Physical simulation analysis of the Cenozoic fault activities and structural deformation mechanism of the Youjiang area
-
摘要: 右江地区北西向断裂起源于晚古生代右江盆地内发育的同沉积断裂,这些断裂近等间距平行分布,新生代以来发生了多期次左旋走滑活动,进而导致了右江地区整体发生简单剪切变形。利用三维沙箱模型展开了物理模拟实验,对新生代右江地区的变形机制进行了分析。实验结果表明,早期在红河断裂的左旋剪切错动和印支地块的顺时针旋转联合作用下,右江地区北西向断裂复活,并发生明显的左旋走滑活动;随后川滇地块发生东南向的挤出运动,对右江地区产生侧向挤压,导致了右江地区北西向断裂新一轮的快速左旋走滑活动,同时还导致了右江地区西部的地壳压缩增厚。实验证实新生代右江地区的简单剪切变形以及北西向断裂的走滑活动是印支地块和川滇地块挤出运动共同作用的结果,同时也是印度-欧亚板块碰撞产生的连锁反应之一。Abstract: The NW-trending faults in the Youjiang area originated from synsedimentary faults developed in the Youjiang Basin of Late Paleozoic. In Cenozoic these equidistantly spaced faults have undergone multiple left-lateral strike-slip activities,which then led to a simple-shear deformation of the Youjiang area. A 3-D sandbox model is designed to study the deformation mechanism of the Youjiang area. The experimental results show that the NW-trending faults were reactivated and a strikingly left-lateral strike slip occurred under the left-lateral movement and the clockwise rotation of the Indochina block. And then the lateral compression of the Sichuan-Yunnan block resulted in a new round of fast left-lateral strike-slip of the NW-trending faults in the Youjiang area,and it also resulted in crustal compression and thickening in the western part of the Youjiang area. Both the left-lateral strike-slip activities of the NW-trending faults and the simple-shear deformation occurred in the Youjiang area in Cenozoic were driven by the extrusion of the Indochina Block and the Sichuan-Yunnan Block,and they can be viewed as one of the consequences of the India-Eurasia collision.
-
Key words:
- Youjiang area /
- strike-slip fault /
- deformation mechanism /
- block /
- physical simulation
-
图 1 右江地区及邻区的断裂分布、大地构造、活动地块和变形模式图
a-右江地区断裂分布图;b-右江地区及邻区大地构造简图(据任纪舜,2003修改);c-右江地区周边活动地块分布图;d-右江地区简单剪切变形模式图
Figure 1. Faults distribution, geotectonics, active blocks and deformation pattern in the Youjiang area and its adjacent areas
图 2 右江盆地构造演化示意图(据杜远生等,2009修改)
Figure 2. Tectonic evolution of the Youjiang Basin (modified after Du et al., 2009)
表 1 北西向断裂伴生盆地统计表(聂冠军等,2019)
Table 1. Accompanying basins of the NW faults(Nie et al., 2019)
断裂名称 断裂伴生盆地 盆地类型 盆地开启年代 巴马-博白断裂 宾阳盆地 半地堑式断陷盆地 第四纪 右江断裂 永乐盆地 拉分盆地 始新世 百色盆地 拉分盆地 始新世 隆安盆地 拉分盆地 始新世 南宁盆地 尾张型拉张盆地 始新世 靖西-崇左断裂 宁明盆地 半地堑式断陷盆地 渐新世 海渊盆地 半地堑式断陷盆地 渐新世 上思盆地 半地堑式断陷盆地 渐新世 广南盆地 拉分盆地 中新世 那坡断裂 Caobang basin 拉分盆地 中新世 Thatkhe basin 拉分盆地 中新世 Naduong basin 拉分盆地 中新世 Tien Yen Bay 尾张型拉张盆地 - 文山断裂 文山盆地 拉分盆地 始新世 表 2 各实验阶段的加载参数设置
Table 2. Parameter setting for the loading in different experimental stages
实验阶段 加载方式 加载速率/(mm/s) 移动量/cm 第一阶段A 在模型下侧边界施加带顺时针旋转的左旋剪切 0.05 20 第一阶段B 在模型的下侧边界施加单侧左旋剪切 0.05 20 第二阶段 在模型的左侧下方施加向右的挤压 0.01 2 -
BUCHANAN P G, MCCLAY K R, 1991. Sandbox experiments of inverted listric and planar fault systems[J]. Tectonophysics, 188(1-2):97-115. doi: 10.1016-0040-1951(91)90317-L/ CHEN H D, ZENG Y F, 1990. Nature and evolution of the Youjiang basin[J]. Lithofacies Palaeogeography(1):28-37. (in Chinese with English abstract) CHEN H D, QIN J X, TIAN J C, et al., 2000. Sequence filling dynamics of Youjiang basin, southern China[J]. Acta Sedimentologica Sinica, 18(2):165-171. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cjxb200002001 Compilation Committee of Local Chronicles of Guangxi Zhuang Autonomous Region, 1990. Guangxi tongzhi (seismography)[M]. Nanning: Guangxi People Publishing House: 1-38. (in Chinese) DENG Q D, ZHANG P Z, RAN Y K, et al., 2003. Basic characteristics of active tectonics of China[J]. Science in China Series D:Earth Sciences, 46(4):356-372. http://d.old.wanfangdata.com.cn/Periodical/dzlxxb201905007 DENG Y F, LI S L, FAN W M, et al., 2011. Crustal structure beneath South China revealed by deep seismic soundings and its dynamics implications[J]. Chinese Journal of Geophysics, 54(10):2560-2574. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqwlxb201110013 DU Y S, HUANG H W, HUANG Z Q, et al., 2009. Basin translation from Late Palaeozoic to Triassic of Youjiang Basin and its tectonic significance[J]. Geological Science and Technology Information, 28(6):10-15. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzkjqb200906002 HIGGINS R I, HARRIS L B, 1997. The effect of cover composition on extensional faulting above re-activated basement faults:results from analogue modelling[J]. Journal of Structural Geology, 19(1):89-98. HOU J J, LIU X D, YOU X Z, et al., 1993. Characteristics of surface deformation of the active faults in west Guangxi and their relationship with earthquakes[J]. Acta Seismologica Sinica, 15(1):119-122. (in Chinese with English abstract) HUANG Q X, 2000. The characteristics of some important basic geology in Guangxi[J]. Guangxi Geology, 13(3):3-12. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gxdz200003002 HUBBARD J, SHAW J H, 2009. Uplift of the Longmen Shan and Tibetan plateau, and the 2008 Wenchuan (M=7.9) earthquake[J]. Nature, 458(7235):194-197. JIANG H K, FU H, YANG M L, et al., 2014. Earthquake cases in China (2003~2006)[M]. Beijing:Seismological Press:604-610. (in Chinese) LELOUP P H, LACASSIN R, TAPPONNIER P, et al., 1995. The Ailao Shan-red river shear zone (Yunnan, China), tertiary transform boundary of Indochina[J]. Tectonophysics, 251(1-4):3-10, 13-84. LI P, 2008. The suitability evaluation of Wenshan city geological environment and city development[D]. Kunmin: Kunming University of Science and Technology: 1-26. (in Chinese) LIN J L, 1998. Paleomagnetic evidence for the relative motion between south China block and Indochina block[J]. Seismology and Geology, 10(3):1-7. (in Chinese with English abstract) LIU M, YANG Y Q, SHEN Z K, 2007. Active tectonics and intracontinental earthquakes in China: the kinematics and geodynamics[M]//STEIN S, MAZZOTTI S. Continental intraplate earthquakes: science, hazard, and policy issues. Geological Society of America: 299-318. LIU Q Y, VAN DER HILST R D, LI Y, et al., 2014. Eastward expansion of the Tibetan Plateau by crustal flow and strain partitioning across faults[J]. Nature Geoscience, 7(5):361-365. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=1a2aedc2edde90ace94cf166622c6b9a LIU X D, HOU J J, YOU X Z, 1987. Neotectonic motion of Youjiang Fault zone[J]. Journal of Seismological Research, 10(2):175-183. (in Chinese with English abstract) MCCLAY K R, 1990. Extensional fault systems in sedimentary basins:a review of analogue model studies[J]. Marine and Petroleum Geology, 7(3):206-233. doi: 10.1016-0264-8172(90)90001-W/ NIE G J, HE S, LI B S, et al., 2019. New discovery of earthquake surface rupture in the Wenshan fault[J]. Acta Geologica Sinica (English Edition), 93(S2):77-78. NIE G J, YANG S S, ZHANG P Q, et al., 2019. Characteristics and tectonic significance of Cenozoic strike-slip faults in Youjiang region[J]. Geotectonica et Metallogenia, 43(6):1094-1105. (in Chinese with English abstract) http://d.old.wanfangdata.com.cn/Periodical/ddgzyckx201906002 PANG Y J, YE W Q, LI G Z, et al., 1987. Some features of Neotectonic movements in Guangxi[J]. Guangxi Geology(1):49-56. (in Chinese with English abstract) PUBELLIER M, RANGIN C, VAN PHACH P, et al., 2003. The Cao Bang-Tien Yen fault implications on the relationships between the Red River and the South China coast belt[J]. Advances in Natural Sciences, 4(4):347-361. REN J S, 2003. A new generation of China's geotectonic map, China and its adjacent areas (1:5000000), with a brief description:A brief introduction of the latest tectonic map of China[J]. Acta Geoscientia Sinica, 24(1):1-2. (in Chinese) RICHARD P, KRANTZ R W, 1991. Experiments on fault reactivation in strike-slip mode[J]. Tectonophysics, 188(1-2):117-131. doi: 10.1016-0040-1951(91)90318-M/ ROYDEN L H, BURCHFIEL B C, VAN DER HILST R D, 2008. The geological evolution of the Tibetan plateau[J]. Science, 321(5892):1054-1058. http://d.old.wanfangdata.com.cn/Periodical/dqkx-e201306003 SONG F M, LI C Y, CHEN X C, et al., 2004. Geologic-geomorphic evidence and rate of late Pleistocene displacement of the Youjiang fault zone[J]. Seismology and Geology, 26(4):611-621. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzdz200404007 SONG F M, WANG Y P, YU W X, et al., 1998. The Xiaojiang active fault zone[M]. Beijing:Seismological Press:1-266. (in Chinese) SUN Z, ZHONG Z H, ZHOU D, et al., 2003. Deformation mechanism of Red river fault zone during cenozoic and experimental evidences related to Yinggehai basin formation[J]. Journal of Tropical Oceanography, 22(2):1-9. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=rdhy200302001 SUN Z, ZHOU D, ZHONG Z H, et al., 2001. Analogue modeling of the formation mechanism for the Yinggehai basin, South China Sea[J]. Journal of Tropical Oceanography, 20(2):35-40. (in Chinese with English abstract) SYLVESTER A G, 1988. Strike-slip faults[J]. Geological Society of America Bulletin, 100(11):1666-1703. http://d.old.wanfangdata.com.cn/Periodical/syktykf201703003 TAN H Y, WANG Z, 2014. 3D seismic tomography of crust and upper mantle in South China[J]. Computing Techniques for Geophysical and Geochemical Exploration, 36(3):318-325. (in Chinese with English abstract) TAPPONNIER P, PELTZER G, LE DAIN A Y, et al., 1982. Propagating extrusion tectonics in Asia:new insights from simple experiments with plasticine[J]. Geology, 10(12):611-616. doi: 10.1130-0091-7613(1982)10-611-PETIAN-2.0.CO%3b2/ TRON V, BRUN J P, 1991. Experiments on oblique rifting in brittle-ductile systems[J]. Tectonophysics, 188(1-2):71-84. doi: 10.1016-0040-1951(91)90315-J/ WANG E Q, SU Z, XU G, 2009. A case study on lateral extrusion occurred along some orogenic belts in China[J]. Chinese Journal of Geology, 44(4):1266-1288. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzkx200904016 WANG G Z, HU R Z, SU W C, et al., 2003. Fluid flow and mineralization of Youjiang Basin in the Yunnan-Guizhou-Guangxi area, China[J]. Science in China Series D:Earth Sciences, 46(S1):99-109. WANG L L, SHAO D S, SHI F Q, 2015. The analysis of current crustal deformation and strain characteristics of active blocks in Yunnan region based on GPS[J]. Seismological and Geomagnetic Observation and Research, 36(1):28-36. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzdcgcyyj201501005 WU Z H, 2019. The active fault map of China and its adjacent sea areas[J]. Journal of Geomechanics, 25(1):151. (in Chinese) WYSOCKA A, 2009. Sedimentary environments of the Neogene basins associated with the Cao Bang-Tien Yen Fault, NE Vietnam[J]. Acta Geologica Polonica, 59(1):45-69. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=Open J-Gate000002068993 XU X W, CHEN J, XU C, et al., 2014. Discussion on block kinematic model and future themed areas for earthquake occurrence in the Tibetan plateau:inspiration from the Ludian and Jinggu earthquakes[J]. Seismology and Geology, 36(4):1116-1134. (in Chinese with English abstract) YOU X Z, 1982. Characteristics of active faults in Guangxi and their relationship with earthquakes[J]. South China Journal of Seismology, 2(3):7-14. (in Chinese with English abstract) Yunnan Provincial Bureau of Geology and Mineral Resources, 1990. Regional geological records of Yunnan Province[M]. Beijing:Geological Publishing House:1-236. (in Chinese) ZENG Y F, LIU W J, CHEN H D, et al., 1995. Evolution of sedimentation and tectonics of the Youjiang composite basin, South China[J]. Acta Geologica Sinica, 69(2):113-124. (in Chinese with English abstract) ZHANG G W, GUO A L, WANG Y J, et al., 2013. Tectonics of South China continent and its implications[J]. Science China Earth Sciences, 56(11):1804-1828. ZHANG J H, LI Y X, GUO L Q, et al., 2005. Contemporary tectionic movement and internal deformation of south China block[J]. Journal of Geodesy and Geodynamics, 25(3):57-62. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dkxbydz200503011 ZHANG J Y, 2002. Analysis and appraise of geology structure stabilization of Guangxi[J]. Guangxi Geology, 15(3):1-7. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gxdz200203001 ZHANG P Z, DENG Q D, ZHANG G M, et al., 2003. Active tectonic blocks and strong earthquakes in the continent of China[J]. Science in China Series D:Earth Sciences, 46(S2):13-24. ZHANG Y, SHI W, 2018. Advances in continental scape structures[J]. Journal of Geomechanics, 24(2):145-156. (in Chinese with English abstract) http://d.old.wanfangdata.com.cn/Periodical/dzlxxb201802002 ZHENG W J, ZHANG P Z, YUAN D Y, et al., 2019. Basic characteristics of active tectonics and associated geodynamic processes in continental China[J]. Journal of Geomechanics, 25(5):699-721. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzlxxb201905007 ZHOU Y S, 1999. Review on program about physical modelling of lithosphere tectonic deformation[J]. World Geology, 18(3):7-14. (in Chinese with English abstract) ZHU J S, WANG X B, YANG Y H, et al., 2017. The crustal flow beneath the eastern margin of the Tibetan Plateau and its process of dynamics[J]. Chinese Journal of Geophysics, 60(6):2038-2057. (in Chinese with English abstract) ZHU Z C, ZENG Z X, FAN G M, 2008. Tectonic geology[M]. 3rd ed. Wuhan:China University of Geosciences Press:1-136. (in Chinese) 陈洪德, 曾允孚, 1990.右江沉积盆地的性质及演化讨论[J].岩相古地理(1):28-37. 陈洪德, 覃建雄, 田景春, 等, 2000.右江盆地层序充填动力学初探[J].沉积学报, 18(2):165-171. http://d.old.wanfangdata.com.cn/Periodical/cjxb200002001 邓阳凡, 李守林, 范蔚茗, 等, 2011.深地震测深揭示的华南地区地壳结构及其动力学意义[J].地球物理学报, 54(10):2560-2574. http://d.old.wanfangdata.com.cn/Periodical/dqwlxb201110013 杜远生, 黄宏伟, 黄志强, 等, 2009.右江盆地晚古生代-三叠纪盆地转换及其构造意义[J].地质科技情报, 28(6):10-15. http://d.old.wanfangdata.com.cn/Periodical/dzkjqb200906002 广西壮族自治区地方志编纂委员会, 1990.广西通志(地震卷)[M].南宁:广西人民出版社:1-38. 侯建军, 刘锡大, 游象照, 等, 1993.桂西活动走滑断裂系的地表变形组合特征及其与地震活动的关系[J].地震学报, 15(1):119-122. 黄启勋, 2000.广西若干重大基础地质特征[J].广西地质, 13(3):3-12. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gxdz200003002 蒋海昆, 付虹, 杨马陵, 等, 2014.中国震例(2003~2006)[M].北京:地震出版社:604-610. 李鹏, 2008.文山城市地质环境与城市发展的适宜性评价[D].昆明: 昆明理工大学: 1-26. 林金录, 1998.华南地块和印支地块相对运动的古地磁证据[J].地震地质, 10(3):1-7. http://www.cnki.com.cn/Article/CJFDTotal-DZDZ198803000.htm 刘锡大, 侯建军, 游象照, 1987.右江断裂带的新构造活动[J].地震研究, 10(2):175-183. 聂冠军, 杨仕升, 张沛全, 等, 2019.右江地区新生代走滑断裂活动特征及其构造意义[J].大地构造与成矿学, 43(6):1094-1105. http://d.old.wanfangdata.com.cn/Periodical/ddgzyckx201906002 庞衍军, 叶维强, 黎广钊, 等, 1987.广西新构造运动的一些特征[J].广西地质(1):49-56. 任纪舜, 2003.新一代中国大地构造图:中国及邻区大地构造图(1:5 000 000)附简要说明:从全球看中国大地构造[J].地球学报, 24(1):1-2. http://d.old.wanfangdata.com.cn/Periodical/dqxb200301001 宋方敏, 汪一鹏, 俞维贤, 等, 1998.小江活动断裂带[M].北京:地震出版社:1-266. 宋方敏, 李传友, 陈献程, 等, 2004.右江断裂带晚更新世活动的若干地质地貌证据及位移速率[J].地震地质, 26(4):611-621. http://d.old.wanfangdata.com.cn/Periodical/dzdz200404007 孙珍, 周蒂, 钟志洪, 等, 2001.南海莺歌海盆地形成机制的物理模拟[J].热带海洋学报, 20(2):35-40. http://d.old.wanfangdata.com.cn/Periodical/rdhy200102006 孙珍, 钟志洪, 周蒂, 等, 2003.红河断裂带的新生代变形机制及莺歌海盆地的实验证据[J].热带海洋学报, 22(2):1-9. http://d.old.wanfangdata.com.cn/Periodical/rdhy200302001 谭皓原, 王志, 2014.华南地壳及上地幔三维速度结构成像[J].物探化探计算技术, 36(3):318-325. http://d.old.wanfangdata.com.cn/Periodical/wthtjsjs201403012 王二七, 苏哲, 许光, 2009.我国的一些造山带的侧向挤出构造[J].地质科学, 44(4):1266-1288. http://d.old.wanfangdata.com.cn/Periodical/dzkx200904016 王国芝, 胡瑞忠, 苏文超, 等, 2002.滇-黔-桂地区右江盆地流体流动与成矿作用[J].中国科学(D辑), 32(S1):78-86. http://d.old.wanfangdata.com.cn/Periodical/zgkx-cd2002z1009 王伶俐, 邵德盛, 施发奇, 2015.基于GPS的云南地区活动地块现今运动及应变特征分析[J].地震地磁观测与研究, 36(1):28-36. http://d.old.wanfangdata.com.cn/Periodical/dzdcgcyyj201501005 吴中海, 2019.中国毗邻海区活动断裂分布图(中英文)正式出版[J].地质力学学报, 25(1):151. https://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?flag=1&file_no=20190115&journal_id=dzlxxb 徐锡伟, 程佳, 许冲, 等, 2014.青藏高原块体运动模型与地震活动主体地区讨论:鲁甸和景谷地震的启示[J].地震地质, 36(4):1116-1134. http://d.old.wanfangdata.com.cn/Periodical/dzdz201404015 游象照, 1982.广西活动性断裂的特征及其与地震关系[J].华南地震, 2(3):7-14. 云南省地质矿产局, 1990.云南省区域地质志[M].北京:地质出版社:1-236. 曾允孚, 刘文均, 陈洪德, 等, 1995.华南右江复合盆地的沉积构造演化[J].地质学报, 69(2):113-124. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199500063473 张静华, 李延兴, 郭良迁, 等, 2005.华南块体的现今构造运动与内部形变[J].大地测量与地球动力学, 25(3):57-62. http://d.old.wanfangdata.com.cn/Periodical/dkxbydz200503011 张继淹, 2002.广西地质构造稳定性分析与评价[J].广西地质, 15(3):1-7. http://d.old.wanfangdata.com.cn/Periodical/gxdz200203001 张宇, 施炜, 2018.大陆逃逸构造研究现状[J].地质力学学报, 24(2):145-156. https://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?flag=1&file_no=20180201&journal_id=dzlxxb 郑文俊, 张培震, 袁道阳, 等, 2019.中国大陆活动构造基本特征及其对区域动力过程的控制[J].地质力学学报, 25(5):699-721. https://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?flag=1&file_no=20190506&journal_id=dzlxxb 周永胜, 1999.岩石圈构造变形的物理模拟实验研究现状[J].世界地质, 18(3):7-14. 朱介寿, 王绪本, 杨宜海, 等, 2017.青藏高原东缘的地壳流及动力过程[J].地球物理学报, 60(6):2038-2057. 朱志澄, 曾佐勋, 樊光明, 2008.构造地质学[M]. 3版.武汉:中国地质大学出版社:1-136.