithos, 79(1-2):1-24. doi: 10.1016/j.lithos.2004.04.048 MENG E, LIU F L, DU L L, et al., 2015. Petrogenesis and tectonic significance of the Baoxing granitic and mafic intrusions, southwestern China:evidence from zircon U-Pb dating and Lu-Hf isotopes, and whole-rock geochemistry[J]. Gondwana Research, 28(2):800-815. doi: 10.1016/j.gr.2014.07.003 MIDDLEMOST E A K, 1994. Naming materials in the magma/igneous rock system[J]. Earth-Science Reviews, 37(3-4):215-224. doi: 10.1016/0012-8252(94)90029-9 MOYEN J F, MARTIN H, 2012. Forty years of TTG research[J]. Lithos, 148:312-336. doi: 10.1016/j.lithos.2012.06.010 MUNTEANU M, WILSON A, YAO Y, et al., 2010. The Tongde dioritic pluton (Sichuan, SW China) and its geotectonic setting:regional implications of a local-scale study[J]. Gondwana Research, 18(2-3):455-465. doi: 10.1016/j.gr.2010.01.005 NIU Y L, O'HARA M J, PEARCE J A, 2003. Initiation of subduction zones as a consequence of lateral compositional buoyancy contrast within the lithosphere:a petrological perspective[J]. Journal of Petrology, 44(5):851-866. doi: 10.1093/petrology/44.5.851 PATIÑO DOUCE A E, 1995. Experimental generation of hybrid silicic melts by reaction of high-Al basalt with metamorphic rocks[J]. Journal of Geophysical Research, 100(B8):15623-15639. doi: 10.1029/94JB03376 PATIÑO DOUCE A E, 1996. Effects of pressure and H2O content on the compositions of primary crustal melts[J]. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 87(1-2):11-21. doi: 10.1017/S026359330000643X PATIÑO DOUCE A E, 1997. Generation of metaluminous A-type granites by low-pressure melting of calc-alkaline granitoids[J]. Geology, 25(8):743-746. doi: 10.1130/0091-7613(1997)025<0743:GOMATG>2.3.CO;2 PATIÑO DOUCE A E, 1999. What do experiments tell us about the relative contributions of crust and mantle to the origin of granitic magmas?[J]. Geological Society, London, Special Publications, 168(1):55-75. doi: 10.1144/GSL.SP.1999.168.01.05 PEARCE J A, 2008. Geochemical fingerprinting of oceanic basalts with applications to ophiolite classification and the search for Archean oceanic crust[J]. Lithos, 100(1-4):14-48. doi: 10.1016/j.lithos.2007.06.016 PENG M, WU Y B, GAO S, et al., 2012. Geochemistry, zircon U-Pb age and Hf isotope compositions of Paleoproterozoic aluminous A-type granites from the Kongling terrain, Yangtze Block:constraints on petrogenesis and geologic implications[J]. Gondwana Research, 22(1):140-151. doi: 10.1016/j.gr.2011.08.012 PLANK T, LANGMUIR C H, 1998. The chemical composition of subducting sediment and its consequences for the crust and mantle[J]. Chemical Geology, 145(3-4):325-394. doi: 10.1016/S0009-2541(97)00150-2 QIAN Q, HERMANN J, 2010. Formation of high-mg diorites through assimilation of peridotite by monzodiorite magma at crustal depths[J]. Journal of Petrology, 51(7):1381-1416. doi: 10.1093/petrology/egq023 RAPP R P, SHIMIZU N, NORMAN M D, et al., 1999. Reaction between slab-derived melts and peridotite in the mantle wedge:experimental constraints at 3.8 GPa[J]. Chemical Geology, 160(4):335-356. doi: 10.1016/S0009-2541(99)00106-0 RAPP R P, WATSON E B, 1995. Dehydration melting of metabasalt at 8-32 kbar:implications for continental growth and crust-mantle recycling[J]. Journal of Petrology, 36(4):891-931. doi: 10.1093/petrology/36.4.891 ROBERTS M P, CLEMENS J D, 1993. Origin of high-potassium, calc-alkaline, Ⅰ-type granitoids[J]. Geology, 21(9):825-828. doi: 10.1130/0091-7613(1993)021<0825:OOHPTA>2.3.CO;2 ROSSI J N, TOSELLI A J, SAAVEDRA J, et al., 2002. Common crustal source for contrasting peraluminous facies in the early Paleozoic Capillitas Batholith, NW Argentina[J]. Gondwana Research, 5(2):325-337. doi: 10.1016/S1342-937X(05)70726-7 RUDNICK R L, FOUNTAIN D M, 1995. Nature and composition of the continental crust:a lower crustal perspective[J]. Reviews of Geophysics, 33(3):267-309. doi: 10.1029/95RG01302 RUDNICK R L, GAO S, 2014. Composition of the continental crust[J]. Treatise on Geochemistry, 4:1-51. SAMI M, NTAFLOS T, FARAHAT E S, et al., 2018. Petrogenesis and geodynamic implications of Ediacaran highly fractionated A-type granitoids in the north Arabian-Nubian shield (Egypt):constraints from whole-rock geochemistry and Sr-Nd isotopes[J]. Lithos, 304-307:329-346. doi: 10.1016/j.lithos.2018.02.015 SHELLNUTT J G, 2014. The Emeishan large igneous province:a synthesis[J]. Geoscience Frontiers, 5(3):369-394. doi: 10.1016/j.gsf.2013.07.003 SHIMODA G, TATSUMI Y, MORISHITA Y, 2003. Behavior of subducting sediments beneath an arc under a high geothermal gradient:constraints from the Miocene SW Japan arc[J]. Geochemical Journal, 37(4):503-518. doi: 10.2343/geochemj.37.503 SHIMODA G, TATSUMI Y, NOHDA S, et al., 1998. Setouchi high-Mg andesites revisited:geochemical evidence for melting of subducting sediments[J]. Earth and Planetary Science Letters, 160(3-4):479-492. doi: 10.1016/S0012-821X(98)00105-8 SISSON T W, RATAJESKI K, HANKINS W B, et al., 2005. Voluminous granitic magmas from common basaltic sources[J]. Contributions to Mineralogy and Petrology, 148(6):635-661. doi: 10.1007/s00410-004-0632-9 SMITH D J, PETTERSON M G, SAUNDERS A D, et al., 2009. The petrogenesis of sodic island arc magmas at Savo volcano, Solomon islands[J]. Contributions to Mineralogy and Petrology, 158(6):785-801. doi: 10.1007/s00410-009-0410-9 SMITHIES R H, CHAMPION D C, 2000. The Archaean high-Mg diorite suite:links to tonalite-trondhjemite-granodiorite magmatism and implications for Early Archaean crustal growth[J]. Journal of Petrology, 41(12):1653-1671. doi: 10.1093/petrology/41.12.1653 STERN C R, KILIAN R, 1996. Role of the subducted slab, mantle wedge and continental crust in the generation of adakites from the Andean Austral Volcanic Zone[J]. Contributions to Mineralogy and Petrology, 123(3):263-281. doi: 10.1007/s004100050155 SUN S S, MCDONOUGH W F, 1989. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes[M]//SAUNDERS A D, NORRY M J. Magmatism in the Ocean Basins. Geological Society, London, Special Publication, 42(1): 313-345. SUN W H, ZHOU M F, ZHAO J.H. 2007. Geochemistry and tectonic significance of basaltic lavas in the neoproterozoic yanbian group, southern Sichuan Province, Southwest China[J]. International Geology Review, 49 (6):554-571. doi: 10.2747/0020-6814.49.6.554 SUN W H, ZHOU M F, 2008. The~860-Ma, cordilleran-type Guandaoshan dioritic pluton in the Yangtze Block, SW China:implications for the origin of Neoproterozoic magmatism[J]. The Journal of Geology, 116(3):238-253. doi: 10.1086/587881 SUN W H, ZHOU M F, GAO J F, et al., 2009. Detrital zircon U-Pb geochronological and Lu-Hf isotopic constraints on the Precambrian magmatic and crustal evolution of the western Yangtze Block, SW China[J]. Precambrian Research, 172(1-2):99-126. doi: 10.1016/j.precamres.2009.03.010 SUN W H, ZHOU M F, YAN D P, et al., 2008. Provenance and tectonic setting of the Neoproterozoic Yanbian group, western Yangtze Block (SW China)[J]. Precambrian Research, 167(1-2):213-236. doi: 10.1016/j.precamres.2008.08.001 SYLVESTER P J, 1998. Post-collisional strongly peraluminous granites[J]. Lithos, 45(1-4):29-44. doi: 10.1016/S0024-4937(98)00024-3 TANG J, XU W L, NIU Y L, et al., 2016. Geochronology and geochemistry of Late Cretaceous-Paleocene granitoids in the Sikhote-Alin Orogenic Belt:petrogenesis and implications for the oblique subduction of the paleo-Pacific plate[J]. Lithos, 266-267:202-212. doi: 10.1016/j.lithos.2016.09.034 TANG M, WANG X L, SHU X J, et al., 2014. Hafnium isotopic heterogeneity in zircons from granitic rocks:geochemical evaluation and modeling of "zircon effect" in crustal anatexis[J]. Earth and Planetary Science Letters, 389:188-199. doi: 10.1016/j.epsl.2013.12.036 TATSUMI Y, 2006. High-Mg andesites in the Setouchi volcanic belt, southwestern Japan:analogy to Archean magmatism and continental crust formation?[J]. Annual Review of Earth and Planetary Sciences, 34:467-499. doi: 10.1146/annurev.earth.34.031405.125014 TATSUMI Y, 2008. Making continental crust:the sanukitoid connection[J]. Chinese Science Bulletin, 53(11):1620-1633. doi: 10.1007/s11434-008-0185-9 VERNON R H, 1984. Microgranitoid enclaves in granites-globules of hybrid magma quenched in a plutonic environment[J]. Nature, 309(5967):438-439. doi: 10.1038/309438a0 WANG D, WANG X L, CAI Y, et al., 2018. Do Hf isotopes in magmatic zircons represent those of their host rocks?[J]. Journal of Asian Earth Sciences, 154:202-212. doi: 10.1016/j.jseaes.2017.12.025 WANG Q, LI X H, JIA X H, et al., 2012. Late Early Cretaceous adakitic granitoids and associated magnesian and potassium-rich mafic enclaves and dikes in the Tunchang-Fengmu area, Hainan Province (South China):partial melting of lower crust and mantle, and magma hybridization[J]. Chemical Geology, 328:222-243. doi: 10.1016/j.chemgeo.2012.04.029 WANG Q, XU J F, JIAN P, et al., 2006. Petrogenesis of adakitic porphyries in an extensional tectonic setting, Dexing, South China:implications for the genesis of porphyry copper mineralization[J]. Journal of Petrology, 47(1):119-144. doi: 10.1093/petrology/egi070 WANG T, GUO L, LI S, et al., 2019. Some important issues in the study of granite tectonics[J]. Journal of Geomechanics, 25(5):899-919. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzlxxb201905019 WANG W, ZHOU M F, ZHAO X F, et al., 2014b. Late paleoproterozoic to mesoproterozoic rift successions in SW China:implication for the Yangtze Block-North Australia-Northwest Laurentia connection in the Columbia supercontinent[J]. Sedimentary Geology, 309:33-47. doi: 10.1016/j.sedgeo.2014.05.004 WANG X C, LI X H, LI W X, et al., 2008. The Bikou basalts in the northwestern Yangtze block, South China:remnants of 820-810 Ma continental flood basalts?[J]. GSA Bulletin, 120(11-12):1478-1492. doi: 10.1130/B26310.1 WANG X C, LI Z X, LI X H, et al., 2011. Nonglacial origin for low-δ18O Neoproterozoic magmas in the south china block:evidence from new in-situ oxygen isotope analyses using SIMS[J]. Geology, 39(8):735-738. doi: 10.1130/G31991.1 WANG X L, 2017. Some new research progresses and main scientific problems of granitic rocks[J]. Acta Petrologica Sinica, 33(5):1445-1458. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201705005 WANG X L, ZHOU J C, GRIFFIN W L, et al., 2014a. Geochemical zonation across a Neoproterozoic orogenic belt:isotopic evidence from granitoids and metasedimentary rocks of the Jiangnan orogen, China[J]. Precambrian Research, 242:154-171. doi: 10.1016/j.precamres.2013.12.023 WANG X L, ZHOU J C, WAN Y S, et al., 2013. Magmatic evolution and crustal recycling for Neoproterozoic strongly peraluminous granitoids from southern China:hf and O isotopes in zircon[J]. Earth and Planetary Science Letters, 366:71-82. doi: 10.1016/j.epsl.2013.02.011 WANG Y J, ZHU W G, HUANG H Q, et al., 2019. Ca. 1.04 Ga hot Grenville granites in the western Yangtze block, Southwest China[J]. Precambrian Research, 328:217-234. doi: 10.1016/j.precamres.2019.04.024 WEIDENDORFER D, MATTSSON H B, ULMER P, 2014. Dynamics of magma mixing in partially crystallized magma chambers:textural and petrological constraints from the basal complex of the austurhorn intrusion (SE Iceland)[J]. Journal of Petrology, 55(9):1865-1903. doi: 10.1093/petrology/egu044 WHALEN J B, CURRIE K L, CHAPPELL B W, 1987. A-type granites:geochemical characteristics, discrimination and petrogenesis[J]. Contributions to Mineralogy and Petrology, 95(4):407-419. doi: 10.1007/BF00402202 WILSON, M., 1989. Igneous Petrogenesis. Boston Sydney Wellington, Unwin Hyman, London. WOODHEAD J D, HERGT J M, DAVIDSON J P, et al., 2001. Hafnium isotope evidence for 'conservative' element mobility during subduction zone processes[J]. Earth and Planetary Science Letters, 192(3):331-346. doi: 10.1016/S0012-821X(01)00453-8 WU T, WANG X C, LI W X, et al., 2019. Petrogenesis of the ca. 820-810 Ma felsic volcanic rocks in the Bikou Group:implications for the tectonic setting of the western margin of the Yangtze Block[J]. Precambrian Research, 331:105370. doi: 10.1016/j.precamres.2019.105370 XIONG Q, ZHENG J P, YU C M, et al., 2009. Zircon U-Pb age and Hf isotope of Quanyishang A-type granite in Yichang:signification for the Yangtze continental cratonization in Paleoproterozoic[J]. Chinese Science Bulletin, 54(3):436-446. http://www.cnki.com.cn/Article/CJFDTotal-JXTW200903017.htm XU Y G, ZHONG Y T, WEI X, et al., 2017. Permian mantle plumes and Earth's surface system evolution[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 36(3):358-373. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kwysdqhxtb201703001 YANG H, LIU F L, DU L L, et al., 2012. Zircon U-Pb dating for metavolcanites in the Laochanghe Formation of the Dahongshan Group in southwestern Yangtze Block, and its geological significance[J]. Acta Petrologica Sinica, 28(9):2994-3014. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201209025 ZHANG B, GUO F, ZHANG X B, et al., 2019. Early Cretaceous subduction of Paleo-Pacific Ocean in the coastal region of SE China:petrological and geochemical constraints from the mafic intrusions[J]. Lithos, 334-335:8-24. doi: 10.1016/j.lithos.2019.03.010 ZHANG S B, ZHENG Y F, ZHAO Z F, 2010. Temperature effect over garnet effect on uptake of trace elements in zircon of TTG-like rocks[J]. Chemical Geology, 274(1-2):108-125. doi: 10.1016/j.chemgeo.2010.04.002 ZHANG W, 2017. Study on the rock mass deformation and geological significance of the Southwest margin of Yangtze platform Neoproterozoic magmatic complex structure[D]. Beijing: China University of Geosciences (Beijing). ZHANG W X, ZHU L Q, WANG H, et al., 2018. Generation of post-collisional normal calc-alkaline and adakitic granites in the Tongbai orogen, central China[J]. Lithos, 296-299:513-531. doi: 10.1016/j.lithos.2017.11.033 ZHAO G C, CAWOOD P A, 2012. Precambrian geology of China[J]. Precambrian Research, 222-223:13-54. doi: 10.1016/j.precamres.2012.09.017 ZHAO J H, ASIMOW P D, ZHOU M F, et al., 2017. An Andean-type arc system in Rodinia constrained by the Neoproterozoic Shimian ophiolite in South China[J]. Precambrian Research, 296:93-111. doi: 10.1016/j.precamres.2017.04.017 ZHAO J H, LI Q W, LIU H, et al., 2018. Neoproterozoic magmatism in the western and northern margins of the Yangtze Block (South China) controlled by slab subduction and subduction-transform-edge-propagator[J]. Earth-Science Reviews, 187:1-18. doi: 10.1016/j.earscirev.2018.10.004 ZHAO J H, ZHOU M F, 2007a. Neoproterozoic adakitic plutons and arc Magmatism along the western margin of the Yangtze Block, South China[J]. The Journal of Geology, 115(6):675-689. doi: 10.1086/521610 ZHAO J H, ZHOU M F, 2007b. Geochemistry of Neoproterozoic mafic intrusions in the Panzhihua district (Sichuan Province, SW China):implications for subduction-related metasomatism in the upper mantle[J]. Precambrian Research, 152(1-2):27-47. doi: 10.1016/j.precamres.2006.09.002 ZHAO J H, ZHOU M F, WU Y B, et al., 2019. Coupled evolution of Neoproterozoic arc mafic magmatism and mantle wedge in the western margin of the South China Craton[J]. Contributions to Mineralogy and Petrology, 174(4):36. doi: 10.1007/s00410-019-1573-7 ZHAO J H, ZHOU M F, YAN D P, et al., 2008a, Zircon Lu-Hf isotopic constraints on Neoproterozoic subduction-related crustal growth along the western margin of the Yangtze Block, South China[J]. Precambrian Research, 163 (3-4):189-209. doi: 10.1016/j.precamres.2007.11.003 ZHAO J H, ZHOU M F, YAN D P, et al., 2011. Reappraisal of the ages of Neoproterozoic strata in South China:no connection with the Grenvillian orogeny[J]. Geology, 39(4):299-302. doi: 10.1130/G31701.1 ZHAO J H, ZHOU M F, ZHENG J P, et al., 2013. Neoproterozoic tonalite and trondhjemite in the Huangling complex, South China:crustal growth and reworking in a continental arc environment[J]. American Journal of Science, 313(6):540-583. doi: 10.2475/06.2013.02 ZHAO X F, ZHOU M F, LI J W, et al., 2008b. Association of Neoproterozoic A-and Ⅰ-type granites in south china:implications for generation of A-type granites in a subduction-related environment[J]. Chemical Geology, 257(1-2):1-15. doi: 10.1016/j.chemgeo.2008.07.018 ZHAO X F, ZHOU M F, LI J W, et al., 2010. Late Paleoproterozoic to early Mesoproterozoic Dongchuan Group in Yunnan, SW China:implications for tectonic evolution of the Yangtze Block[J]. Precambrian Research, 182(1-2):57-69. doi: 10.1016/j.precamres.2010.06.021 ZHAO Z F, GAO P, Zheng Y F, 2015. The source of Mesozoic granitoids in South China:integrated geochemical constraints from the Taoshan batholith in the Nanling range[J]. Chemical Geology, 395:11-26. doi: 10.1016/j.chemgeo.2014.11.028 ZHENG Y F, 2003. Neoproterozoic magmatic activity and global change[J]. Chinese Science Bulletin, 48(16):1639-1656. doi: 10.1360/03wd0342 ZHENG Y F, WU R X, WU Y B, et al., 2008. Rift melting of juvenile arc-derived crust:geochemical evidence from Neoproterozoic volcanic and granitic rocks in the Jiangnan orogen, South China[J]. Precambrian Research, 163(3-4):351-383. doi: 10.1016/j.precamres.2008.01.004 ZHENG Y F, WU Y B, CHEN F K, et al., 2004. Zircon U-Pb and oxygen isotope evidence for a large-scale 18O depletion event in igneous rocks during the Neoproterozoic[J]. Geochimica et Cosmochimica Acta, 68(20):4145-4165. doi: 10.1016/j.gca.2004.01.007 ZHENG Y F, XIAO W J, ZHAO G C, 2013. Introduction to tectonics of China[J]. Gondwana Research, 23(4):1189-1206. doi: 10.1016/j.gr.2012.10.001 ZHENG Y F, ZHANG S B, ZHAO Z F, et al., 2007. Contrasting zircon Hf and O isotopes in the two episodes of Neoproterozoic granitoids in South China:implications for growth and reworking of continental crust[J]. Lithos, 96(1-2):127-150. doi: 10.1016/j.lithos.2006.10.003 ZHOU M F, MA Y X, YAN D P, et al., 2006a. The Yanbian Terrane (Southern Sichuan Province, SW China):a Neoproterozoic arc assemblage in the western margin of the Yangtze Block[J]. Precambrian Research, 144(1-2):19-38. doi: 10.1016/j.precamres.2005.11.002 ZHOU M F, YAN D P, KENNEDY A K, et al., 2002. SHRIMP U-Pb zircon geochronological and geochemical evidence for Neoproterozoic arc-magmatism along the western margin of the Yangtze Block, South China[J]. Earth and Planetary Science Letters, 196(1-2):51-67. doi: 10.1016/S0012-821X(01)00595-7 ZHOU M F, YAN D P, WANG C L, et al., 2006b. Subduction-related origin of the 750 Ma Xuelongbao adakitic complex (Sichuan Province, China):implications for the tectonic setting of the giant Neoproterozoic magmatic event in South China[J]. Earth and Planetary Science Letters, 248(1-2):286-300. doi: 10.1016/j.epsl.2006.05.032 ZHU G Z, GERYA T V, YUEN D A, et al., 2009. Three-dimensional dynamics of hydrous thermal-chemical plumes in oceanic subduction zones[J]. Geochemistry, Geophysics, Geosystems, 10(11):Q11006. ZHU W G, 2004. Geochemical characteristics and tectonic setting of Neoproterozoic mafic-ultramafic rocks in western margin of the Yangtze Craton: Exampled by the Gaojiacun complex and Lengshuiqing No. 101 complex[D]. Guiyang: Institute of Geochemistry, Chinese Academy of Sciences. (in Chinese with English abstract) ZHU W G, ZHONG H, LI X H, et al., 2008. SHRIMP zircon U-Pb geochronology, elemental, and Nd isotopic geochemistry of the Neoproterozoic mafic dykes in the Yanbian area, SW China[J]. Precambrian Research, 164(1-2):66-85. doi: 10.1016/j.precamres.2008.03.006 ZHU W G, ZHONG H, LI Z X, et al., 2016. SIMS zircon U-Pb ages, geochemistry and Nd-Hf isotopes of ca. 1.0 Ga mafic dykes and volcanic rocks in the Huili area, SW China:origin and tectonic significance[J]. Precambrian Research, 273:67-89. doi: 10.1016/j.precamres.2015.12.011 ZHU Y, LAI S C, QIN J F, et al., 2019a. Geochemistry and zircon U-Pb-Hf isotopes of the 780 Ma Ⅰ-type granites in the western Yangtze Block:petrogenesis and crustal evolution[J]. International Geology Review, 61(10):1222-1243. doi: 10.1080/00206814.2018.1504330 ZHU Y, LAI S C, QIN J F, et al., 2019b. Petrogenesis and geodynamic implications of Neoproterozoic gabbro-diorites, adakitic granites, and A-type granites in the southwestern margin of the Yangtze Block, South China[J]. Journal of Asian Earth Sciences, 183:103977. doi: 10.1016/j.jseaes.2019.103977 ZHU Y, LAI S C, QIN J F, et al., 2019c. Neoproterozoic peraluminous granites in the western margin of the Yangtze Block, South China:implications for the reworking of mature continental crust[J]. Precambrian Research, 333:105443. doi: 10.1016/j.precamres.2019.105443 ZHU Y, LAI S C, QIN J F, et al., 2020a. Genesis of ca. 850-835 Ma high-Mg# diorites in the western Yangtze Block, South China:implications for mantle metasomatism under the subduction process[J]. Precambrian Research, 343:105738. doi: 10.1016/j.precamres.2020.105738 ZHU Y, LAI S C, QIN J F, et al., 2020b. Petrogenesis and geochemical diversity of late Mesoproterozoic S-type granites in the western Yangtze Block, South China:co-entrainment of peritectic selective phases and accessory minerals[J]. Lithos, 352-353:105326. doi: 10.1016/j.lithos.2019.105326 ZHU Y, LAI S C, ZHAO S W, et al., 2017. Geochemical characteristics and geological significance of the Neoproterozoic K-feldspar granites from the Anshunchang, Shimian area, Western Yangtze Block[J]. Geological Review, 63(5):1193-1208. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzlp201705006 郭春丽, 王登红, 陈毓川, 等, 2007.川西新元古代花岗质杂岩体的锆石SHRIMP U-Pb年龄、元素和Nd-Sr同位素地球化学研究:岩石成因与构造意义[J].岩石学报, 23(10):2457-2470. 赖绍聪, 秦江锋, 朱韧之, 等, 2015.扬子地块西缘天全新元古代过铝质花岗岩类成因机制及其构造动力学背景[J].岩石学报, 31(8):2245-2258. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201508009 李奇维, 2018.扬子板块新元古代基性脉岩成因及地质意义[D].武汉: 中国地质大学. 李献华, 李武显, 何斌, 2012.华南陆块的形成与Rodinia超大陆聚合-裂解:观察、解释与检验[J].矿物岩石地球化学通报, 31(6):543-559. http://www.cnki.com.cn/Article/CJFDTotal-KYDH201206001.htm 林广春, 2006.川西新元古代岩浆岩的SHRIMP锆石U-Pb年代学、元素和Nd-Hf同位素地球化学: 岩石成因与构造意义[D].广州: 中国科学院研究生院(广州地球化学研究所). 王涛, 郭磊, 李舢, 等, 2019.花岗岩大地构造研究的若干重要问题[J].地质力学学报, 25(5):899-919. https://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?flag=1&file_no=20190518&journal_id=dzlxxb 王孝磊. 2017.花岗岩研究的若干新进展与主要科学问题[J].岩石学报, 33(5):1445-1458. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201705005 徐义刚, 钟玉婷, 位荀, 等, 2017.二叠纪地幔柱与地表系统演变[J].矿物岩石地球化学通报, 36(3):358-373. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kwysdqhxtb201703001 杨红, 刘福来, 杜利林, 等, 2012.扬子地块西南缘大红山群老厂河组变质火山岩的锆石U-Pb定年及其地质意义[J].岩石学报, 28(9):2994-3014. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201209025 张慰, 2017.扬子地台西南缘新元古代岩浆杂岩体的构造变形与地质意义[D].北京: 中国地质大学(北京). 郑永飞, 2003.新元古代岩浆活动与全球变化[J].科学通报, 48(16):1705-1720. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kxtb200316001 朱维光, 2004.扬子地块西缘新元古代镁铁质-超镁铁质岩的地球化学特征及其地质背景: 以盐边高家村杂岩体和冷水箐101号杂岩体为例[D].贵阳: 中国科学院研究生院(地球化学研究所). 朱毓, 赖绍聪, 赵少伟, 等, 2017.扬子板块西缘石棉安顺场新元古代钾长花岗岩地球化学特征及其地质意义[J].地质论评, 63(5):1193-1208. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzlp201705006