-
摘要: 降雨是中国山区滑坡的主要触发因子,滑坡在时间上具有显著的季节性集中特征。为实现对中长期地质灾害风险的定量识别,构建适用于全国尺度的月尺度降雨型滑坡发生概率评估框架,揭示降雨与滑坡发生的时空响应规律。基于全国1 km分辨率月度降雨数据,采用Patch分块的长短时记忆网络(LSTM)构建月降雨预测模型,验证其在月尺度的时空连续性与精度表现。以云南省4次典型强降雨事件(德宏州2020年、大关县2021年、贡山县2020年与2022年)为样本,建立包含8503条滑坡数据的降雨触发滑坡数据库,融合地形、地质、水文与气候等多源因子,采用逻辑回归与梯度提升树模型构建降雨–滑坡发生概率模型。利用全国月度降雨预测结果进行概率映射,形成全国月尺度滑坡发生概率分布图,并通过AUC、PR-AUC与Brier分数等指标开展精度评估。全国月度降雨预测结果与台站观测数据的平均绝对误差为14.6 mm,均方根误差为35.1 mm,决定系数R2为0.51,表明Patch-LSTM模型在月尺度预测中表现良好。概率模型的AUC值达到0.83,PR-AUC为0.78,Brier分数为0.17,显示预测稳定性较高。结果表明,滑坡发生概率呈现“前后低、中间高”的年变化趋势,6—8月为高发期;空间上高风险区集中于西南(藏东南、四川中部、云南南部)、华南(桂东北、粤中)及华东(浙南、闽北)等地。滑坡概率与月降雨量呈显著正相关,说明降雨是主控驱动力,地形起伏与地层破碎度对其具有放大作用。建立的月尺度降雨型滑坡概率评估框架实现了从典型事件到全国尺度的可推广应用,揭示了降雨驱动下滑坡发生的时空规律。研究成果可为地质灾害风险普查、汛期防灾准备与中期风险预警提供科学依据,并为构建中国国家地质灾害中长期风险预测体系提供技术支撑。Abstract:
Objective Rainfall is a major trigger for landslides in mountainous regions of China, exhibiting distinct seasonal and spatial aggregation characteristics. To achieve quantitative identification of medium- to long-term geological disaster risks, this study aims to develop a nationwide monthly-scale probabilistic framework for rainfall-induced landslides, integrating rainfall forecasting and data-driven modeling to reveal the spatiotemporal response between rainfall variability and landslide occurrence. Methods A 1 km resolution monthly rainfall forecasting model was established using a Patch-based Long Short-Term Memory (Patch-LSTM) network trained on multi-source precipitation data spanning 1901–2023. The model’s spatial continuity and predictive performance were validated using records from independent meteorological stations. A database of rainfall-induced landslides was compiled from four typical heavy rainfall events in Yunnan Province (Dehong 2020, Daguan 2021, Gongshan 2020 and 2022), containing 8503 mapped landslides with associated topographic, geological, hydrological, and climatic factors. These datasets were used to train a probabilistic rainfall–landslide occurrence model combining logistic regression and Gradient Boosting Tree (GBT) algorithms. The model outputs were spatially coupled with monthly rainfall forecasts to generate nationwide monthly probability maps of rainfall-induced landslides. Model performance was evaluated using the area under the receiver operating characteristic curve (AUC), the precision–recall AUC (PR-AUC), and the Brier score. Results The Patch-LSTM model achieved an average absolute error (MAE) of 14.6 mm, a root mean square error (RMSE) of 35.1 mm, and a coefficient of determination (R2) of 0.51, indicating reliable capability in reproducing monthly precipitation patterns. The probabilistic landslide model showed robust predictive performance, with AUC = 0.83, PR-AUC = 0.78, and Brier score = 0.17. The spatial-temporal patterns revealed distinct “low–high–low” annual variations, with markedly elevated probabilities between June and August corresponding to the main monsoon season. Spatially, high-risk zones were concentrated in (1) southwestern China—southeastern Tibet, central Sichuan, and southern Yunnan—where steep terrain and fractured lithology amplify rainfall effects; (2) southern China—northeastern Guangxi and central Guangdong—influenced by prolonged monsoon rains and typhoon events; and (3) eastern coastal areas—southern Zhejiang and northern Fujian—where intense rainfall interacts with deeply weathered granite and volcanic formations. Across these regions, the probability of landslide occurrence exhibited a significant positive correlation with monthly rainfall intensity, confirming rainfall as the dominant trigger, while topographic relief and geological structure exerted secondary amplifying influences. Conclusions The proposed probabilistic framework effectively bridges the gap between event-scale case studies and national-scale monthly prediction, enabling a continuous spatial assessment of rainfall-induced landslide hazards. [Significance] The results provide scientific evidence for identifying seasonal risk hotspots, optimizing disaster prevention and mitigation planning, and supporting mid-term early warning and resource allocation during the flood season. This study establishes a methodological foundation for integrating monthly-scale hazard prediction into China’s geological disaster risk management system, offering a scalable approach applicable to other regions and hazard types worldwide. -
图 4 4次降雨滑坡空间分布及滑坡点密度图,
a— 德宏州局部(2020年7月);b—大关县局部及邻区(2021年9月);c—贡山县(2022年4月);d—贡山县局部(2020年5月)
Figure 4. Spatial distribution of landslides and landslide point density maps for the four rainfall events
(a) A part of Dehong Prefecture (July 2020); (b) A part of Daguan County and adjacent regions (September 2021); (c) Gongshan County (April 2022); (d) A part of Gongshan County (May 2020)
-
[1] ALEOTTI P, 2004. A warning system for rainfall-induced shallow failures[J]. Engineering Geology, 73(3-4): 247-265. doi: 10.1016/j.enggeo.2004.01.007 [2] BENZ S A, BLUM P, 2019. Global detection of rainfall-triggered landslide clusters[J]. Natural Hazards and Earth System Sciences, 19(7): 1433-1444. doi: 10.5194/nhess-19-1433-2019 [3] BRUNETTI M T, PERUCCACCI S, ROSSI M, et al., 2010. Rainfall thresholds for the possible occurrence of landslides in Italy[J]. Natural Hazards and Earth System Sciences, 10(3): 447-458. doi: 10.5194/nhess-10-447-2010 [4] CAINE N, 1980. The rainfall intensity-duration control of shallow landslides and debris flows[J]. Geografiska Annaler: Series A, Physical Geography, 62(1-2): 23-27. doi: 10.1080/04353676.1980.11879996 [5] CHANG J M, CHEN H, JOU B J D, et al., 2017. Characteristics of rainfall intensity, duration, and kinetic energy for landslide triggering in Taiwan[J]. Engineering Geology, 231: 81-87. doi: 10.1016/j.enggeo.2017.10.006 [6] CHEN C W, OGUCHI T, HAYAKAWA Y S, et al., 2017. Relationship between landslide size and rainfall conditions in Taiwan[J]. Landslides, 14(3): 1235-1240. doi: 10.1007/s10346-016-0790-7 [7] CICCARESE G, MULAS M, CORSINI A, 2021. Combining spatial modelling and regionalization of rainfall thresholds for debris flows hazard mapping in the Emilia-Romagna Apennines (Italy)[J]. Landslides, 18(11): 3513-3529. [8] CONG J W, 2020. Rainfall threshold research of rainfall-induced landslides in Tianshui area[D]. Lanzhou: Lanzhou University. (in Chinese with English abstract) [9] FICK S E, HIJMANS R J, 2017. WorldClim 2: new 1‐km spatial resolution climate surfaces for global land areas[J]. International Journal of Climatology, 37(12): 4302-4315. doi: 10.1002/joc.5086 [10] GAO H R, XU C, WU S E, et al., 2025. Has the unpredictability of geological disasters been increased by global warming?[J]. npj Natural Hazards, 2(1): 55. doi: 10.1038/s44304-025-00108-0 [11] GARIANO S L, GUZZETTI F, 2016. Landslides in a changing climate[J]. Earth-Science Reviews, 162: 227-252. doi: 10.1016/j.earscirev.2016.08.011 [12] GIANNECCHINI R, GALANTI Y, D'AMATO AVANZI G, 2012. Critical rainfall thresholds for triggering shallow landslides in the Serchio River Valley (Tuscany, Italy)[J]. Natural Hazards and Earth System Sciences, 12(3): 829-842. doi: 10.5194/nhess-12-829-2012 [13] GOLDFARB D, REN Y, BAHAMOU A, 2020. Practical quasi-newton methods for training deep neural networks[C]//Proceedings of the 34th international conference on neural information processing systems. Vancouver: ACM: 201. [14] GUO X J, CUI P, LI Y, et al., 2016. Spatial features of debris flows and their rainfall thresholds in the Wenchuan earthquake-affected area[J]. Landslides, 13(5): 1215-1229. doi: 10.1007/s10346-015-0608-z [15] GUZZETTI F, PERUCCACCI S, ROSSI M, et al., 2008. The rainfall intensity–duration control of shallow landslides and debris flows: an update[J]. Landslides, 5(1): 3-17. doi: 10.1007/s10346-007-0112-1 [16] HAO J S, HUANG F R, LIU Y, et al., 2018. Avalanche activity and characteristics of its triggering factors in the western Tianshan Mountains, China[J]. Journal of Mountain Science, 15(7): 1397-1411. doi: 10.1007/s11629-018-4941-2 [17] HSU Y C, LIU K F, 2019. Combining TRIGRS and DEBRIS-2D models for the simulation of a rainfall infiltration induced shallow landslide and subsequent debris flow[J]. Water, 11(5): 890. doi: 10.3390/w11050890 [18] HUANG Y D, XU C, LIU Y, et al., 2025. Inventory and distribution feature of shallow landslides triggered by heavy rain event in Shaoguan, Guangdong Province in April 2024[J]. The Chinese Journal of Geological Hazard and Control, 36(2): 28-42. (in Chinese with English abstract) [19] IVERSON R M, 2000. Landslide triggering by rain infiltration[J]. Water Resources Research, 36(7): 1897-1910. doi: 10.1029/2000WR900090 [20] JARVIS A, REUTER H, NELSON A, et al. , 2008. Hole-filled seamless SRTM data V4[R]. Cali: International Centre for Tropical Agriculture (CIAT). [21] KAMAL A S M M, AHMED B, TASNIM S, et al., 2022. Assessing rainfall-induced landslide risk in a humanitarian context: the Kutupalong Rohingya Camp in Cox's Bazar, Bangladesh[J]. Natural Hazards Research, 2(3): 230-248. doi: 10.1016/j.nhres.2022.08.006 [22] LARSEN M C, SIMON A, 1993. A rainfall intensity-duration threshold for landslides in a humid-tropical environment, Puerto Rico[J]. Geografiska Annaler: Series A, Physical Geography, 75(1-2): 13-23. doi: 10.1080/04353676.1993.11880379 [23] LEE W Y, PARK S K, SUNG H H, 2021. The optimal rainfall thresholds and probabilistic rainfall conditions for a landslide early warning system for Chuncheon, Republic of Korea[J]. Landslides, 18(5): 1721-1739. doi: 10.1007/s10346-020-01603-3 [24] LI Q, RU Y F, TAO Z Y, et al., 2025. Uncertainty quantification of ensemble inverse analysis for rainfall-induced slope failure using mixture probabilistic programming[J]. Engineering Geology, 357: 108341. doi: 10.1016/j.enggeo.2025.108341 [25] LI T, XIE C C, XU C, et al., 2024. Automated machine learning for rainfall-induced landslide hazard mapping in Luhe County of Guangdong Province, China[J]. China Geology, 7(2): 315-329. doi: 10.31035/cg2024064 [26] LI W Y, LIU C, SCAIONI M, et al., 2017. Spatio-temporal analysis and simulation on shallow rainfall-induced landslides in China using landslide susceptibility dynamics and rainfall I-D thresholds[J]. Science China Earth Sciences, 60(4): 720-732. doi: 10.1007/s11430-016-9008-4 [27] LIN Q G, STEGER S, PITTORE M, et al., 2022. Evaluation of potential changes in landslide susceptibility and landslide occurrence frequency in China under climate change[J]. Science of the Total Environment, 850: 158049. doi: 10.1016/j.scitotenv.2022.158049 [28] LIU D C, NOCEDAL J, 1989. On the limited memory BFGS method for large scale optimization[J]. Mathematical Programming, 45(1): 503-528. [29] LU Q Y, DENG Z D, QIU J A, et al. , 2025. Emergency response mechanisms for sudden-onset geohazards: a landslide-focused investigation[J]. City and Disaster Reduction(4): 52-59. (in Chinese with English abstract) [30] MA C, WANG Y J, HU K H, et al., 2017. Rainfall intensity–duration threshold and erosion competence of debris flows in four areas affected by the 2008 Wenchuan earthquake[J]. Geomorphology, 282: 85-95. doi: 10.1016/j.geomorph.2017.01.012 [31] MA S Y, XU C, XU X W, et al., 2020. Characteristics and causes of the landslide on July 23, 2019 in Shuicheng, Guizhou Province, China[J]. Landslides, 17(6): 1441-1452. doi: 10.1007/s10346-020-01374-x [32] MA S Y, SHAO X Y, XU C, et al., 2021. MAT. TRIGRS (V1.0): A new open-source tool for predicting spatiotemporal distribution of rainfall-induced landslides[J]. Natural Hazards Research, 1(4): 161-170. doi: 10.1016/j.nhres.2021.11.001 [33] MA S Y, 2022. The distribution characteristics and hazard assessment of landslide under various earthquake and rainfall scenarios[D]. Beijing: Institute of Geology, China Earthquake Administration. (in Chinese with English abstract) [34] MA S Y, SHAO X Y, XU C, 2022. Characterizing the distribution pattern and a physically based susceptibility assessment of shallow landslides triggered by the 2019 heavy rainfall event in Longchuan County, Guangdong Province, China[J]. Remote Sensing, 14(17): 4257. doi: 10.3390/rs14174257 [35] MA S Y, SHAO X Y, XU C, 2023a. Landslides triggered by the 2016 heavy rainfall event in Sanming, Fujian Province: distribution pattern analysis and spatio-temporal susceptibility assessment[J]. Remote Sensing, 15(11): 2738. doi: 10.3390/rs15112738 [36] MA S Y, SHAO X Y, XU C, et al., 2023b. Insight from a physical-based model for the triggering mechanism of loess landslides induced by the 2013 Tianshui heavy rainfall event[J]. Water, 15(3): 443. doi: 10.3390/w15030443 [37] MA S Y, SHAO X Y, XU C, 2025a. Insight into data-driven model for the formation mechanism and causative factors of landslides induced by the 2013 Tianshui extreme rainfall event[J]. Geomatics, Natural Hazards and Risk, 16(1): 2487826. doi: 10.1080/19475705.2025.2487826 [38] MA S Y, SHAO X Y, XU C, et al., 2025b. Topographic location and connectivity to channel of earthquake- and rainfall-induced landslides in Loess Plateau area[J]. Scientific Reports, 15(1): 628. doi: 10.1038/s41598-024-84885-0 [39] MA T H, LI C J, LU Z M, et al., 2015. Rainfall intensity-duration thresholds for the initiation of landslides in Zhejiang Province, China[J]. Geomorphology, 245: 193-206. doi: 10.1016/j.geomorph.2015.05.016 [40] NG C W W, YANG B, LIU Z Q, et al., 2021. Spatiotemporal modelling of rainfall-induced landslides using machine learning[J]. Landslides, 18(7): 2499-2514. doi: 10.1007/s10346-021-01662-0 [41] NISSEN K M, WILDE M, KREUZER T M, et al., 2025. The effect of climate change on landslide probability in Germany[J]. Landslides, 22(9): 2979-2994. doi: 10.1007/s10346-025-02555-2 [42] PENG S Z, DING Y X, LIU W Z, et al., 2019. 1 km monthly temperature and precipitation dataset for China from 1901 to 2017[J]. Earth System Science Data, 11(4): 1931-1946. doi: 10.5194/essd-11-1931-2019 [43] PENG S Z, 2010. 1-km monthly precipitation dataset for China (1901-2024)[EB/OL]. [2025-07-02]. https://www.tpdc.ac.cn/zh-hans/data/faae7605-a0f2-4d18-b28f-5cee413766a2. DOI: 10.5281/zenodo.3114194 (in Chinese). [44] QI W W, XU C, HOU J S, et al., 2025. Characteristics and risk assessment of geological hazards triggered by rainfall in the flooding season: a case study of the main flooding season in 2023[J]. Safety & Security, 46(3): 10-18. (in Chinese with English abstract) [45] ROSATTI G, ZUGLIANI D, PIRULLI M, et al., 2019. A new method for evaluating stony debris flow rainfall thresholds: the backward dynamical approach[J]. Heliyon, 5(6): e01994. doi: 10.1016/j.heliyon.2019.e01994 [46] SAITO H, NAKAYAMA D, MATSUYAMA H, 2010. Relationship between the initiation of a shallow landslide and rainfall intensity—duration thresholds in Japan[J]. Geomorphology, 118(1-2): 167-175. doi: 10.1016/j.geomorph.2009.12.016 [47] SHAO X Y, MA S Y, XU C, et al., 2023. Insight into the characteristics and triggers of loess landslides during the 2013 heavy rainfall event in the Tianshui Area, China[J]. Remote Sensing, 15(17): 4304. doi: 10.3390/rs15174304 [48] SHEN L L, LIU L Y, YANG W T, et al., 2015. Rainfall threshold analysis for the initiation of geological disasters in Sichuan province based on TRMM data[J]. Journal of Catastrophology, 30(1): 220-227. (in Chinese with English abstract) [49] TEJA T S, DIKSHIT A, SATYAM N, 2019. Determination of rainfall thresholds for landslide prediction using an algorithm-based approach: case study in the darjeeling himalayas, India[J]. Geosciences, 9(7): 302. doi: 10.3390/geosciences9070302 [50] VADIVEL S, SENNIMALAI C S, 2019. Failure mechanism of long-runout landslide triggered by heavy rainfall in achanakkal, nilgiris, India[J]. Journal of Geotechnical and Geoenvironmental Engineering, 145(9): 04019047. doi: 10.1061/(ASCE)GT.1943-5606.0002099 [51] WANG H L, JIANG Z H, XU W Y, et al., 2022. Physical model test on deformation and failure mechanism of deposit landslide under gradient rainfall[J]. Bulletin of Engineering Geology and the Environment, 81(1): 66. doi: 10.1007/s10064-021-02566-y [52] WANG Z H, YANG S N, YAO K Z, et al., 2024. Precipitation threshold for rainfall-type landslides in the Qinba Mountains area, Sichuan province, China[J]. Mountain Research, 42(2): 238-248. (in Chinese with English abstract) [53] WU S E, XU C, MA J X, et al., 2025. Escalating risks and impacts of rainfall-induced geohazards[J]. Natural Hazards Research, 5(3): 447-454. doi: 10.1016/j.nhres.2025.03.003 [54] XIE C C, HUANG Y D, LI L, et al., 2023. Detailed inventory and spatial distribution analysis of rainfall-induced landslides in Jiexi County, Guangdong Province, China in August 2018[J]. Sustainability, 15(18): 13930. doi: 10.3390/su151813930 [55] XIE C C, XU C, HUANG Y D, et al., 2025a. Detailed inventory and initial analysis of landslides triggered by extreme rainfall in the northern Huaiji County, Guangdong Province, China, from June 6 to 9, 2020[J]. Geoenvironmental Disasters, 12(1): 7. doi: 10.1186/s40677-025-00311-1 [56] XIE C C, XU C, HUANG Y D, et al., 2025b. Advances in the study of natural disasters induced by the "23.7" extreme rainfall event in North China[J]. Natural Hazards Research, 5(1): 1-13. doi: 10.1016/j.nhres.2025.01.003 [57] XUE Z W, 2025. Study on spatial distribution characteristics of landslides triggered by earthquakes and rainfall and landslide hazard assessment under superposition conditions[D]. Beijing: University of Chinese Academy of Sciences. (in Chinese with English abstract) [58] YANG H J, YANG T Q, ZHANG S J, et al., 2020. Rainfall-induced landslides and debris flows in Mengdong Town, Yunnan Province, China[J]. Landslides, 17(4): 931-941. doi: 10.1007/s10346-019-01336-y [59] YANG L, CUI Y L, XU C, et al., 2024. Application of coupling physics–based model TRIGRS with random forest in rainfall-induced landslide-susceptibility assessment[J]. Landslides, 21(9): 2179-2193. doi: 10.1007/s10346-024-02276-y [60] ZHANG L M, LÜ Q, DENG Z H, et al., 2025a. Probabilistic approach to determine rainfall thresholds for rainstorm-induced shallow landslides using long-term local precipitation records[J]. Engineering Geology, 353: 108139. doi: 10.1016/j.enggeo.2025.108139 [61] ZHANG S, PECORARO G, JIANG Q G, et al., 2025b. A probabilistic procedure to define multidimensional rainfall thresholds for territorial landslide warning models[J]. Landslides, 22(6): 1773-1787. doi: 10.1007/s10346-025-02461-7 [62] ZHOU S, HUANG Y, GUO Z, et al., 2024. Quantitative risk assessment of road exposed to landslide: A novel framework combining numerical modeling and complex network theory[J]. Engineering Geology, 343: 107794. doi: 10.1016/j.enggeo.2024.107794 [63] 丛佳伟, 2020. 天水地区降雨型滑坡的降雨阈值研究[D]. 兰州: 兰州大学. [64] 黄远东, 许冲, 刘毅, 等, 2025. 2024年4月广东韶关暴雨诱发的浅层滑坡编目与滑坡分布特征分析[J]. 中国地质灾害与防治学报, 36(2): 28-42. [65] 李巍岳, 刘春, SCAIONI M, 等, 2017. 基于滑坡敏感性与降雨强度-历时的中国浅层降雨滑坡时空分析与模拟[J]. 中国科学: 地球科学, 47(4): 473-484. [66] 卢琪愿, 邓志德, 邱锦安, 等, 2025. 突发地质灾害应急响应机制研究: 以滑坡灾害为例[J]. 城市与减灾(4): 52-59. [67] 马思远, 2022. 地震降雨多场景下触发滑坡分布规律和危险性概率评估研究[D]. 北京: 中国地震局地质研究所. [68] 彭守璋, 2010. 中国1km分辨率逐月降水量数据集(1901-2024)[EB/OL]. 国家青藏高原科学数据中心, [2025-07-02]. https://www.tpdc.ac.cn/zh-hans/data/faae7605-a0f2-4d18-b28f-5cee413766a2. DOI: 10.5281/zenodo.3114194. [69] 齐文文, 许冲, 侯建盛, 等, 2025. 汛期降雨地质灾害特征与评估预警技术应用: 以2023年主汛期为例[J]. 安全, 46(3): 10-18. [70] 沈玲玲, 刘连友, 杨文涛, 等, 2015. 基于TRMM降雨数据的四川省地质灾害降雨阈值分析[J]. 灾害学, 30(2): 220-227. [71] 王智昊, 杨赛霓, 姚可桢, 等, 2024. 四川秦巴山区降雨型滑坡灾害降雨阈值[J]. 山地学报, 42(2): 238-248. [72] 薛智文, 2025. 地震和降雨滑坡空间分布特征与叠加条件下滑坡危险性评价研究 [D]. 中国科学院大学 -
下载: