RESEARCH ON DYNAMIC CHARACTERISTICS OF THE KALAYAGAQI LANDSLIDE IN YINING COUNTRY, XINJIANG
-
摘要: 通过对高速远程黄土滑坡动力学特征的研究,提出黄土高速远程滑坡空间预测的模拟方法。以新疆伊宁县喀拉亚尕奇黄土滑坡为例,基于野外地质调查和无人机航拍影像图,结合滑坡研究区的工程地质条件,分析了该滑坡的基本特征和形成条件。研究发现,该滑坡的主要诱发因素是冰雪融水入渗,其孕灾模式主要为四个阶段:后缘拉裂阶段,黄土节理冻胀扩展阶段,融雪入渗失稳阶段,高速下滑阶段。同时利用Rapid模型对滑坡运动全过程进行模拟,计算得到滑坡运动持续时间为26 s,最大运动速度达到22 m/s,堆积体的平均厚度达到5 m等运动特征要素,结果表明Rapid模型可以较好的模拟分析黄土高速远程滑坡动力学效应,为黄土地区类似滑坡的成灾机理和动力学效应分析提供参考。Abstract: Based on the study of dynamic characteristics of high speed long distance loess landslide, a simulation method for spatial prediction of high speed long distance loess landslide is proposed. Taking the Kalayagaqi loess landslide as an example, according to the field geological survey and aerial photograph images of the unmanned aerial vehicle, combined with the engineering geological conditions of the landslide research area, the basic features and formation conditions of the landslide are analysed. The study shows that the main inducing factor of the landslide is the infiltration of melted ice water, and there are mainly four disaster-inducing stages:Firstly, because of the concentration of stress at the top of the mountain, crack phenomenon appears in the trailing of landslide; Secondly, the mountain is covered with snow, and the loess joint fissure are enlarged by the effect of frost heave. Thirdly, due to the rising temperature and the infiltration of melted ice water, the sliding resistance of the landslide is gradually reduced. At last, the landslide lost its stability and slips at a high speed. The Rapid model was used to simulate the whole process of the kalayagaqi landslide. The results show that the duration of the landslide movement is 26 s, the maximum motion speed is up to 22 m/s and the average thickness of the accumulation body reaches 5 m. It proves that the Rapid model can be used to simulate and analyze the dynamic effect of high speed long distance loess landslide, providing reference for the analysis of the disaster-inducing mechanism and dynamic effect of similar landslides in the loess area.
-
Key words:
- loess landslide /
- disaster-inducing mechanism /
- kinematics /
- numerical simulation
-
图 1 喀拉亚尕奇滑坡地理位置图[15]
Figure 1. Location of the Kalayagaqi landslide
表 1 喀拉亚尕奇滑坡Rapid模型参数
Table 1. Parameters of Rapid model of the Kalayagaqi landslide
区域 容重(γ/KN·m-3) 有效摩擦角ϕ 孔压系数Bss 剪切抗力(τss/kPa) 侧向土压力系数k 滑源区 18 12 0.95 6 0.48 堆积区 18 12 0.81 45 0.54 -
[1] Heim A. Bergsturz und menschenleben[M]. Zurich:Fretz & Wasmuth Verlag, 1932:218. [2] Genevois R, Ghirotti M. The 1963 vaiont landslide[J]. Giornale di Geologia Applicata, 2005, 1(1):41~52. http://d.old.wanfangdata.com.cn/OAPaper/oai_doaj-articles_982117299f6f8eadc7220abd1fe96bf7 [3] Bartelt P, Salm B, Gruber U. Calculating dense-snow avalanche runout using a voellmy-fluid model with active/passive longitudinal straining[J]. Journal of Glaciology, 1999, 45(150):242~254. doi: 10.1017/S002214300000174X [4] Savage S B, Hutter K. The dynamics of avalanches of granular materials from initiation to runout. Part Ⅰ:analysis[J]. Acta Mechanica, 1991, 86(1~4):201~223. doi: 10.1007/BF01175958 [5] Cundall P A, Strack O D L. A discrete numerical model for granular assemblies[J]. Géotechnique, 1979, 29(1):47~65. doi: 10.1680/geot.1979.29.1.47 [6] Voight B, Sousa J. Lessons from Ontake-san:A comparative analysis of debris avalanche dynamics[J]. Engineering Geology, 1994, 38(3~4):261~297. doi: 10.1016/0013-7952(94)90042-6 [7] Melin S. Simulation of sound propagation in granular media on the connection machine[J]. International Journal of Modern Physics C, 1993, 4(6):1103~1107.(请核对年份) doi: 10.1142/S0129183193000859 [8] Pudasaini S P, Hsiau S S, Wang Y Q, et al. Velocity measurements in dry granular avalanches using particle image velocimetry technique and comparison with theoretical predictions[J]. Physics of Fluids, 2005, 17(9):093301. doi: 10.1063/1.2007487 [9] Gao Y, Yin Y P, Li B, et al. Investigation and dynamic analysis of the long runout catastrophic landslide at the Shenzhen landfill on December 20, 2015, in Guangdong, China[J]. Environmental Earth Sciences, 2017, 76(1):13. doi: 10.1007/s12665-016-6332-8 [10] Xing A G, Yuan X Y, Xu Q, et al. Characteristics and numerical runout modelling of a catastrophic rock avalanche triggered by the Wenchuan earthquake in the Wenjia valley, Mianzhu, Sichuan, China[J]. Landslides, 2016, 14(1):83~98. [11] Sassa K, Nagai O, Solidum R, et al. An integrated model simulating the initiation and motion of earthquake and rain induced rapid landslides and its application to the 2006 Leyte landslide[J]. Landslides, 2010, 7(3):219~236. doi: 10.1007/s10346-010-0230-z [12] Yin Y P, Li B, Wang W P, et al. Mechanism of the December 2015 Catastrophic landslide at the Shenzhen landfill and controlling geotechnical risks of urbanization[J]. Engineering, 2016, 2(2):230~249. doi: 10.1016/J.ENG.2016.02.005 [13] 沈伟, 翟张辉, 李同录, 等.陕西泾河南岸大堡子高速远程黄土滑坡运动过程模拟[J].工程地质学报, 2016, 24(6):1309~1317. http://d.old.wanfangdata.com.cn/Periodical/gcdzxb201606038SHEN Wei, ZHAI Zhanghui, LI Tonglu, et al. Simulation of propagation process for the Dabaozi Rapid long run-out loess landslide in the south bank of the Jinghe river, Shaanxi province[J]. Journal of Engineering Geology, 2016, 24(6):1309~1317. (in Chinese with English abstract) http://d.old.wanfangdata.com.cn/Periodical/gcdzxb201606038 [14] 翟张辉, 沈伟, 李同录, 等.天水市大沟滑坡-泥石流运动过程模拟分析[J].工程地质学报, 2017, 25(S1):400~406.ZHAI Zhanghui, SHEN Wei, LI Tonglu, et al. Analysis and simulation of the landslide-debris flow hazard in Dagou village, Tianshui city[J]. Journal of Engineering Geology, 2017, 25(S1):400~406. (n Chinese with English abstract [15] 刘丽楠, 李守定, 姜越, 等.新疆伊犁加朗普特黄土滑坡泥石流降雨诱发机理[J].工程地质学报, 2017, 25(5):1230~1237. http://d.old.wanfangdata.com.cn/Periodical/gcdzxb201705007LIU Li'nan, LI Shouding, JIANG Yue, et al. Failure mechanism of loess landslides due to saturatedunsaturated seepage——case study of Gallente landslide in ILI, Xinjiang[J]. Journal of Engineering Geology, 2017, 25(5):1230~1237. (in Chinese with English abstract) http://d.old.wanfangdata.com.cn/Periodical/gcdzxb201705007 [16] 庄茂国, 魏云杰, 邵海, 等.新疆伊犁皮里青河黄土滑坡类型及其发育特征[J].中国地质灾害与防治学报, 2018, 29(1):54~59. http://d.old.wanfangdata.com.cn/Periodical/zgdzzhyfzxb201801009ZHUANG Maoguo, WEI Yunjie, SHAO Hai, et al. Type and characteristics of loess landslides in Piliqing river, in Yili of Xinjiang Uygur Autonomous Region[J]. The Chinese Journal of Geological Hazard and Control, 2018, 29(1):54~59. (in Chinese with English abstract) http://d.old.wanfangdata.com.cn/Periodical/zgdzzhyfzxb201801009 [17] Okada Y, Sassa K, Fukuoka H. Liquefaction and the steady state of weathered granitic sands obtained by undrained ring shear tests:a fundamental study of the mechanism of liquidized landslides[J]. Journal of Natural Disaster Science, 2000, 22(2):75~85. doi: 10.2328/jnds.22.75 [18] Wang F W, Sassa K. Landslide simulation by a geotechnical model combined with a model for apparent friction change[J]. Physics and Chemistry of the Earth, Parts A/B/C, 2010, 35(3~5):149~161. doi: 10.1016/j.pce.2009.07.006