留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

四川盆地蓬莱地区埃迪卡拉系灯影组二段微生物岩储层成岩作用:对优质储层形成与演化的启示

王雅萍 鲍志东 张连进 杨东凡 文雯 钟原 唐攀

王雅萍,鲍志东,张连进,等,2024. 四川盆地蓬莱地区埃迪卡拉系灯影组二段微生物岩储层成岩作用:对优质储层形成与演化的启示[J]. 地质力学学报,30(4):579−594 doi: 10.12090/j.issn.1006-6616.2024062
引用本文: 王雅萍,鲍志东,张连进,等,2024. 四川盆地蓬莱地区埃迪卡拉系灯影组二段微生物岩储层成岩作用:对优质储层形成与演化的启示[J]. 地质力学学报,30(4):579−594 doi: 10.12090/j.issn.1006-6616.2024062
WANG Y P,BAO Z D,ZHANG L J,et al.,2024. Diagenesis of microbial dolomite reservoirs in the second Member of Dengying Formation of Ediacaran in the Penglai area, Sichuan Basin: Insights into the formation and evolution of high-quality reservoirs[J]. Journal of Geomechanics,30(4):579−594 doi: 10.12090/j.issn.1006-6616.2024062
Citation: WANG Y P,BAO Z D,ZHANG L J,et al.,2024. Diagenesis of microbial dolomite reservoirs in the second Member of Dengying Formation of Ediacaran in the Penglai area, Sichuan Basin: Insights into the formation and evolution of high-quality reservoirs[J]. Journal of Geomechanics,30(4):579−594 doi: 10.12090/j.issn.1006-6616.2024062

四川盆地蓬莱地区埃迪卡拉系灯影组二段微生物岩储层成岩作用:对优质储层形成与演化的启示

doi: 10.12090/j.issn.1006-6616.2024062
基金项目: 国家重点研发计划专项(2018YFC0604304);中国石油化工股份有限公司科技部专项课题(P23180)
详细信息
    作者简介:

    王雅萍(1993—),女,博士研究生,主要从事储层地质学研究。Email:wpswpu@126.com

    通讯作者:

    鲍志东(1964—),男,教授,长期从事沉积学、储层地质学研究。Email:baozhd@cup.edu.cn

  • 中图分类号: P618.13

Diagenesis of microbial dolomite reservoirs in the second Member of Dengying Formation of Ediacaran in the Penglai area, Sichuan Basin: Insights into the formation and evolution of high-quality reservoirs

Funds: This research is co-funded by the National Key Research and Development Program of China (Grant No. 2018YFC0604304) and the Special Project of the Department of Science and Technology, Sinopec (Grant No. P23180).
  • 摘要: 四川盆地蓬莱地区埃迪卡拉系灯影组二段(灯二段)微生物岩广泛分布,被视为深层碳酸盐岩的潜在油气勘探目标。与常规的孔隙型和岩溶缝洞型优质储层不同,灯二段碳酸盐岩主要由微生物白云岩组成,其优质储层成因及成岩演化过程尚不清晰。研究基于野外露头和钻井取芯资料,结合岩石薄片、扫描电镜、阴极发光、CT扫描等测试手段,对灯影组微生物岩白云岩储层进行详细分析,旨在深入理解成岩作用对孔隙形成及优质储层发育的影响。研究结果显示,研究区微生物岩储层以低孔、特低渗,裂缝−孔隙(洞)型微生物石白云岩为主,储集空间以粒间溶孔、残余格架溶孔、粒内溶孔及中小型溶洞为主,并发育少量晶间孔及晶间溶孔;灯二段经历了多种成岩作用的叠加改造,其准同生溶蚀及早表生溶蚀作用是提高孔隙度的关键因素。研究成果加深了对四川盆地埃迪卡拉系微生物岩优质储层成因的认识,为四川盆地深层油气勘探开发提供了有益信息。

     

  • 微生物碳酸盐岩是碳酸盐沉积物在微生物的生态行为和沉积环境的相互作用下,历经埋藏、压实等后期成岩作用而改造形成的岩石(Chen and Lee,2014Zhang et al.,2014)。微生物作为媒介对碳酸盐沉淀具有重要的作用,其以各种特殊形式和身份广泛地参与到碳酸盐沉积和早期成岩过程(Dupraz et al.,2009)。全球范围内均有微生物碳酸盐岩油气藏的发现,主要分布在巴西Santos盆地(Muniz and Bosence,2012)和阿曼盐盆地(Bergmann et al.,2012)、美国Unita盆地和墨西哥湾盆地(Mancini et al.,2008Ahr et al.,2011Al Haddad and Mancini,2013Chidsey et al.,2015)、俄罗斯西伯利亚地区(Tull,1997)及哈萨克斯坦Tengiz油田(Collins et al.,2012)。中国这类油气藏主要分布在塔里木盆地、四川盆地及渤海湾盆地等(李朋威等,2015Jiang et al.,2018a)。例如,在四川盆地灯影组微生物碳酸盐岩中已发现威远、资阳、高石梯、磨溪、龙女寺和荷包场等气藏,储量规模达1.0×1012 m3罗冰等,2015Wei et al.,2016Luo et al.,2018)。

    近年来,川中隆起蓬莱地区的蓬探101井测获231.64×104 m3高产工业气流,创四川盆地灯影组测试产量新纪录,充分展现了该地区微生物碳酸盐岩巨大的勘探潜力。研究表明,蓬莱地区埃迪卡拉系的优质储层主要位于灯影组二段(灯二段;Yang et al.,2023Zheng et al.,2023)。灯二段不同相带、不同类型微生物碳酸盐岩的原生孔隙差异性较大,非均质性强(宋金民等,2013张玺华等,2023),其原生孔隙在成岩过程中会发生变化。相关研究认为,碳酸盐岩优质储层的形成受沉积、构造、海平面变化及岩相古地理等诸多因素的综合影响,并受岩溶作用、白云石化、硫酸盐热化学还原反应以及热液等成岩作用的联合控制(Cross et al.,2004Davies and Smith,2006赵文智等,2012邢凤存等,2018Jiang et al.,2018b2018c何治亮等,2021刘全有等,2024)。据此,部分学者提出了“三元控储”和“五元控储”等优质储层发育模型(马永生等,2010何治亮等,2021)。与典型的孔隙型和岩溶缝洞型优质碳酸盐岩储层不同(杜金虎等,2017焦方正,2018王志伟等,2023),四川盆地蓬莱地区埃迪卡拉系灯二段主要发育微生物白云岩储层(谢继容等,2022张本健等,2023a)。目前,对于这套微生物岩储层发育的主控因素尚存争议:多数观点认为高能丘滩相是灯二段优质储层发育的主要控制因素(周进高等,2015段金宝等,2019李勇等,2019);少数学者认为灯二段储层发育受桐湾运动相关的表生岩溶作用控制(杨雨等,2014邹才能等,2014徐春春等,2020),且构造−热液作用对储层的孔缝系统具有显著改造作用(朱东亚等,2014冯明友等,2016Jiang et al.,2023)。此外,以往对微生物碳酸盐储层主控因素的研究多以单要素分析为主,对于不同因素如何共同控制优质储层发育的研究仍不充分(斯春松等,2014Aminu et al.,2017谢武仁等,2021)。

    鉴于此,以四川盆地川中隆起蓬莱地区灯影组微生物白云岩为研究对象,通过岩芯观察、扫描电镜、阴极发光、CT扫描等实验手段,详细刻画了埃迪卡拉系灯影组微生物岩的岩石结构和储集空间类型。在此基础上,以沉积−成岩特征为主线,总结优质储层的发育模式。研究成果不仅将加深对研究区微生物岩优质储层成因的认识,还将为四川盆地埃迪卡拉系的油气勘探开发提供有益信息。

    四川盆地是位于中国扬子地台西北部的一个大型含油气盆地(杨雨等,2023)。研究区蓬莱地区位于四川省中北部,面积约为2×104 km2图1)。从构造背景来看,四川盆地埃迪卡拉系—古生界海相碳酸盐岩经历了多期构造旋回,在周期性拉张−隆升构造运动背景下,发育多个大型地质单元(马新华等,2019何治亮等,2023付小东等,2023)。其中,德阳−安岳克拉通内裂陷和川中古隆起控制了灯二段、灯四段2套大型台缘带分布(王炳森等,2024),蓬莱地区位于台缘带东侧,发育厚层丘滩相沉积物,沉积物在沉积之后的5.7亿年间经历了多期构造运动,并最终形成现今的构造−沉积格局(何治亮等,2023黄士鹏等,2023赵虎等,2023)。

    图  1  研究区位置及构造和地层发育特征
    a—四川盆地轮廓及蓬莱气区位置图(Wang et al.,2019);b—蓬莱气区埃迪卡拉系灯影组优势相带平面分布图;c—蓬莱气区埃迪卡拉系灯影组综合柱状图(据文龙等,2023修改)
    Figure  1.  The location of the study area and the characteristics of tectonic and stratigraphic development
    (a) Contour map of Sichuan Basin and location of the Penglai gas field (Wang et al., 2019); (b) Plane distribution map of the dominant facies of Dengying Formation in the Penglai gas area; (c) Comprehensive histogram of the Ediacaran Dengying Formation in the Penglai gas area (modified according to Wen et al., 2023)

    研究区灯二段位于上埃迪卡拉统中—下部,厚度达600~700 m,北部局部地区厚度可达1000 m,主要发育藻(微生物)粘结白云岩及颗粒白云岩(砂/砾屑白云岩),葡萄−花边构造普遍可见(陈泓位等,2024)。该层位与下部以泥粉晶云岩、砂质白云岩为主的灯一段整合接触。受桐湾运动影响,研究区大部分区域灯四段、灯三段缺失,灯二段与上覆麦地坪组含磷富有机质碎屑岩及碳酸盐岩呈平行不整合接触(李智武等,2019汪泽成等,2020)。灯二段整体位于1个三级旋回的上部,包括2个完整的四级旋回,根据灯二段岩性沉积旋回等特征,将灯二段细分为上、下2个亚段。灯二段储集层主要发育于灯二段上亚段中—上部的微生物白云岩和颗粒白云岩中(郭旭升等,2018陈孝全等,2024)。

    研究收集了蓬莱气田9口钻井的200余块微生物岩岩芯样品进行扫描电镜、岩石薄片、阴极发光和CT扫描分析,以上测试在中国石油天然气集团公司油藏描述重点实验室完成。首先制备岩石铸体薄片,在此基础上,进行以下分析:①利用CL8200-MK5型阴极发光仪判断岩石样品的成岩期次和胶结物类型,实验工作电流为250 µA,电压为10 kV。由于研究区微生物白云岩为低锰样品,选择高光束电压(光束电压:17 kV,光束电流:500 µA)进行测试。②扫描电镜广泛用于表征纳米级孔隙的类型、大小、数量和发育情况;此外,利用Quanta FEG450型扫描电镜观察其孔隙中充填的矿物,仪器工作条件为温度20 ℃、湿度35%,最高像素分辨率约为4 nm;③利用CT三维扫描实验可以确定岩石孔隙在三维空间中的分布特征和连通性。在1 μm和10 μm两种不同分辨率下观察不同类型岩芯样品的孔喉分布和连通性,分析其微观结构特征差异和渗流特性,扫描电压约为60 kV,实验温度约为20 ℃,单次曝光时间约为2 s。

    研究区灯二段岩石类型可分为微生物岩和非微生物岩2个基本大类(图2),其中微生物岩占主导。微生物岩包括凝块石白云岩、泡沫绵层白云岩、叠层石白云岩和藻纹层白云岩;凝块石白云岩是指具有藻屑和蓝细菌似球粒结构但不具有叠层构造的一类微生物岩,具有凝块结构。镜下可见由藻屑构成的颗粒,其边界相对模糊,形态似球形,直径介于0.05~0.20 mm。颗粒之间常被泥晶或亮晶白云石充填(图2a)。泡沫绵层白云岩一般具有蓝细菌泡沫绵层结构,微观下可见由泡沫状蓝细菌组成的海绵状格架,格架呈不规则状或花边状,可见微生物席与泡沫绵层间互发育(图2b)。叠层石白云岩具有亮、暗相间的纹层结构,暗色纹层主要由泥晶和微生物似球粒组成,呈波状,厚0.1~0.7 mm,亮色纹层由亮晶白云石组成,厚度一般分布在0.05~0.50 mm(图2c)。微生物纹层白云岩的典型特征是其纹层呈平直的水平层状,在横向上基本不被切断(图2d)。其中,泥晶和球粒多构成微生物纹层白云岩的暗色纹层,厚度为0.1~1.0 mm,而亮晶白云石则主要构成亮色纹层。

    图  2  蓬莱地区灯影组二段岩石薄片特征
    a—凝块石云岩,黄色箭头为藻凝块,蓬探101井5750.93 m,单偏光;b—泡沫绵层白云岩,黄色箭头为泡沫棉层,中深102井6056.47 m,单偏光;c—叠层石云岩,黄色箭头为叠层构造,蓬深4井6185.70~6185.91 m,单偏光;d—微生物纹层云岩,早期孔隙被充填,黄色箭头为微生物纹层,蓬探101井5765.36 m,单偏光;e—粉晶云岩,局部见藻纹层,孔洞发育,黄色箭头为微生物纹层,蓬探101井5751.82 m,单偏光;f—细晶白云岩,黄色箭头为细晶白云石,蓬探101井5744.40 m,正交偏光
    Figure  2.  Microscopic rock thin section characteristics of the second Member of Dengying Formation in the Penglai area
    (a) Clotted dolomite, algae clots (yellow arrows), Well Pengtan 101 5750.93 m, under plane-polarized light; (b) Foam spongy dolomite, foam structure (yellow arrows), Well Zhongshen 102 6056.47 m, under plane-polarized light; (c) Stromatolite dolomite, laminated structure (yellow arrows), Well Pengshen 4 6185.70~6185.91 m, under plane-polarized light; (d) Microbial laminated dolomite, early pores were filled, microbial laminae (yellow arrows), Well Pengtan 101 5765.36 m, under plane-polarized light; (e) Powder crystal dolomite, with localized algal laminations and developed pores, microbial laminae (yellow arrows), Well Pengtan 101 5751.82 m, under plane-polarized light; (f) Fine crystalline dolomite, fine crystalline dolomite (yellow arrows), Well Pengtan 101 5744.40 m, under cross-polarized light

    研究区非微生物岩包括粉晶白云岩和细—中晶白云岩2个大类。粉晶白云岩晶粒细小,粒径集中在5~20 μm,局部可见藻纹层(图2e),发育残余孔洞。相比之下,细—中晶白云岩粒径大,集中在50~200 μm,具镶嵌结构,孔洞不发育(图2f)。

    CT扫描结果表明,灯二段主要发育3种类型的储层(图3):①储集空间以溶洞、孔隙和裂缝为主,为典型的孔−洞−缝三重介质模型,裂缝一般为毫米级,具有良好的沟通溶洞和孔隙的作用,其储集物性最佳(图3a、3b);②储集空间以溶孔为主,发育少量溶洞、裂缝,裂缝多为微米级,能够有效沟通溶洞及溶孔,储集物性较好(图3c);③储集空间以溶孔为主,溶洞、裂缝少见,储集物性相对较差(图3d)。

    图  3  蓬莱地区灯影组二段岩石CT扫描结果
    a—储集空间包括溶洞(红色)、溶孔(蓝色)、裂缝(绿色),孔隙度为11.72%,蓬探101井5757.86 m;b—储集空间包括溶洞(红色)、溶孔(蓝色),孔隙度9.94%,蓬探101井5762.05 m;c—储集空间主要为溶孔(蓝色),少量微裂缝(红色),孔隙度4.13%,蓬探102井5863.38 m;d—储集空间以溶孔(蓝色)为主,孔隙度2.25%,蓬探101井5881.37 m
    Figure  3.  Computed tomography (CT) scan results of rocks in the second Member of Dengying Formation in the Penglai area
    (a) The reservoir space includes caves (red), pores (blue), and fractures (green), with a porosity of 11.72 %, Well Pengtan 101 5757.86 m.; (b) The reservoir space includes caves (red) and pores (blue), with a porosity of 9.94 %, Well Pengtan 101 5762.05 m ; (c) The reservoir reservoir space is mainly pores (blue), a small amount of fractures (red), with a porosity of 4.13 %, Well Pengtan 102l 5863.38 m; (d) The reservoir space is dominated by pores (blue), with a porosity of 2.25 %, Well Pengtan 101 5881.37 m
    3.2.1   孔隙

    灯二段岩石孔隙类型可见组构选择性溶孔和非组构选择性溶孔2类。组构选择性溶孔主要为原生孔隙,包括微生物格架孔、粒内孔和粒间孔等。微生物格架孔非常发育,主要见于凝块石白云岩、泡沫绵层白云岩中(图4a—4c),其发育位置通常与微生物组构密切相关,原始微生物格架得以保留(图4a、4b),面孔率在部分层位可高达15%。该类孔隙的孔径范围较为集中,多为0.1~0.6 mm,连通性中等,原始微生物组构大部分被溶蚀形成铸模孔(图4c)。此外,粒内孔、粒间孔也较为常见,粒间孔发育在微生物组构之间,部分被沥青或白云石胶结物所充填(图4d—4f),粒内孔则发育在微生物组构内部或之间(图4g、4h)。粒间孔、粒内孔所占的比重相对于格架孔较低,薄片统计表明其对孔隙度的贡献率不超过10%。非组构选择性孔隙主要发育在非微生物岩(图4i),孔隙具不规则状,其边缘可见白云石晶体充填。

    图  4  蓬莱地区灯影组二段岩石铸体薄片特征
    a—凝块石白云岩,粒间溶孔,蓬探103井5943.69 m,黄色箭头为粒间溶孔;b—凝块石白云岩,见残余粒间溶孔,蓬深5井5669.00 m,黄色箭头为残余粒间溶孔;c—藻屑白云岩,粒间溶孔发育,蓬探1井5734.51 m,黄色箭头为粒间溶孔;d—凝块石白云岩,残余格架孔,蓬探1井5774.45 m,黄色箭头为残余格架孔;e—凝块石白云岩,残余格架孔发育,蓬深5井5711.84 m,黄色箭头为残余格架孔;f—粉晶—细晶白云岩,晶间孔较发育,中深102井6037.00 m,黄色箭头为晶间孔;g—凝块石白云岩,粒内溶孔,面孔率5%,蓬探101井5729.29 m,黄色箭头为粒内溶孔;h—藻泡沫绵层白云岩,铸模孔发育,面孔率15%,蓬探1井5731.25 m,黄色箭头为铸模孔;i—砂屑白云岩,粒内溶孔较发育,面孔率3%~5%,中深103井5883.66 m,黄色箭头为粒内孔
    Figure  4.  Characteristics of rock cast thin sections of the second Member of of Dengying Formation in the Penglai area
    (a) Tuff dolomite, intergranular dissolved pores, Well Pengtan 103 5943.69 m, intergranular pores (yellow arrows); (b) Thrombolite dolomite, with residual intergranular dissolved pores, Well Pengshen 5 5669.00 m, residual intergranular pores (yellow arrows) ; (c) Algae dolomite, intergranular dissolved pore development, Well Pengtan 1 5734.51 m, intergranular pores (yellow arrows); (d) Tuff dolomite, residual framework hole, Well Pengtan 1 5774.45 m, residual grid holes (yellow arrows); (e) Tuff dolomite, residual framework hole development, Well Pengshen 5 5711.84 m, residual grid holes (yellow arrows); (f) Powder-fine grained dolomite, intergranular pores are more developed, Well Zhongshen 102 6037.00 m, intercrystalline pores (yellow arrows); (g) Tuff dolomite, intragranular dissolved pores, face rate of 5 %, Well Pengtan 101 5729.29 m, intragranular pores (yellow arrows); (h) Algae foam spongy dolomite, mold hole development, the surface porosity is 15 %, Well Pengtan 1 5731.25 m, mold hole (yellow arrows); (i) Sandy dolomite, intragranular dissolved pores are more developed, the surface porosity is 3%−5%, Well Zhongshen 103 5883.66 m, intragranular pores (yellow arrows)
    3.2.2   溶洞

    溶洞是灯二段重要的储集空间类型,主要见于灯二段顶部。常见与溶塌角砾岩相关的溶沟及溶缝(图5a),溶洞通常为扁圆形、椭圆形、条带状及不规则形状,多呈蜂窝状产出(图5b)。此外,灯二段部分洞穴层发生塌陷,单个溶洞内部可被垮塌角砾岩、混杂角砾岩和胶结物等充填。

    图  5  蓬莱地区灯影组二段储层溶蚀孔发育特征
    a—凝块石白云岩,溶沟被泥质半充填—近全充填,蓬探101井5712.65~5712.79 m,黄色箭头指向溶沟充填;b—凝块石白云岩,蜂窝状溶洞,蓬探101井5773.13~5773.33 m,黄色箭头指向蜂窝状溶洞
    Figure  5.  Characteristics of dissolution pore development of the second Member of Dengying Formation in the Penglai area
    (a) Condensate dolomite, karst ditch is semi-filled by mud-nearly full-filled, Well Pengtan 101 5712.65−5712.79 m, filled karst gully (yellow arrows); (b) Tuff-dolomite, honeycomb-shaped cave, Well Pengtan 101 5773.13−5773.33 m, honeycomb-shaped cave (yellow arrow)
    3.2.3   裂缝

    研究区灯二段发育构造裂缝和非构造裂缝2种类型。构造缝断面多平直、以高角度缝出现,且缝壁较为平直,该类裂缝成组出现(图6a),多数未被充填(图6b)。非构造裂缝包括压溶缝和扩溶缝,其中压溶缝以近水平缝和低角度缝为主(图6c),缝被泥质等部分充填。该类裂缝受埋藏溶蚀作用的影响,可进一步扩溶,形成扩溶缝,并将原有孔隙连通(图6d)。

    图  6  蓬莱地区灯影组二段裂缝发育特征
    a—砂屑白云岩,高角度裂缝发育,蓬探1井5729.80~5729.85 m,黄色箭头指向高角度裂缝;b—凝块石白云岩,多期构造缝发育,蓬探1井5785.59 m,黄色箭头指向构造裂缝;c—凝块石白云岩,压溶缝及溶沟,蓬探103井5734.07~5734.27 m,黄色箭头指向压溶缝;d—凝块石白云岩,裂缝切穿孔隙,蓬探1井5780.84 m,黄色箭头指向孔隙被裂缝切穿
    Figure  6.  Fracture development characteristics of the second Member of Dengying Formation in the Penglai area
    (a) Sandy dolomite, high angle fracture development, Well Pengtan 1 5729.80m to 5729.85 m, high-angle fracture (yellow arrows); (b) Tuff dolomite, multi-stage structural fracture development, Well Pengtan 1 5785.59 m, structural fractures (yellow arrows); (c) Tuff dolomite, pressure solution fracture and solution ditch, Well Pengtan 103 5734.07 m to 5734.27 m, pressure dissolved pores (yellow arrow); (d) Tuff dolomite, fractures cut through pores, Well Pengtan 1 5780.84 m, pores cut through by cracks (yellow arrows)

    根据全直径岩芯样与柱塞样物性测试结果,蓬莱地区灯二段整体具有低孔−特低渗特征,局部发育高孔渗段(表1表2)。蓬莱地区灯二段储层全直径岩芯孔隙度分布在2.00%~12.78%,主要集中在2%~6%,占样品总数的85.7%(表1)。储层平均孔隙度分布在3.10%~4.85%,总体平均孔隙度为4.17%,孔隙度中值为3.77%(图7a)。蓬莱地区灯二段储层全直径岩芯渗透率分布在0.011~4.860 mD,主要集中在0.01 ~1.00 mD之间,占样品总数的94.1%(表2)。储层平均渗透率分布在0.058 ~0.908 mD,总体平均渗透率为0.325 mD,渗透率中值为0.138 mD(图7b)。

    表  1  蓬莱地区灯影组灯二段储层孔隙度
    Table  1.  Reservoir porosity of the second Member of Dengying Formation in the Penglai area
    井号 孔隙度/% 样品
    个数
    最低 最高 平均 中值
    蓬深5 2.01 7.81 3.46 3.00 34
    蓬探1 2.71 6.68 4.85 4.60 8
    蓬探101 2.00 12.78 4.61 4.22 97
    蓬探102 2.00 5.31 3.18 3.22 21
    蓬探103 2.23 8.92 4.52 3.56 23
    中深103 2.08 7.06 3.26 2.90 13
    下载: 导出CSV 
    | 显示表格
    表  2  蓬莱地区灯影组灯二段储层渗透率
    Table  2.  Reservoir permeability of the second Member of Dengying Formation in the Penglai area
    井号 渗透率/mD 样品
    个数
    最低 最高 平均 中值
    蓬深5 0.017 4.860 0.394 0.140 32
    蓬探1 0.014 0.129 0.058 0.035 7
    蓬探101 0.040 0.857 0.206 0.099 29
    蓬探102 0.038 0.569 0.175 0.100 18
    蓬探103 0.013 0.647 0.237 0.200 20
    中深103 0.011 3.100 0.908 0.617 13
    下载: 导出CSV 
    | 显示表格
    图  7  蓬莱地区灯影组二段储层孔隙度和渗透率分布直方图
    a—全直径岩芯孔隙度频率分布直方图;b—全直径岩芯样渗透率频率直方图
    Figure  7.  Porosity and permeability distribution histogram of reservoir in the second Member of Dengying Formation in the Penglai area
    (a) Full-diameter core porosity frequency distribution histogram; (b) Full-diameter core sample permeability frequency histogram

    蓬莱地区灯二段主要成岩作用包括压实、压溶、胶结、充填、白云石化、溶蚀、重结晶和构造破裂等(图8),其中压实、压溶、胶结、充填是破坏性成岩作用,白云石化、溶蚀、重结晶、构造破裂是建设性成岩作用,各类成岩事件的先后序列详见图9

    图  8  蓬莱地区灯二段主要成岩作用
    a—藻凝块白云岩,粒内溶孔发育(准同生),蓬探1井5731.29 m,黄色箭头指向格架孔;b—藻凝块白云岩,选择性溶蚀(准同生),蓬探101井5757 m,黄色箭头指向格架孔;c—顺层孔洞(准同生),蓬探1井5740.83~5740.95 m,黄色箭头指向早表生溶洞;d—凝块石白云岩溶沟及溶洞,半充填(表生),蓬深4井6224.51~6224.66 m,黄色箭头指向早表生溶洞;e—花边云岩,见岩溶角砾,溶蚀孔洞多期白云石−沥青半充填(表生),蓬深4井6197.67 m,黄色箭头指向岩溶角砾;f—埋藏溶洞及伴生鞍状(埋藏),蓬探103井5929.02~5929.11 m,黄色箭头指向鞍状白云石;g—藻砂屑云岩,发育葡萄花边构造,残余孔中充填沥青(表生),蓬探101井5712.74 m,Cd1、Cd2、Cd3、Cd4分别为纤维状白云石胶结物、叶片状白云石胶结物、细—中晶白云石胶结物和粗晶鞍状白云石胶结物;h—角砾状白云岩,砾间被粗晶鞍状白云石胶结(埋藏),蓬探101井5762.70 m,Cd4为粗晶鞍状白云石胶结物;i—岩溶角砾,溶蚀孔洞部分被中—粗晶鞍状白云石胶结物充填,蓬深5井5672.77 m,黄色箭头为细—中晶白云岩
    Figure  8.  Main diagenesis of the second Member of Dengying Formation in the Penglai area
    (a) Algae clotted dolomite, with well-developed intragranular pores (quasi-syngenetic), framework pores (yellow arrows), Well Pengtan 1 5731.29 m; (b) Algae clotted dolomite, selective dissolution (quasi-syngenetic), framework pores (yellow arrows), Well Pengtan 101 5757 m; (c) Bedding pores and caves (quasi-syngenetic), early epigenetic caves (yellow arrows), Well Pengtan 1 5740.83−5740.95 m,; (d) Thrombolite dolomite karst gullies and caves, semi-filled (supergenetic), early epigenetic caves (yellow arrows), Well Pengshen 4 6224.51−6224.66 m; (e) Lace dolomite, with karst breccia, and the dissolved pores and caves are semi-filled with multi-stage dolomite-asphalt (supergene), karst breccia (yellow arrows), Well Pengshen 4 6197.67 m,; (f) Buried karst caves and associated saddles (buried), saddle dolomite (yellow arrows), Well Pengtan 103 5929.02-5929.11 m, ; (g) Algae sand-clast dolomite, with grape lace structure developed, and residual pores filled with asphalt (supergene),Well Pengtan 101 5712.74 m, Cd1, Cd2, Cd3, Cd4 are fibrous dolomite cement, foliated dolomite cement, fine-medium crystalline dolomite cement and coarse-crystalline saddle dolomite cement, respectively; (h) Brecciated dolomite, with coarse-crystalline saddle dolomite cemented between gravels (buried), Well Pengtan 101 5762.70 m, Cd4 is coarse-crystalline saddle dolomite cement; (i) Karst breccia, with dissolved pores partially filled with medium-coarse crystalline saddle dolomite cement, fine-medium-crystalline dolomite (yellow arrows), Well Pengshen 5 5672.77 m
    图  9  蓬莱地区灯影组二段单井成岩演化事件
    Figure  9.  Diagenetic evolution events of the second Member of the Dengying Formation in the Penglai area

    已有研究认为溶蚀作用是形成灯二段储层的最根本因素(王国芝等,2014朱东亚等,2014)。文中根据研究区溶蚀作用发生的时间、作用对象、成岩环境和机理,将其分为同生−准同生期大气淡水溶蚀作用、表生期大气淡水岩溶作用和埋藏期岩溶作用。其中同生−准同生期大气淡水溶蚀(图8a、8b)作用以及桐湾期表生期风化壳岩溶作用(图8c、8d)最有利于储层的建设性成岩作用。

    同生−准同生期溶蚀作用发生于沉积物形成后不久、沉积物尚未完全脱离沉积环境的早成岩时期。灯二段沉积时,研究区主要发育台地边缘丘滩体。这些沉积体在较低级(五级)海平面下降的影响下,早期海平面附近及以下的沉积物(岩)由沉积−同生成岩环境转变为同生−准同生成岩环境,在开放的氧化环境中,由于大气淡水和混合水的影响,在海平面之上及附近的丘滩体内部可短时间建立起小规模的淡水透镜体,从而发生早期溶蚀(图8a、8b)。因此,同生−准同生期岩溶作用对蓬莱气田灯影组二段储层的形成具有重要贡献。

    表生期岩溶主要与区域构造抬升运动相关,是区内灯二顶部重要的溶蚀作用(图8c—8e)。蓬莱气田及邻区灯二段的表生期岩溶作用主要受桐湾运动I幕和桐湾运动II幕的影响,四川盆地发生整体抬升形成了2个盆地级不整合面(张本健等,2023b张自力等,2024)。灯二段顶部遭受桐湾运动I、II幕叠加作用,在表生成岩阶段发生不同程度的风化剥蚀和溶解作用,因此对灯二段的储层改造尤为明显。

    埋藏期岩溶对灯二段储层的改造具有一定的补充作用。研究区灯二段储层的石油充注时期主要为中—深埋藏期(史原鹏等,2024),此时高成熟度的有机质演化产生的有机酸对碳酸盐的溶解作用比碳酸更强,有机酸的进入导致在烃类充注之前形成的某些孔隙周边的白云石被溶蚀扩大,同时伴生大量鞍形白云石等(图8f),因此可对先存孔隙系统进一步调整。

    镜下特征表明,灯二段胶结充填作用明显,其中白云石胶结物按其晶形大小及形态可大致分为4类:纤维状环边白云石胶结物、叶片状白云石胶结物、细—中晶白云石胶结物和粗晶鞍形白云石胶结物等(图8g图9)。

    纤维状白云石胶结物(Cd1)通常呈同心环状分布,构成了葡萄花边结构的早期充填物;叶片状白云石胶结物(Cd2)多与纤维状环边白云石胶结物相伴生,沉淀在纤维状环边白云石胶结物之后,晶体明显增大,粒径通常介于0.06~0.10 mm;细—中晶白云石胶结物(Cd3)沉淀于早期白云石胶结物之后,晶体明亮粗大,以半自形—自形为主;粗晶鞍状白云石胶结物(Cd4)为最后一期胶结物,正交偏光下具有波状消光特征,可能为热液作用的产物。

    总体看来,区内粉晶—细晶白云岩或泥晶白云岩经重结晶作用后,形成晶粒较大、自形程度较高的细—中晶白云岩(图8i)。该过程不仅使早期的细小晶间微孔经重新调整、组合成孔隙空间更大的晶间孔;同时,自形程度的增加使得晶间孔的喉道变得更加光滑平直,提高了岩石的有效孔隙度和渗透率,为后期埋藏流体的通过提供了良好的通道,为次生溶蚀孔和溶洞的产生奠定了基础(任影等,2015王佳庆等,2023),例如,蓬深5井灯二段5707 m深度粉晶白云岩储层缝洞发育。因此,重结晶作用不但提高了储层的有效孔隙度和渗透率,同时也为后期溶蚀作用提供了有利条件。

    微生物凝块石白云岩和微生物叠层石白云岩是研究区最典型的储层类型(张本健等,2023b徐少立等,2024张自力等,2024),阐明其形成与演化过程有助于理解微生物优质储层形成机理。据此,文章重点研究了微生物凝块石白云岩和微生物叠层石白云岩形成与演化过程。

    凝块石白云岩作为研究区内最具代表性的储集岩类,其蜂窝状孔洞极其发育。在沉积期,富含孔隙水的微生物泥晶白云石中晶间孔发育(图10a)。准同期,由于微生物泥晶白云岩的脱水收缩形成大量弯曲的微裂缝,并伴随微生物的死亡分解,产生大量微生物气,未溢出的生物气可在这些微生物泥晶白云岩中形成“气泡”(格架孔),并发生叶片状白云石胶结(Cd2;图10b)。此时,微生物泥晶白云岩由于大量收缩缝与格架孔的形成,转变成凝块石白云岩;原生格架孔及收缩缝较为发育,孔隙度在10%~20%。到中—浅埋藏期,收缩缝和格架孔中发生粒状亮晶白云岩胶结(Cd3),此过程造成原生孔隙大幅度缩小,仅剩少量残余格架孔,晶间孔几乎消失。到中—深埋藏期,具有溶蚀性的酸性流体等组分将洞中白云石溶蚀,形成港湾状溶孔(图10c),后期局部被硅质与沥青半充填。构造抬升期,若有断裂形成,则溶蚀流体沿裂缝将早期孔洞进一步溶蚀、扩大(图10d),在宏观岩芯上表现出蜂窝状溶洞。

    图  10  四川盆地蓬莱气区微生物凝块石白云岩储层的形成与演化模式
    Figure  10.  Formation and evolution model of microbial thrombolite dolomite reservoir in the Penglai area, Sichuan Basin
    (a) Sedimentation period; (b) Penecontemporaneous period; (c) Storage period; (d) Tectonic uplift period

    沉积期,富藻纹层与富屑纹层在纵向上重复叠置堆积,其中富藻纹层可发育较多的藻粘结格架孔,富屑纹层中还存在大量晶间孔和粒间孔,此时藻叠层白云岩以原生孔隙为主,孔隙度可达30%~50%(图11a)。准同生期,由于微生物死亡分解,产生大量气泡,此时在藻叠层白云岩中的富藻纹层中形成一定数量的鸟眼孔,后期被纤维状亮晶白云石(Cd1)半充填,这一阶段导致孔隙度有所减少,分布在15%~20%(图11b)。在浅埋藏期,早期藻粘结格架孔和鸟眼孔被粒状亮晶白云岩(Cd3)半充填,并发生压实作用,导致孔隙变形,孔隙度大幅降低至5%~10%。中—深埋藏期,早期孔洞充填物被有机酸部分溶解,后被少量硅质和沥青半充填,此阶段孔隙度基本保持不变,仅改变了孔隙形状与分布位置(图11c)。构造抬升期,如形成大量裂缝,局部沿裂缝溶蚀扩大,形成溶洞或溶沟,孔隙度在5%~15%(图11d)。

    图  11  四川盆地蓬莱气区微生物叠层石白云岩储层的形成与演化模式
    Figure  11.  Formation and evolution model of microbial stromatolite dolomite reservoir in the Penglai area, Sichuan Basin
    (a) Sedimentation period; (b) Penecontemporaneous period; (c) Storage period; (d) Tectonic uplift period

    (1)四川盆地蓬莱地区灯影组二段微生物白云岩发育,主要包括凝块石白云岩、叠层石白云岩、泡沫绵层白云岩和藻纹层白云岩等。灯二段主要的储集空间包括孔隙、溶洞和裂缝,具有低孔−特低渗特征,以发育溶洞、孔隙和裂缝为主的储集空间组合物性最好。

    (2)准同生溶蚀作用、早表生溶蚀作用是微生物岩大量储集空间形成关键因素,埋藏溶蚀及重结晶作用对储集物性进一步改善。凝块石白云岩、叠层石白云岩是最主要的储集岩,其储层的形成与演化史表明,有效孔隙主要在成岩早期形成,埋藏期主要为胶结充填作用,构造抬升期可形成大量裂缝改善储集性。

  • 图  1  研究区位置及构造和地层发育特征

    a—四川盆地轮廓及蓬莱气区位置图(Wang et al.,2019);b—蓬莱气区埃迪卡拉系灯影组优势相带平面分布图;c—蓬莱气区埃迪卡拉系灯影组综合柱状图(据文龙等,2023修改)

    Figure  1.  The location of the study area and the characteristics of tectonic and stratigraphic development

    (a) Contour map of Sichuan Basin and location of the Penglai gas field (Wang et al., 2019); (b) Plane distribution map of the dominant facies of Dengying Formation in the Penglai gas area; (c) Comprehensive histogram of the Ediacaran Dengying Formation in the Penglai gas area (modified according to Wen et al., 2023)

    图  2  蓬莱地区灯影组二段岩石薄片特征

    a—凝块石云岩,黄色箭头为藻凝块,蓬探101井5750.93 m,单偏光;b—泡沫绵层白云岩,黄色箭头为泡沫棉层,中深102井6056.47 m,单偏光;c—叠层石云岩,黄色箭头为叠层构造,蓬深4井6185.70~6185.91 m,单偏光;d—微生物纹层云岩,早期孔隙被充填,黄色箭头为微生物纹层,蓬探101井5765.36 m,单偏光;e—粉晶云岩,局部见藻纹层,孔洞发育,黄色箭头为微生物纹层,蓬探101井5751.82 m,单偏光;f—细晶白云岩,黄色箭头为细晶白云石,蓬探101井5744.40 m,正交偏光

    Figure  2.  Microscopic rock thin section characteristics of the second Member of Dengying Formation in the Penglai area

    (a) Clotted dolomite, algae clots (yellow arrows), Well Pengtan 101 5750.93 m, under plane-polarized light; (b) Foam spongy dolomite, foam structure (yellow arrows), Well Zhongshen 102 6056.47 m, under plane-polarized light; (c) Stromatolite dolomite, laminated structure (yellow arrows), Well Pengshen 4 6185.70~6185.91 m, under plane-polarized light; (d) Microbial laminated dolomite, early pores were filled, microbial laminae (yellow arrows), Well Pengtan 101 5765.36 m, under plane-polarized light; (e) Powder crystal dolomite, with localized algal laminations and developed pores, microbial laminae (yellow arrows), Well Pengtan 101 5751.82 m, under plane-polarized light; (f) Fine crystalline dolomite, fine crystalline dolomite (yellow arrows), Well Pengtan 101 5744.40 m, under cross-polarized light

    图  3  蓬莱地区灯影组二段岩石CT扫描结果

    a—储集空间包括溶洞(红色)、溶孔(蓝色)、裂缝(绿色),孔隙度为11.72%,蓬探101井5757.86 m;b—储集空间包括溶洞(红色)、溶孔(蓝色),孔隙度9.94%,蓬探101井5762.05 m;c—储集空间主要为溶孔(蓝色),少量微裂缝(红色),孔隙度4.13%,蓬探102井5863.38 m;d—储集空间以溶孔(蓝色)为主,孔隙度2.25%,蓬探101井5881.37 m

    Figure  3.  Computed tomography (CT) scan results of rocks in the second Member of Dengying Formation in the Penglai area

    (a) The reservoir space includes caves (red), pores (blue), and fractures (green), with a porosity of 11.72 %, Well Pengtan 101 5757.86 m.; (b) The reservoir space includes caves (red) and pores (blue), with a porosity of 9.94 %, Well Pengtan 101 5762.05 m ; (c) The reservoir reservoir space is mainly pores (blue), a small amount of fractures (red), with a porosity of 4.13 %, Well Pengtan 102l 5863.38 m; (d) The reservoir space is dominated by pores (blue), with a porosity of 2.25 %, Well Pengtan 101 5881.37 m

    图  4  蓬莱地区灯影组二段岩石铸体薄片特征

    a—凝块石白云岩,粒间溶孔,蓬探103井5943.69 m,黄色箭头为粒间溶孔;b—凝块石白云岩,见残余粒间溶孔,蓬深5井5669.00 m,黄色箭头为残余粒间溶孔;c—藻屑白云岩,粒间溶孔发育,蓬探1井5734.51 m,黄色箭头为粒间溶孔;d—凝块石白云岩,残余格架孔,蓬探1井5774.45 m,黄色箭头为残余格架孔;e—凝块石白云岩,残余格架孔发育,蓬深5井5711.84 m,黄色箭头为残余格架孔;f—粉晶—细晶白云岩,晶间孔较发育,中深102井6037.00 m,黄色箭头为晶间孔;g—凝块石白云岩,粒内溶孔,面孔率5%,蓬探101井5729.29 m,黄色箭头为粒内溶孔;h—藻泡沫绵层白云岩,铸模孔发育,面孔率15%,蓬探1井5731.25 m,黄色箭头为铸模孔;i—砂屑白云岩,粒内溶孔较发育,面孔率3%~5%,中深103井5883.66 m,黄色箭头为粒内孔

    Figure  4.  Characteristics of rock cast thin sections of the second Member of of Dengying Formation in the Penglai area

    (a) Tuff dolomite, intergranular dissolved pores, Well Pengtan 103 5943.69 m, intergranular pores (yellow arrows); (b) Thrombolite dolomite, with residual intergranular dissolved pores, Well Pengshen 5 5669.00 m, residual intergranular pores (yellow arrows) ; (c) Algae dolomite, intergranular dissolved pore development, Well Pengtan 1 5734.51 m, intergranular pores (yellow arrows); (d) Tuff dolomite, residual framework hole, Well Pengtan 1 5774.45 m, residual grid holes (yellow arrows); (e) Tuff dolomite, residual framework hole development, Well Pengshen 5 5711.84 m, residual grid holes (yellow arrows); (f) Powder-fine grained dolomite, intergranular pores are more developed, Well Zhongshen 102 6037.00 m, intercrystalline pores (yellow arrows); (g) Tuff dolomite, intragranular dissolved pores, face rate of 5 %, Well Pengtan 101 5729.29 m, intragranular pores (yellow arrows); (h) Algae foam spongy dolomite, mold hole development, the surface porosity is 15 %, Well Pengtan 1 5731.25 m, mold hole (yellow arrows); (i) Sandy dolomite, intragranular dissolved pores are more developed, the surface porosity is 3%−5%, Well Zhongshen 103 5883.66 m, intragranular pores (yellow arrows)

    图  5  蓬莱地区灯影组二段储层溶蚀孔发育特征

    a—凝块石白云岩,溶沟被泥质半充填—近全充填,蓬探101井5712.65~5712.79 m,黄色箭头指向溶沟充填;b—凝块石白云岩,蜂窝状溶洞,蓬探101井5773.13~5773.33 m,黄色箭头指向蜂窝状溶洞

    Figure  5.  Characteristics of dissolution pore development of the second Member of Dengying Formation in the Penglai area

    (a) Condensate dolomite, karst ditch is semi-filled by mud-nearly full-filled, Well Pengtan 101 5712.65−5712.79 m, filled karst gully (yellow arrows); (b) Tuff-dolomite, honeycomb-shaped cave, Well Pengtan 101 5773.13−5773.33 m, honeycomb-shaped cave (yellow arrow)

    图  6  蓬莱地区灯影组二段裂缝发育特征

    a—砂屑白云岩,高角度裂缝发育,蓬探1井5729.80~5729.85 m,黄色箭头指向高角度裂缝;b—凝块石白云岩,多期构造缝发育,蓬探1井5785.59 m,黄色箭头指向构造裂缝;c—凝块石白云岩,压溶缝及溶沟,蓬探103井5734.07~5734.27 m,黄色箭头指向压溶缝;d—凝块石白云岩,裂缝切穿孔隙,蓬探1井5780.84 m,黄色箭头指向孔隙被裂缝切穿

    Figure  6.  Fracture development characteristics of the second Member of Dengying Formation in the Penglai area

    (a) Sandy dolomite, high angle fracture development, Well Pengtan 1 5729.80m to 5729.85 m, high-angle fracture (yellow arrows); (b) Tuff dolomite, multi-stage structural fracture development, Well Pengtan 1 5785.59 m, structural fractures (yellow arrows); (c) Tuff dolomite, pressure solution fracture and solution ditch, Well Pengtan 103 5734.07 m to 5734.27 m, pressure dissolved pores (yellow arrow); (d) Tuff dolomite, fractures cut through pores, Well Pengtan 1 5780.84 m, pores cut through by cracks (yellow arrows)

    图  7  蓬莱地区灯影组二段储层孔隙度和渗透率分布直方图

    a—全直径岩芯孔隙度频率分布直方图;b—全直径岩芯样渗透率频率直方图

    Figure  7.  Porosity and permeability distribution histogram of reservoir in the second Member of Dengying Formation in the Penglai area

    (a) Full-diameter core porosity frequency distribution histogram; (b) Full-diameter core sample permeability frequency histogram

    图  8  蓬莱地区灯二段主要成岩作用

    a—藻凝块白云岩,粒内溶孔发育(准同生),蓬探1井5731.29 m,黄色箭头指向格架孔;b—藻凝块白云岩,选择性溶蚀(准同生),蓬探101井5757 m,黄色箭头指向格架孔;c—顺层孔洞(准同生),蓬探1井5740.83~5740.95 m,黄色箭头指向早表生溶洞;d—凝块石白云岩溶沟及溶洞,半充填(表生),蓬深4井6224.51~6224.66 m,黄色箭头指向早表生溶洞;e—花边云岩,见岩溶角砾,溶蚀孔洞多期白云石−沥青半充填(表生),蓬深4井6197.67 m,黄色箭头指向岩溶角砾;f—埋藏溶洞及伴生鞍状(埋藏),蓬探103井5929.02~5929.11 m,黄色箭头指向鞍状白云石;g—藻砂屑云岩,发育葡萄花边构造,残余孔中充填沥青(表生),蓬探101井5712.74 m,Cd1、Cd2、Cd3、Cd4分别为纤维状白云石胶结物、叶片状白云石胶结物、细—中晶白云石胶结物和粗晶鞍状白云石胶结物;h—角砾状白云岩,砾间被粗晶鞍状白云石胶结(埋藏),蓬探101井5762.70 m,Cd4为粗晶鞍状白云石胶结物;i—岩溶角砾,溶蚀孔洞部分被中—粗晶鞍状白云石胶结物充填,蓬深5井5672.77 m,黄色箭头为细—中晶白云岩

    Figure  8.  Main diagenesis of the second Member of Dengying Formation in the Penglai area

    (a) Algae clotted dolomite, with well-developed intragranular pores (quasi-syngenetic), framework pores (yellow arrows), Well Pengtan 1 5731.29 m; (b) Algae clotted dolomite, selective dissolution (quasi-syngenetic), framework pores (yellow arrows), Well Pengtan 101 5757 m; (c) Bedding pores and caves (quasi-syngenetic), early epigenetic caves (yellow arrows), Well Pengtan 1 5740.83−5740.95 m,; (d) Thrombolite dolomite karst gullies and caves, semi-filled (supergenetic), early epigenetic caves (yellow arrows), Well Pengshen 4 6224.51−6224.66 m; (e) Lace dolomite, with karst breccia, and the dissolved pores and caves are semi-filled with multi-stage dolomite-asphalt (supergene), karst breccia (yellow arrows), Well Pengshen 4 6197.67 m,; (f) Buried karst caves and associated saddles (buried), saddle dolomite (yellow arrows), Well Pengtan 103 5929.02-5929.11 m, ; (g) Algae sand-clast dolomite, with grape lace structure developed, and residual pores filled with asphalt (supergene),Well Pengtan 101 5712.74 m, Cd1, Cd2, Cd3, Cd4 are fibrous dolomite cement, foliated dolomite cement, fine-medium crystalline dolomite cement and coarse-crystalline saddle dolomite cement, respectively; (h) Brecciated dolomite, with coarse-crystalline saddle dolomite cemented between gravels (buried), Well Pengtan 101 5762.70 m, Cd4 is coarse-crystalline saddle dolomite cement; (i) Karst breccia, with dissolved pores partially filled with medium-coarse crystalline saddle dolomite cement, fine-medium-crystalline dolomite (yellow arrows), Well Pengshen 5 5672.77 m

    图  9  蓬莱地区灯影组二段单井成岩演化事件

    Figure  9.  Diagenetic evolution events of the second Member of the Dengying Formation in the Penglai area

    图  10  四川盆地蓬莱气区微生物凝块石白云岩储层的形成与演化模式

    Figure  10.  Formation and evolution model of microbial thrombolite dolomite reservoir in the Penglai area, Sichuan Basin

    (a) Sedimentation period; (b) Penecontemporaneous period; (c) Storage period; (d) Tectonic uplift period

    图  11  四川盆地蓬莱气区微生物叠层石白云岩储层的形成与演化模式

    Figure  11.  Formation and evolution model of microbial stromatolite dolomite reservoir in the Penglai area, Sichuan Basin

    (a) Sedimentation period; (b) Penecontemporaneous period; (c) Storage period; (d) Tectonic uplift period

    表  1  蓬莱地区灯影组灯二段储层孔隙度

    Table  1.   Reservoir porosity of the second Member of Dengying Formation in the Penglai area

    井号 孔隙度/% 样品
    个数
    最低 最高 平均 中值
    蓬深5 2.01 7.81 3.46 3.00 34
    蓬探1 2.71 6.68 4.85 4.60 8
    蓬探101 2.00 12.78 4.61 4.22 97
    蓬探102 2.00 5.31 3.18 3.22 21
    蓬探103 2.23 8.92 4.52 3.56 23
    中深103 2.08 7.06 3.26 2.90 13
    下载: 导出CSV

    表  2  蓬莱地区灯影组灯二段储层渗透率

    Table  2.   Reservoir permeability of the second Member of Dengying Formation in the Penglai area

    井号 渗透率/mD 样品
    个数
    最低 最高 平均 中值
    蓬深5 0.017 4.860 0.394 0.140 32
    蓬探1 0.014 0.129 0.058 0.035 7
    蓬探101 0.040 0.857 0.206 0.099 29
    蓬探102 0.038 0.569 0.175 0.100 18
    蓬探103 0.013 0.647 0.237 0.200 20
    中深103 0.011 3.100 0.908 0.617 13
    下载: 导出CSV
  • [1] AHR W M, MANCINI E A, PARCELL W C, 2011. Pore characteristics in microbial carbonate reservoirs[JC]//AAPG annual convention and exhibition. Houston: Datapages, IncAAPG Search & Discovery Article, 30167: 10-13.
    [2] AL HADDAD S, MANCINI E A, 2013. Reservoir characterization, modeling, and evaluation of Upper Jurassic Smackover microbial carbonate and associated facies in Little Cedar Creek field, southwest Alabama, eastern Gulf coastal plain of the United States[J]. AAPG Bulletin, 97(11): 2059-2083. doi: 10.1306/07081312187
    [3] AMINU M D, NABAVI S A, ROCHELLE C A, et al., 2017. A review of developments in carbon dioxide storage[J]. Applied Energy, 208: 1389-1419. doi: 10.1016/j.apenergy.2017.09.015
    [4] BERGMANN K D, GROTZINGER J, OSBURN M, 2012. Telling time in microbial carbonates: a case study from the Latest Precambrian, Sultanate of Oman[C]//2012 AAPG annual convention and exhibition. Long Beach: Datapages, Inc.
    [5] CHEN H W, WANG S L, HE Y, et al. , 2024. Sedimentary facies and reservoir characteristics of the fourth member of Dengying Formation in Well DB1l area, north-central Sichuan Basin[J/OLJ]. Petroleum Geology and Recovery Efficiency, 1-11[2024-07-06]. https://doi.org/10.13673/j.pgre.202308035.31(3): 31-411-11[2024-05-25]. (in Chinese with English abstract
    [6] CHEN J T, LEE J H, 2014. Current progress on the geological record of microbialites and microbial carbonates[J]. Acta Geologica Sinica-English Edition, 88(1): 260-275. doi: 10.1111/1755-6724.12196
    [7] CHEN X Q, TIAN X B, SHI J B, et al. , 2024. Sequence stratigraphic division and its control on favorable reserviors of Hechuan-Tongnan area in Sichuan Basin based on wavelet transform analysis: taking Member 4 of Upper Sinian Dengying Formation as an example[J/OL]. Petroleum Geology & Oilfield Development in Daqing, 1-9[2024-05-25]. https://doi.org/10.19597/J.ISSN.1000-3754.202309051. (in Chinese with English abstract
    [8] CHIDSEY JR T C, VANDEN BERG M D, EBY D E, 2015. Petrography and characterization of microbial carbonates and associated facies from modern Great Salt Lake and Uinta Basin's Eocene Green River Formation in Utah, USA[J]. Geological Society, London, Special Publications, 418(1): 261-286. doi: 10.1144/SP418.6
    [9] COLLINS J, KENTER J, PLAYTON T, et al. , 2012. Characterization and controls on slope geometry, framework and internal heterogeneity in the unit 1 Tengiz Field (Kazakhstan), and comparison with outcrop analogs. Abstract[C]//American Association of Petroleum Geologists AAPG annual convention and exhibition. Long BeachMeeting, CA, 84: Datapages, Inc. : 79-88.
    [10] CROSS M M, MANNING D A C, BOTTRELL S H, et al., 2004. Thermochemical sulphate reduction (TSR): experimental determination of reaction kinetics and implications of the observed reaction rates for petroleum reservoirs[J]. Organic Geochemistry, 35(4): 393-404. doi: 10.1016/j.orggeochem.2004.01.005
    [11] DAVIES G R, SMITH JR L B, 2006. Structurally controlled hydrothermal dolomite reservoir facies: an overview[J]. AAPG Bulletin, 90(11): 1641-1690. doi: 10.1306/05220605164
    [12] DU J H, HE H Q, ZHAO X Z, et al., 2017. Significant exploration breakthrough in Yangshuiwu ultra-deep and ultra-high temperature Ordovician buried-hill in Langgu sag, Bohai Bay Basin[J]. China Petroleum Exploration, 22(32): 1-12. (in Chinese with English abstract
    [13] DUAN J B, DAI L C, LI B S, et al., 2019. Reservoir characeteristices and their controlling factors of the fourth Member of Upper Sinian Dengying Fm in the northern Sichuan Basin[J]. Natural Gas Industry, 39(7): 9-20. (in Chinese with English abstract
    [14] DUPRAZ C, REID R P, BRAISSANT O, et al., 2009. Processes of carbonate precipitation in modern microbial mats[J]. Earth-Science Reviews, 96(3): 141-162. doi: 10.1016/j.earscirev.2008.10.005
    [15] FENG M Y, QIANG Z T, SHEN P, et al., 2016. Evidences for hydrothermal dolomite of Sinian Dengying Formation in Gaoshiti-Moxi area, Sichuan Basin[J]. Acta Petrolei Sinica, 37(5): 587-598. (in Chinese with English abstract
    [16] FU X D, ZHANG B J, WANG Z C, et al., 2023. Functions on Hydrocarbon Accumulation Strike-slip faults in central and western Sichuan Basin and their control functions on hydrocarbon accumulation[J]. Earth Science, 48(6): 2221-2237. (in Chinese with English abstract
    [17] GUO X S, HU D F, DUAN J B, et al., 2018. Rock features and sedimentary environment of the fourth member of Dengying Formation in Huijiaba section of Ningqiang, northern Sichuan Basin[J]. Petroleum Geology & Experiment, 40(6): 749-756. (in Chinese with English abstract
    [18] HE ZY L, JIN Z J, LI S J, et al., 2023. Prototypes, modifications, and hydrocarbon enrichment variations in basins influenced by Tethyan evolution: a comparative analysis of the Persian Gulf Basin and the Sichuan Basin[J]. Science China Earth Sciences, 66(12): 2871-2897. (in Chinese with English abstract doi: 10.1007/s11430-023-1207-x
    [19] HE ZY L, MA Y S, ZHU D Y, et al., 2021. Theoretical and technological progress and research direction of deep and ultra-deep carbonate reservoirs[J]. Oil & Gas Geology, 42(3): 533-546. (in Chinese with English abstract
    [20] HUANG S P, JIANG H, WANG T S, et al., 2023. Accumulation conditions and favorable exploration zones for natural gas in 8000 meters marine ultra-deep strata in the Sichuan basin[J]. Acta Geologica Sinica, 97(5): 1544-1560. (in Chinese with English abstract
    [21] JIANG L, HU A P, OU Y L, et al., 2023. Diagenetic evolution and effects on reservoir development of the Dengying and Longwangmiao formations, Central Sichuan Basin, Southwestern China[J]. Petroleum Science, 20(6): 3379-3393. doi: 10.1016/j.petsci.2023.09.025
    [22] JIANG L, HU S Y, ZHAO W Z, et al., 2018a. Diagenesis and its impact on a microbially derived carbonate reservoir from the Middle Triassic Leikoupo Formation, Sichuan Basin, China[J]. AAPG Bulletin, 102(12): 2599-2628. doi: 10.1306/05111817021
    [23] JIANG L, WORDEN R H, CAI C F, et al., 2018c. Contrasting diagenetic evolution patterns of platform margin limestones and dolostones in the Lower Triassic Feixianguan Formation, Sichuan Basin, China[J]. Marine and Petroleum Geology, 92: 332-351. doi: 10.1016/j.marpetgeo.2017.10.029
    [24] JIANG L, WORDEN R H, YANG C B, 2018b. Thermochemical sulphate reduction can improve carbonate petroleum reservoir quality[J]. Geochimica et Cosmochimica Acta, 223: 127-140. doi: 10.1016/j.gca.2017.11.032
    [25] JIAO F Z, 2018. Significance and prospect of ultra-deep carbonate fault-karst reservoirs in Shunbei area, Tarim Basin[J]. Oil & Gas Geology, 39(2): 207-216. (in Chinese with English abstract
    [26] LI P W, LUO P, SONG J M, et al., 2015. Characteristics of Upper Sinian dolostonedolomite reservoirs in northwestern margin of Tarim Basin[J]. Marine Origin Petroleum Geology, 20(4): 1-12. (in Chinese with English abstract
    [27] LI Y, WANG X Z, FENG M Y, et al., 2019. Reservoir characteristics and genetice differences between the second and fourth members of Sinian Dengying Formation in northern Sichuan Basin and its surrounding areas[J]. Petroleum Exploration and Development, 46(1): 52-64. (in Chinese with English abstract
    [28] LI Z W, RAN B, XIAO B, et al., 2019. Sinian to Early Cambrian uplift-depression framework along the northern margin of the Sichuan Basin, central China and its implications for hyvdrocarbhon expnloration[J]. Earth Science Frontiers, 26(1): 59-85. (in Chinese with English abstract
    [29] LIU Q Y, ZHU D Y, MENG Q Q, et al., 2024. Organic-inorganic interactions in the Earth's multi-spheres and resources effects[J]. Natural Gas Geoscience, 35(5): 741-762. (in Chinese with English abstract
    [30] LUO B, YANG Y M, LUO W J, et al., 2015. Controlling factors and distribution of reservoir development in Dengying Formation of paleo-uplift in central Sichuan Basin[J]. Acta Petrolei Sinica, 36(4): 416-426. (in Chinese with English abstract
    [31] LUO B, YANG Y, ZHOU G, et al., 2018. Basic characteristics and accumulation mechanism of Sinian−Cambrian giant highly mature and oil-cracking gas reservoirs in the Sichuan Basin, SW China[J]. Energy Exploration & Exploitation, 36(4): 568-590.
    [32] MA X H, YANG Y, WEN L, et al., 2019. Distribution and exploration direction of medium- and large-sized marine carbonate gas fields in Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 46(1): 1-13. (in Chinese with English abstract doi: 10.1016/S1876-3804(19)30001-1
    [33] MA Y S, CAI X Y, ZHAO P R, et al., 2010. Formation mechanism of deep-buried carbonate reservoir and its model of three-element controlling reservoir: a case study from the Puguang Oilfield in SichuanThe development mechanism of deep ultra-deep carbonate high-quality reservoirs and the' ternary reservoir control' model[J]. Acta Geologica Sinica, 84(8): 1087-1094235. (in Chinese with English abstract
    [34] MANCINI E A, PARCELL W C, AHR W M, et al., 2008. Upper Jurassic updip stratigraphic trap and associated Smackover microbial and nearshore carbonate facies, eastern Gulf coastal plain[J]. AAPG Bulletin, 92(4): 417-442. doi: 10.1306/11140707076
    [35] MUNIZ M C, BOSENCE D, 2012. Carbonate platforms in non-marine rift system in the Early Cretaceous (Pre-salt) of the Campos Basin, Brazil[C]//AAPG annual convention and exhibition. Long Beach: Datapages, Inc22-25.
    [36] REN Y, ZHONG D K, GAO C L, et al., 2015. Characteristics and controlling factors of the Lower Cambrian Longwangmiao Formation reservoirs in eastern Sichuan Basin and its adjacent areas[J]. Journal of Palaeogeography (Chinese Edition), 17(6): 829-840. (in Chinese with English abstract
    [37] SHI Y P, LIU Z G, WANG S C, et al. , 2024. Genetic mechanism and main controlling factors of high-quality clastic rock reservoirs in deep and ultra-deep layers: a case study of Oligocene Linhe Formation in Linhe Depression, Hetao Basin, NW China[J]. Petroleum Exploration and Development, 51(3): 478-4891-12[2024-05-25]. (in Chinese with English abstract
    [38] SI C S, HAO Y, ZHOU J G, et al., 2014. Reservoir Characteristics and main controlling factors of reservoir in Sinian Dengying Formation, in Sichuan Basin, China[J]. Journal of Chengdu University of Technology (Science & Technology Edition), 41(3): 266-273. (in Chinese with English abstract
    [39] SONG J M, LIU S G, SUN W, et al., 2013. Control of Xingkai taphrogenesis on Dengying Formation high quality reservoirs in Upper Sinian of Sichuan Basin, ChinaThe control effect of Xingkai ground fissure movement on the high quality reservoir of Dengying Formation in Sichuan Basin[J]. Journal of Chengdu University of Technology (Science & Technology Edition), 40(6): 658-670. (in Chinese with English abstract
    [40] TULL S J, 1997. The diversity of hydrocarbon habitat in Russia[J]. Petroleum Geoscience, 3(4): 315-325. doi: 10.1144/petgeo.3.4.315
    [41] WANG B S, YUAN H F, WANG T, et al. , 2024. Reservoir diagenesis, pore evolution and oil and gashydrocarbon charging inof the fourth member of the Sinian Dengying Formation in the Penglai area, central Sichuan Basin[J/OL]. Acta Sedimentologica Sinica, 1-24[2024-05-25]. https://doi.org/10.14027/j.issn.1000-0550.2024.012. (in Chinese with English abstract
    [42] WANG G Z, LIU S G, LI N, et al., 2014. Formation and preservation mechanism of high quality reservoir in deep burial dolomite in the Dengying Formation on the northern margin of the Sichuan basin[J]. Acta Petrologica Sinica, 30(3): 667-678. (in Chinese with English abstract
    [43] WANG J Q, DENG J X, LIU Z H, et al., 2023. Petrophysical properties and their influencing factors of carbonates in the fourth member of Sinian Dengying Formation, Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 50(6): 1185-1198. (in Chinese with English abstract
    [44] WANG W Y, PANG X Q, CHEN Z X, et al., 2019. Quantitative prediction of oil and gas prospects of the Sinian-Lower Paleozoic in the Sichuan Basin in central China[J]. Energy, 174: 861-872. doi: 10.1016/j.energy.2019.03.018
    [45] WANG Z C, JIANG H, CHEN Z Y, et al., 2020. Tectonice paleogeography of Late Sinian and its significances for petroleum exploration in the middle-upper Yangtze region, South China[J]. Petroleum Exploration and Development, 47(5): 884-897. (in Chinese with English abstract
    [46] WANG Z W, ZHANG K, WU Q H, et al.,2023. A method for predicting fractures in carbonate reservoirs based on fracture identification-sensitive log-seismic parameter model[J]. Coal Geology & Exploration,51(6):163-174. (in Chinese with English abstract
    [47] WEI G Q, DU J H, XU C C, et al., 2016. Characteristics and accumulation mode of large-scale Sinian-Cambrian gas reservoirs in the Gaoshiti-Moxi region, Sichuan Basin[J]. Petroleum Research, 1(2): 164-177. doi: 10.1016/S2096-2495(17)30040-6
    [48] WEN L, ZHANG J Y, PAN L YG, et al., 2023. Characteristics, controlling factors and exploration prospects of microbial dolomite reservoirs in the second member of Dengying Formation, Penglai-Zhongijiang area of central Sichuan Basin[J]. Petroleum Geology & Experiment, 45(5): 982-993. (in Chinese with English abstract
    [49] XIE J R, ZHANG Z L, ZHONG Y, et al., 2022. New understanding and potential analysis of natural gas exploration ofin the Dengying Member 2second member of Dengying Formation in central-northern area of Sichuan Basin[J]. Marine Origin Petroleum Geology, 27(3): 225-235. (in Chinese with English abstract
    [50] XIE W R, YANG W, WANG Z C, et al., 2021. Characteristics and main controlling factors on the development of a platform margin belt and its effect on hydrocarbon accumulation: a case study of Dengying Formation in Sichuan BasinCharacteristics of platform margin zone, main controlling factors of formation and their control on hydrocarbon accumulation: A case study of Dengying Formation in Sichuan Basin[J]. Chinese Journal of Geology(Scientia Geologica Sinica), 56(3): 867-883. (in Chinese with English abstract
    [51] XING F C, HU H R, HOU M C, et al., 2018. Carbonate reservoirs cycles and assemblages under the tectonic and palaeogeography control: a case study from Sichuan Basin[J]. Earth Science, 43(10): 3540-3552. (in Chinese with English abstract
    [52] XU C C, SHEN P, YANG Y M, et al., 2020. New understandings and potential of Sinian-Lower Paleozoic natural gas exploration in the central Sichuan paleo-uplift of the Sichuan Basin[J]. Natural Gas Industry, 40(7): 1-9. (in Chinese with English abstract
    [53] XU S L, MA K, YANG Q, et al., 2024. Reservoir characteristics of the second member of Sinian Dengying Formation in Penglai gas area of Sichuan Basin and their controlling factors[J]. Special Oil & Gas Reservoirs, 31(2): 47-56. (in Chinese with English abstract
    [54] YANG W, WEI G Q, WU S JWEI Y, GUOQI W E I, SAIJUN W U, et al., 2023. Regional unconformities and their controls on hydrocarbon accumulation in Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 50(3): 573-587. doi: 10.1016/S1876-3804(23)60411-2
    [55] YANG Y, HUANG X P, ZHANG J, et al., 2014. Features and geologic significances of the top Sinian karst landform before the Cambrian deposition in the Sichuan Basin[J]. Natural Gas Industry, 34(3): 38-43. (in Chinese with English abstract
    [56] YANG Y, WEN L, ZHOU G, et al., 2023. New fields, new types and resource potentials of hydrocarbonoil and gas exploration in Sichuan Basin[J]. Acta Petrolei Sinica, 44(12): 2045-2069. (in Chinese with English abstract
    [57] ZHANG B J, MA H L, LI W Z, et al., 2023a. Reservoir characteristics and main controlling factors in the second member of the Dengying Formation in the Penglai Gas Field, Sichuan Basin[J]. Natural Gas Geoscience, 34(11): 1899-1915. (in Chinese with English abstract
    [58] ZHANG B J, ZHONG Y, ZHOU G, et al., 2023b. Sedimentary microfacies evolution and gas reservoir comprehensive evaluation of gas reservoirthe second member of the Dengying Member 2Formation in Penglai area, central Sichuan Basin[J]. Marine Origin Petroleum Geology, 28(1): 1-10. (in Chinese with English abstract
    [59] ZHANG X H, LI Y, ZHANG B J, et al., 2023. Characteristics and formation mechanism of high quality reservoir of the second member of the Dengying Formation in Zhongjiang-Penglai area, Sichuan Basin, China[J]. Journal of Chengdu University of Technology (Science & Technology Edition), 50(3): 301-312. (in Chinese with English abstract
    [60] ZHANG Y Y, LI Y, MUNNECKE A, 2014. Late Ordovician microbial reefs in the Lianglitag Formation (Bachu, Tarim, NW China)[J]. Facies, 60(2): 663-684. doi: 10.1007/s10347-014-0396-2
    [61] ZHANG Z L, QIAO Y P, DOU S, et al., 2024. Karst paleogeomorphology and reservoir control model of the 2nd member of Dengying Formation in Penglai gas area, Sichuan Basin, China[J]. Oil & Gas Geology, 45(1): 200-214. (in Chinese with English abstract
    [62] ZHAO H, SUN Y, WU Y, et al., 2023. Seismic identification and favorable area prediction of hilly-shoal reservoir in the second member of Dengying Formation in Zhongjiang-Penglai area, Sichuan Basin[J]. Natural Gas Geoscience, 34(6): 980-991. (in Chinese with English abstract
    [63] ZHAO W Z, SHEN A J, HU S Y, et al., 2012. Geological conditions and distributional features of large-scale carbonate reservoirs onshore China[J]. Petroleum Exploration and Development, 39(1): 1-12. (in Chinese with English abstract doi: 10.1016/S1876-3804(12)60010-X
    [64] ZHENG J, WEN L, GE Y H, et al., 2023. U–Pb dating of fibrous dolomite in the hydrothermal dolostone of the Dengying Formation, central Sichuan Basin, and its response to supercontinent breakup[J]. Minerals, 13(10): 1353. doi: 10.3390/min13101353
    [65] ZHOU J G, YAO G S, YANG G, et al., 2015. Genesis mechanism of the Sinian-Cambrian reservoirs in the Anyue gas field, Sichuan Basin[J]. Natural Gas Industry, 35(1): 36-44. (in Chinese with English abstract
    [66] ZHU D Y, JIN Z J, ZHANG R Q, et al., 2014. Characteristics and developing mechanism of Sinian Dengying Formation dolomite reservoir with multi-stage karstSuperimposed development characteristics and mechanism of multi-stage karst reservoirs in dolomite of Sinian Dengying Formation[J]. Earth Science Frontiers, 21(6): 335-345. (in Chinese with English abstract
    [67] ZOU C N, DU J H, XU C C, et al., 2014. Formation, distribution, resource potential and discovery of the Sinian-Cambrian giant gas field, Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 41(3): 278-293. (in Chinese with English abstract
    [68] 陈泓位,王时林,和源,等,2024. 四川盆地中北部DB1井区灯影组四段沉积相及储层特征[J/OL]. 油气地质与采收率:1-11[2024-07-06]. https://doi.org/10.13673/j.pgre.202308035.
    [69] 陈孝全,田小彬,师江波,等,2024. 四川盆地合川-潼南地区基于小波变换的层序地层划分及其对有利储层的控制作用:以上震旦统灯影组四段为例[J/OL]. 大庆石油地质与开发,1-9[2024-05-25]. https://doi.org/10.19597/J.ISSN.1000-3754.202309051.
    [70] 杜金虎,何海清,赵贤正,等,2017. 渤海湾盆地廊固凹陷杨税务超深超高温奥陶系潜山油气勘探重大突破实践与启示[J]. 中国石油勘探,22(32):1-12.
    [71] 段金宝,代林呈,李毕松,等,2019. 四川盆地北部上震旦统灯影组四段储层特征及其控制因素[J]. 天然气工业,39(7):9-20. doi: 10.3787/j.issn.1000-0976.2019.07.002
    [72] 冯明友,强子同,沈平,等,2016. 四川盆地高石梯−磨溪地区震旦系灯影组热液白云岩证据[J]. 石油学报,37(5):587-598. doi: 10.7623/syxb201605003
    [73] 付小东,张本健,汪泽成,等,2023. 四川盆地中西部走滑断裂及其对油气成藏控制作用[J]. 地球科学,48(6):2221-2237.
    [74] 郭旭升,胡东风,段金宝,等,2018. 四川盆地北部宁强胡家坝灯影组四段岩石特征及沉积环境分析[J]. 石油实验地质,40(6):749-756. doi: 10.11781/sysydz201806749
    [75] 何治亮,金之钧,李双建,等,2023. 特提斯演化控制下盆地原型、改造与油气差异富集:基于波斯湾盆地与四川盆地的比较分析[J]. 中国科学:地球科学,53(12):2914-2936.
    [76] 何治亮,马永生,朱东亚,等,2021. 深层—超深层碳酸盐岩储层理论技术进展与攻关方向[J]. 石油与天然气地质,42(3):533-546. doi: 10.11743/ogg20210301
    [77] 黄士鹏,姜华,王铜山,等,2023. 四川盆地8000m海相超深层天然气成藏条件及有利勘探区带[J]. 地质学报,97(5):1544-1560. doi: 10.3969/j.issn.0001-5717.2023.05.013
    [78] 焦方正,2018. 塔里木盆地顺北特深碳酸盐岩断溶体油气藏发现意义与前景[J]. 石油与天然气地质,39(2):207-216. doi: 10.11743/ogg20180201
    [79] 李朋威,罗平,宋金民,等,2015. 塔里木盆地西北缘上震旦统白云岩储层特征[J]. 海相油气地质,20(4):1-12. doi: 10.3969/j.issn.1672-9854.2015.04.001
    [80] 李勇,王兴志,冯明友,等,2019. 四川盆地北部及周缘地区震旦系灯影组二段、四段储集层特征及成因差异[J]. 石油勘探与开发,46(1):52-64. doi: 10.11698/PED.2019.01.05
    [81] 李智武,冉波,肖斌,等,2019. 四川盆地北缘震旦纪—早寒武世隆−坳格局及其油气勘探意义[J]. 地学前缘,26(1):59-85.
    [82] 刘全有,朱东亚,孟庆强,等,2024. 地球多层圈有机—无机相互作用的资源效应[J]. 天然气地球科学,35(5):741-762. doi: 10.11764/j.issn.1672-1926.2024.04.001
    [83] 罗冰,杨跃明,罗文军,等,2015. 川中古隆起灯影组储层发育控制因素及展布[J]. 石油学报,36(4):416-426. doi: 10.7623/syxb201504003
    [84] 马新华,杨雨,文龙,等,2019. 四川盆地海相碳酸盐岩大中型气田分布规律及勘探方向[J]. 石油勘探与开发,46(1):1-13. doi: 10.11698/PED.2019.01.01
    [85] 马永生,蔡勋育,赵培荣,等,2010. 深层超深层碳酸盐岩优质储层发育机理和“三元控储”模式:以四川普光气田为例[J]. 地质学报,84(8):1087-1094235.
    [86] 任影,钟大康,高崇龙,等,2015. 川东及其周缘地区下寒武统龙王庙组储集层特征与控制因素[J]. 古地理学报,17(6):829-840. doi: 10.7605/gdlxb.2015.06.068
    [87] 史原鹏,刘占国,王少春,等,2024. 深层—超深层优质碎屑岩储层成因及主控因素:以河套盆地临河坳陷古近系渐新统临河组为例[J]. 石油勘探与开发,51(3):478-4891-12[2024-05-25].
    [88] 斯春松,郝毅,周进高,等,2014. 四川盆地灯影组储层特征及主控因素[J]. 成都理工大学学报(自然科学版),41(3):266-273. doi: 10.3969/j.issn.1671-9727.2014.03.02
    [89] 宋金民,刘树根,孙玮,等,2013. 兴凯地裂运动对四川盆地灯影组优质储层的控制作用[J]. 成都理工大学学报(自然科学版),40(6):658-670.
    [90] 汪泽成,姜华,陈志勇,等,2020. 中上扬子地区晚震旦世构造古地理及油气地质意义[J]. 石油勘探与开发,47(5):884-897. doi: 10.11698/PED.2020.05.04
    [91] 王炳森,袁海锋,王涛,等,2024. 川中蓬莱地区震旦系灯影组四段储层成岩作用、孔隙演化及油气充注[J/OL]. 沉积学报,1-24[2024-05-25]. https://doi.org/10.14027/j.issn.1000-0550.2024.012.
    [92] 王国芝,刘树根,李娜,等,2014. 四川盆地北缘灯影组深埋白云岩优质储层形成与保存机制[J]. 岩石学报,30(3):667-678.
    [93] 王佳庆,邓继新,刘忠华,等,2023. 四川盆地震旦系灯影组四段碳酸盐岩岩石物理特征及影响因素[J]. 石油勘探与开发,50(6):1185-1198. doi: 10.11698/PED.20230303
    [94] 王志伟, 张凯, 武群虎, 等,2023. 基于井震裂缝识别敏感性参数模型的碳酸盐岩储层裂缝预测方法[J]. 煤田地质与勘探,51(6):163-174
    [95] 文龙,张建勇,潘立银,等,2023. 川中蓬莱—中江地区灯二段微生物白云岩储层特征、发育主控因素与勘探领域[J]. 石油实验地质,45(5):982-993. doi: 10.11781/sysydz202305982
    [96] 谢继容,张自力,钟原,等,2022. 四川盆地中部—北部地区灯影组二段天然气勘探新认识及潜力分析[J]. 海相油气地质,27(3):225-235. doi: 10.3969/j.issn.1672-9854.2022.03.001
    [97] 谢武仁,杨威,汪泽成,等,2021. 台缘带特征、形成主控因素及其对油气成藏的控制:以四川盆地灯影组为例[J]. 地质科学,56(3):867-883. doi: 10.12017/dzkx.2021.045
    [98] 邢凤存,胡华蕊,侯明才,等,2018. 构造和古地理控制下的碳酸盐岩储集体旋回和集群性探讨:以四川盆地为例[J]. 地球科学,43(10):3540-3552.
    [99] 徐春春,沈平,杨跃明,等,2020. 四川盆地川中古隆起震旦系—下古生界天然气勘探新认识及勘探潜力[J]. 天然气工业,40(7):1-9. doi: 10.3787/j.issn.1000-0976.2020.07.001
    [100] 徐少立,马奎,杨强,等,2024. 四川盆地蓬莱气区震旦系灯影组二段储层特征及其控制因素[J]. 特种油气藏,31(2):47-56. doi: 10.3969/j.issn.1006-6535.2024.02.006
    [101] 杨雨,黄先平,张健,等,2014. 四川盆地寒武系沉积前震旦系顶界岩溶地貌特征及其地质意义[J]. 天然气工业,34(3):38-43. doi: 10.3787/j.issn.1000-0976.2014.03.0016
    [102] 杨雨,文龙,周刚,等,2023. 四川盆地油气勘探新领域、新类型及资源潜力[J]. 石油学报,44(12):2045-2069. doi: 10.7623/syxb202312004
    [103] 张本健,马华灵,李文正,等,2023a. 四川盆地蓬莱气区灯二段储集层特征及主控因素[J]. 天然气地球科学,34(11):1899-1915.
    [104] 张本健,钟原,周刚,等,2023b. 四川盆地中部蓬莱地区灯二段沉积微相演化及气藏综合评价[J]. 海相油气地质,28(1):1-10.
    [105] 张玺华,李勇,张本健,等,2023. 四川盆地中江−蓬莱地区灯二段储层特征及优质储层成因机制[J]. 成都理工大学学报(自然科学版),50(3):301-312. doi: 10.3969/j.issn.1671-9727.2023.03.05
    [106] 张自力,乔艳萍,豆霜,等,2024. 四川盆地蓬莱气区震旦系灯影组二段岩溶古地貌与控储模式[J]. 石油与天然气地质,45(1):200-214. doi: 10.11743/ogg20240114
    [107] 赵虎,孙勇,吴勇,等,2023. 四川盆地中江—蓬莱地区灯二段丘滩体储层地震识别及有利区预测[J]. 天然气地球科学,34(6):980-991.
    [108] 赵文智,沈安江,胡素云,等,2012. 中国碳酸盐岩储集层大型化发育的地质条件与分布特征[J]. 石油勘探与开发,39(1):1-12.
    [109] 周进高,姚根顺,杨光,等,2015. 四川盆地安岳大气田震旦系—寒武系储层的发育机制[J]. 天然气工业,35(1):36-44. doi: 10.3787/j.issn.1000-0976.2015.01.004
    [110] 朱东亚,金之钧,张荣强,等,2014. 震旦系灯影组白云岩多级次岩溶储层叠合发育特征及机制[J]. 地学前缘,21(6):335-345.
    [111] 邹才能,杜金虎,徐春春,等,2014. 四川盆地震旦系—寒武系特大型气田形成分布、资源潜力及勘探发现[J]. 石油勘探与开发,41(3):278-293. doi: 10.11698/PED.2014.03.03
  • 期刊类型引用(1)

    1. 刘凯铭,王兴志,韦明洋,李阳,陈旺,王文之,李勇,马奎. 四川盆地蓬莱地区灯影组四段超深层白云岩储集层特征及主控因素. 古地理学报. 2025(01): 109-125 . 百度学术

    其他类型引用(0)

  • 加载中
图(11) / 表(2)
计量
  • 文章访问数:  293
  • HTML全文浏览量:  111
  • PDF下载量:  63
  • 被引次数: 1
出版历程
  • 收稿日期:  2024-06-02
  • 修回日期:  2024-06-23
  • 录用日期:  2024-07-01
  • 预出版日期:  2024-07-15
  • 刊出日期:  2024-08-28

目录

/

返回文章
返回