A method for locating ore bodies by geochemical indexes of pegmatite-type lithium deposits in the Ke'eryin area, western Sichuan, China
-
摘要: 可尔因地区是松潘−甘孜成矿带的大型稀有金属矿集区之一,围绕可尔因岩体分布了大量花岗伟晶岩脉,如何在数百平方千米伟晶岩田中定位稀有金属矿脉一直是该区伟晶岩型锂稀有金属矿找矿难点之一。通过对可尔因岩体二云母花岗岩、伟晶相微斜钠长花岗岩、不同类型伟晶岩及典型矿床开展系统的岩石地球化学分析,总结了可尔因地区伟晶岩地球化学元素空间分布和变化规律,提出了寻找锂矿的特征元素指标、指示指标和品位指标等地球化学指标。特征元素指标包括Li、B、Sn、Rb、Be、Nb、Ta等元素;平面指示指标包括Cs、Tl、F、Zr、Y、ΣREE等元素及TiO2/Ta、Zr/Hf、Ta/Zr、Nb/Ta、K/Na等值;垂向指示指标包括B、U、Zr、Be、Sn、Rb、Sr、Ba、Tl、In等元素。通过特征元素指标及指示指标的值和变化规律,可辅助定位稀有金属矿化伟晶岩位置,指示矿体深部延伸情况。品位指标主要包括铝饱和指数(A/CNK、A/NK)、里特曼指数(σ)、K+Na和K/Na值等,Li品位与铝饱和度呈正相关、与碱度呈负相关,品位指标的变化趋势指示了矿体中锂的富集部位。Abstract: The Ke'eryin area in Sichuan province is one of the large rare metal ore concentration areas in the Songpan–Garze metallogenic belt. Numerous granite pegmatite dikes spread around the Ke'eryin mass. However, locating rare metal dikes in such a large pegmatite field has always been one of the challenges in this region. This paper summarized the geochemical element distribution in the Ke'eryin pegmatite and put forward geochemical indexes, e.g., characteristic element indexes, indicator indexes and grade indexes, to locate rare metal ore in the Ke'eryin area based on a systematic petrogeochemical analysis of two-mica granite, pegmatite microcline albite granite, different pegmatite types and typical deposits. Characteristic element indexes include Li, B, Sn, Rb, Be, Nb and Ta, etc. Indicator indexes for lateral variation are Cs, Tl, F, Zr, Y and ΣREE elements as well as values, e.g., TiO2/Ta, Zr/Hf, Ta/Zr, Nb/Ta, K/Na, etc., while indicator indexes for vertical variation include B, U, Zr, Be, Sn, Rb, Sr, Ba, Tl and In, etc. The variation in these indexes can be used to locate rare-metal-mineralized pegmatite, indicating ore bodies in a deep basin. Grade indexes are aluminum saturation index(A/CNK, A/NK)and rittmann index(σ), etc. Li ore grade is positively correlated with aluminum saturation but is negatively correlated with alkalinity. Grade index variation is a good indicator of lithium enrichment in ore bodies.
-
Key words:
- geochemical indexes /
- pegmatite /
- lithium deposits /
- orebody location /
- Ke'eryin area
-
图 1 可尔因地区构造位置图及区域地质矿产简图(a、b据李建康等,2006;Fei et al.,2020修改;c据古城会,2014修改)
a—可尔因地区构造位置图;b—松潘−甘孜造山带地质简图;c—可尔因地区区域地质矿产简图
Figure 1. Tectonic location map and regional geology and mineral resources diagram of the Ke'eryin area (a,b modified from Li et al., 2006; Fei et al.,2020; c modified from Gu, 2014)
(a)Tectonic location map of the Ke'eryin area; (b)Geological sketchmap of the Songpan–Garze orogenic belt; (c)Regional geology and mineral resources diagram of the Ke'eryin area
图 2 党坝锂矿床地质简图及典型剖面图
1—第四系;2—三叠系侏倭组四段;3—三叠系侏倭组三段;4—三叠系侏倭组二段;5—三叠系侏倭组一段;6—三叠系侏倭组;7—三叠系杂谷脑组;8—白云母钠长花岗岩;9—黑云母钾长花岗岩;10—矿体及编号;11—伟晶岩;12—钻孔;13—产状a—党坝锂矿床地质简图;b—党坝锂矿床典型剖面图
Figure 2. Simplified geological map and typical section of the Dangba lithium deposits
(a) Simplified geological map of the Dangba lithium deposits; (b) Typical section of the Dangba lithium deposits 1–Quaternary; 2–4th part of Triassic Zhuwo Formation; 3–3rd part of Triassic Zhuwo Formation; 4–2nd part of Triassic Zhuwo Formation; 5–1st part of Triassic Zhuwo Formation; 6–Triassic Zhuwo Formation; 7–Triassic Zagunao Formation; 8–Muscovite albite granite; 9–Biotite potassium feldspar granite; 10–Orebody and its serial number; 11–Pegmatite; 12–Drilling; 13–Occurrence
图 3 李家沟锂矿床地质简图及典型剖面图
1—第四系;2—三叠系侏倭组五段;3—三叠系侏倭组四段;4—三叠系侏倭组三段;5—三叠系侏倭组二段;6—三叠系侏倭组一段; 7—矿体及编号; 8—伟晶岩;9—细晶岩;10—石英脉;11—钻孔;12—产状a—李家沟锂矿床地质简图;b—李家沟锂矿床典型剖面图
Figure 3. Simplified geological map and typical section of the Lijiagou lithium deposits
(a) Simplified geological map of the Lijiagou lithium deposits; (b) Typical section of the Lijiagou lithium deposits 1–Quaternary; 2–5th part of Triassic Zhuwo Formation; 3–4th part of Triassic Zhuwo Formation; 4–3rd part of Triassic Zhuwo Formation; 5–2nd part of Triassic Zhuwo Formation; 6–1st part of Triassic Zhuwo Formation; 7–Orebody and its serial number; 8–Pegmatite; 9–Haplite; 10–Quartz vein; 11–Drilling; 12–Occurrence
图 4 可尔因地区伟晶岩野外及手标本照片
岩石矿物代号:γρ—伟晶岩;γβm—二云母花岗岩;Bi—黑云母;Fs—长石;Mc—云母;Qtz—石英;Spd—锂辉石;Tur—电气石a—伟晶岩脉顺裂隙侵入侏倭组;b—伟晶岩脉侵入二云母花岗岩体;c—伟晶岩大脉分支脉体顺层侵入侏倭组,并被挤压呈石香肠状;d—二云母花岗岩;e—伟晶相微斜钠长花岗岩;f—(电气石)微斜长石型伟晶岩(Ⅰ类伟晶岩);g—(电气石)微斜长石钠长石型伟晶岩(Ⅱ类伟晶岩);h—(电气石)钠长石型伟晶岩(Ⅲ类伟晶岩);i—(电气石)微斜长石型伟晶岩(Ⅰ类伟晶岩)中的巨大电气石晶体;j—(电气石)微斜长石型伟晶岩(Ⅰ类伟晶岩)中的黑云母;k—矿体中的柱状锂辉石;l—锂辉石钠长石型伟晶岩(Ⅳ类伟晶岩)
Figure 4. Typical field and hand specimen photographs of the pegmatite in the Ke'eryin area
(a) Pegmatite vein invaded the Zhuwo Formation along the fissures; (b) Pegmatite vein invaded the two-mica granite body; (c) Branch vein of the pegmatite main vein concordantly intruded the Zhuwo Formation,and been pressed as boudinage structures; (d) Two-mica granite; (e) Pegmatite microclinic albite granite; (f) (Tourmaline) microclinic pegmatite (Ⅰ type pegmatite); (g) (Tourmaline) microclinic albite pegmatite (Ⅱ type pegmatite); (h) (Tourmaline) albite pegmatite (Ⅲ type pegmatite); (i) (Tourmaline) giant tourmaline crystals in microclinic pegmatite (Ⅰ type pegmatite); (j) (Tourmaline) biotite in microclinic pegmatite (Ⅰtype pegmatite); (k) Columnar spodumene in ore body; (l) Spodumene albite pegmatite (Ⅳ type pegmatite) Rock and mineral code: γρ–Pegmatite; γβm–Two-mica granite; Bi–Biotite;Fs–Feldspar; Mc–Mica; Qtz–Quartz; Spd–Spodumene; Tur–Tourmaline
图 5 可尔因花岗岩及伟晶岩显微照片(正交偏光)
矿物代号:Ab—钠长石;Grt—石榴子石;Lpd—锂云母;Ms—白云母;Pl—斜长石;Qtz—石英;Spd—锂辉石;Tur—电气石a—白云母沿斜长石聚片双晶纹处交代;b、c—钠长石交代微斜长石使其边缘呈锯齿状;d—叶钠长石呈集合体交代早期钠长石;e—白云母呈集合体交代微斜长石使其边缘呈港湾状;f—石英交代钠长石形成蠕英结构;g—石榴石绢云母化;h—白云母沿钠长石边缘及裂纹处交代;i—呈柱粒状锂辉石;j—斜长石、石英交代使锂辉石仅存假象;k—锂辉石裂隙和边缘被云母、石英等交代;l—锂云母分布在锂辉石、长石颗粒间
Figure 5. Microscope photographs of the Ke'eryin granite and pegmatite using cross-polarized light
(a) Muscovite metasomatized plagioclase along multiple twin; (b and c) Albite metasomatized microplagioclase leading to its jagged edge; (d) Cleavelandite appearing aggregate structure metasomatized inchoate albite; (e) Muscovite appearing aggregate structure metasomatized microcline leading to its embayed edge; (f) Quartz metasomatized albite forming myrmekitic texture; (g) Garnetization and sericitization; (h) Muscovite metasomatized albite along albite's edges and fissures; (i) Short columnar spodumene; (j) Plagioclase, quartz metasomatized to spodumene making it only exist pseudomorphic; (k) Fissures and edges of spodumene metasomatized by mica and quartz; (l) Lepidolite distributed among spodumene and feldspar particles Mineral code: Ab–Albite; Grt–Garnet; Lpd–Lepidolite; Ms–Muscovite; Pl–Plagioclase; Qtz–Quartz; Spd–Spodumene; Tur–Tourmaline
图 7 样品的原始地幔标准化微量元素蛛网图 (原始地幔标准值据引自McDonough,1992)
Figure 7. Primitive mantle-normalized trace element spidergrams (primitive mantle normalization date according to McDonough, 1992)
图 8 可尔因花岗岩体和伟晶岩微量元素含量曲线图
γβm—二云母花岗岩;γρ—伟晶相微斜钠长花岗岩;Ⅰ—(电气石)微斜长石型伟晶岩脉;Ⅱ—(电气石)微斜长石钠长石型伟晶岩脉;Ⅲ—(电气石)钠长石型伟晶岩脉;Ⅳ—锂辉石钠长石型伟晶岩脉;Ⅴ—细粒(锂云母)钠长石型伟晶岩脉;横坐标序号:1—5为二云母花岗岩(γβm),6—12为伟晶相花岗岩,13—19为Ⅰ类伟晶岩,20—25为Ⅱ类伟晶岩,26—33为Ⅲ类伟晶岩,34—48为Ⅳ类伟晶岩,49—52为Ⅴ类伟晶岩,对应样品分析结果见表3。
Figure 8. Trace element content curve of the Ke’eryin granite and pegmatite
γβm–Two-mica granite; γρ–Pegmatite microclinic albite granite; Ⅰ–(tourmaline) microclinic pegmatite vein; Ⅱ–(tourmaline) microclinic albite pegmatite vein; Ⅲ–(tourmaline) albite pegmatite vein; Ⅳ–spodumenealbite pegmatite vein; Ⅴ–fine-grained(lepidolite)albite pegmatite vein Abscissa number: 1–5 represent two-mica granite(γβm), 6–12 represent pegmatite granite, 13–19 represent Ⅰ type pegmatite, 20–25 represent Ⅱ type pegmatite, 26–33 represent Ⅲ type pegmatite, 34–48 represent Ⅳ type pegmatite, 49–52 represent Ⅴ type pegmatite; See Table 3 for the analysis results of corresponding samples
图 9 党坝锂矿床P11剖面微量元素含量变化曲线图
1—第四系;2—侏倭组四段;3—侏倭组三段;4—侏倭组二段;5—侏倭组一段;6—矿体及编号;7—伟晶岩;8—钻孔;9—采样位置及编号;10—元素含量曲线
Figure 9. Trace element content curve of the P11 section from the Dangba lithium deposit
1–Quaternary; 2–4th part of Triassic Zhuwo Formation; 3–3rd part of Triassic Zhuwo Formation; 4–2nd part of Triassic Zhuwo Formation; 5–1st part of Triassic Zhuwo Formation; 6–Orebody and its serial number; 7–Pegmatite; 8–Drilling; 9–Sampling place and its number; 10–Element content curve
图 10 样品的球粒陨石标准化稀土元素配分曲线图(球粒陨石标准值据Boynton,1984 )
Figure 10. Chondrite-normalized REE distribution patterns of the samples (chondrite normalization date according to Boynton,1984)
表 1 可尔因花岗岩及伟晶岩主量元素分析结果
Table 1. Major elements analysis results of the Ke'eryin granite and pegmatite
岩性 送样编号 w/×10−2 A/NK A/CNK σ SiO2 Al2O3 Fe2O3 FeO Na2O K2O MgO CaO TiO2 P2O5 Li2O MnO LOI TOL 二云母花岗岩 K-1 70.86 14.92 0.15 1.08 3.18 5.18 0.35 1.31 0.23 0.16 0.02 0.03 1.41 98.88 1.78 1.54 2.51 K-2 71.52 15.15 0.23 0.51 3.44 4.26 0.12 0.69 0.08 0.18 0.05 0.03 1.91 98.18 1.97 1.81 2.08 K-3 72.59 13.99 0.23 1.07 2.71 5.78 0.26 0.82 0.23 0.15 <0.02 0.02 1.59 99.43 1.65 1.50 2.44 LJG-1 67.52 16.35 0.19 2.21 2.78 5.54 0.75 2.81 0.37 0.13 0.04 0.04 1.23 99.96 1.97 1.47 2.82 LJG-2 74.73 13.75 0.09 0.77 3.51 4.59 0.21 0.80 0.09 0.16 0.02 0.02 1.26 100.00 1.70 1.54 2.07 伟晶相微斜
钠长花岗岩K-4 73.08 14.78 0.37 0.20 4.33 4.10 0.10 0.84 0.05 0.16 <0.02 0.01 0.69 98.69 1.75 1.60 2.36 K-5 69.99 16.17 0.59 0.22 5.14 4.41 <0.05 0.88 0.01 0.20 <0.02 0.16 0.55 98.34 1.69 1.55 3.38 K-6 71.84 14.84 0.64 0.25 2.86 5.88 0.15 0.62 0.06 0.33 <0.02 0.05 0.88 98.40 1.70 1.59 2.65 K-7 74.91 13.37 0.18 0.25 3.01 6.11 <0.05 0.41 0.04 0.20 <0.02 0.01 0.62 99.11 1.47 1.40 2.61 K-8 74.52 13.87 0.15 0.33 3.88 4.16 <0.05 0.92 0.05 0.18 <0.02 0.01 1.20 99.27 1.73 1.55 2.05 K-9 74.30 13.33 <0.10 1.16 3.01 5.11 0.22 0.54 0.11 0.20 <0.02 0.02 1.44 99.44 1.64 1.54 2.10 K-10 74.42 14.09 <0.10 0.76 3.66 4.56 0.11 0.76 0.06 0.16 0.03 0.01 1.30 99.92 1.71 1.57 2.15 Ⅰ类伟晶岩 K-11 70.16 15.81 <0.10 0.35 2.56 8.78 0.05 0.49 0.03 0.34 <0.02 0.01 1.68 100.27 1.39 1.34 4.74 K-12 72.22 15.23 0.58 0.24 4.45 4.21 0.11 0.61 0.06 0.30 0.03 0.01 1.39 99.43 1.76 1.64 2.57 K-13 76.86 12.66 <0.10 0.47 4.04 2.96 <0.05 0.43 0.03 0.26 <0.02 0.08 1.34 99.12 1.81 1.70 1.45 K-14 78.30 11.56 0.87 0.40 2.10 3.06 0.27 0.37 0.12 0.08 <0.02 0.02 1.63 98.77 2.24 2.09 0.76 K-15 74.83 13.71 0.46 0.33 3.65 3.65 0.09 0.66 0.11 0.23 <0.02 0.02 1.66 99.39 1.88 1.73 1.67 K-16 72.21 14.98 0.34 1.08 3.29 4.65 0.18 0.41 0.10 0.18 0.07 0.03 0.94 98.45 1.89 1.79 2.16 K-17 72.69 15.25 0.12 0.25 6.23 1.35 <0.05 0.84 0.03 0.14 <0.02 0.01 0.71 97.62 2.01 1.81 1.94 Ⅱ类伟晶岩 K-18 72.44 14.94 0.16 0.25 4.97 4.25 <0.05 0.19 0.02 0.17 0.02 0.17 1.11 98.69 1.62 1.59 2.89 K-19 77.34 12.02 <0.10 0.54 5.10 1.34 <0.05 0.43 0.03 0.30 0.02 0.03 0.95 98.10 1.87 1.75 1.21 K-20 72.96 14.49 0.55 0.16 3.56 5.24 <0.05 0.23 0.02 0.19 0.03 0.03 0.84 98.27 1.65 1.61 2.58 K-21 73.16 14.24 1.47 0.29 4.86 1.75 0.10 0.48 0.05 0.18 0.02 0.17 0.75 97.51 2.16 2.01 1.44 K-22 72.65 14.82 1.20 0.72 4.58 2.18 0.20 0.50 0.09 0.12 0.06 0.08 0.76 97.97 2.19 2.04 1.54 K-23 72.89 14.71 0.57 0.18 4.62 3.54 <0.05 0.62 0.03 0.30 0.02 0.05 0.77 98.31 1.80 1.67 2.23 Ⅲ类伟晶岩 K-24 73.82 14.90 0.84 0.29 5.34 1.39 <0.05 0.31 0.03 0.12 0.05 0.11 1.15 98.34 2.21 2.12 1.47 K-25 74.65 14.15 0.73 0.18 4.40 2.61 <0.05 0.21 0.03 0.43 0.19 0.16 1.67 99.40 2.02 1.96 1.55 K-26 71.61 15.10 <0.10 0.51 4.77 4.71 <0.05 0.25 0.03 0.24 0.12 0.19 1.41 98.94 1.59 1.55 3.14 K-27 73.41 14.26 0.12 0.16 3.76 6.16 <0.05 0.18 0.02 0.10 0.02 0.08 1.11 99.38 1.44 1.41 3.24 K-28 73.20 15.07 1.27 0.25 2.08 3.89 0.07 0.18 0.04 0.43 0.10 0.19 3.10 99.87 2.52 2.45 1.18 DB-10 74.57 14.61 0.22 0.33 5.56 2.89 <0.05 0.24 0.02 0.18 0.14 0.36 0.58 99.69 1.73 1.68 2.26 DB-11 73.61 15.17 0.20 0.22 5.82 2.96 <0.05 0.32 0.02 0.22 0.14 0.10 0.85 99.62 1.73 1.67 2.52 DB-12 73.68 14.86 0.43 0.47 5.05 3.15 <0.05 0.33 0.02 0.24 0.06 0.23 0.81 99.33 1.81 1.74 2.19 Ⅳ类伟晶岩 K-29 69.96 18.34 0.14 0.22 4.36 1.56 <0.05 0.31 0.03 0.21 1.01 0.13 2.49 98.76 3.10 2.94 1.30 K-30 73.61 16.81 <0.10 0.33 3.03 1.72 <0.05 0.21 0.02 0.18 1.27 0.14 1.25 98.57 3.54 3.39 0.74 DB-1 75.66 15.99 <0.05 0.22 3.08 1.71 <0.05 0.13 0.02 0.13 2.30 0.09 0.74 100.07 3.34 3.25 0.70 DB-2 73.35 16.14 <0.05 0.25 3.56 3.09 <0.05 0.22 0.02 0.19 1.57 0.12 1.10 99.60 2.43 2.35 1.46 DB-3 74.20 16.19 <0.05 0.33 3.83 1.91 <0.05 0.18 0.02 0.18 1.89 0.15 0.91 99.78 2.82 2.74 1.05 DB-4 74.42 15.78 0.10 0.22 3.54 2.17 <0.05 0.21 0.03 0.19 1.74 0.11 1.07 99.58 2.76 2.67 1.04 DB-5 74.24 15.98 <0.05 0.22 3.63 2.83 <0.05 0.15 0.02 0.18 1.75 0.10 0.79 99.88 2.48 2.42 1.33 DB-6 68.09 17.34 0.74 0.43 3.73 3.58 0.49 1.71 0.10 0.27 1.45 0.36 1.61 99.89 2.37 1.92 2.13 DB-7 74.46 13.90 0.70 0.29 3.87 2.83 <0.05 0.34 0.02 0.98 0.89 0.47 0.91 99.66 2.07 1.97 1.43 DB-8 74.87 15.96 <0.05 0.22 3.27 1.99 <0.05 0.17 0.02 0.16 2.19 0.22 0.56 99.64 3.03 2.94 0.87 DB-9 73.78 15.84 0.10 0.11 4.73 3.01 <0.05 0.16 0.02 0.15 0.90 0.09 0.71 99.60 2.05 2.01 1.95 LJG-3 73.76 17.17 0.15 0.31 3.08 0.86 0.11 0.39 0.01 0.26 0.00 0.09 1.67 100.25 4.36 3.97 0.50 LJG-4 67.83 17.51 0.03 0.21 3.59 8.73 0.15 0.20 0.02 0.50 0.00 0.14 1.06 100.36 1.42 1.40 6.11 LJG-5 72.20 18.08 0.42 0.15 2.79 0.96 0.13 0.24 0.03 0.18 0.00 0.25 1.42 99.81 4.82 4.53 0.48 LJG-6 71.62 16.21 0.07 0.15 2.99 6.69 0.10 0.18 0.02 0.28 0.00 0.07 1.03 100.32 1.67 1.64 3.27 Ⅴ类伟晶岩 K-31 70.08 17.49 0.10 0.11 6.66 4.01 <0.05 0.61 0.02 0.59 0.05 0.04 0.54 100.31 1.64 1.55 4.21 K-32 69.99 17.70 0.05 0.11 6.63 4.01 0.07 0.35 0.02 0.33 0.05 0.02 0.25 99.58 1.66 1.61 4.20 K-33 72.96 16.79 0.09 0.14 6.59 1.70 0.05 0.24 0.02 0.20 0.05 0.02 1.08 99.95 2.03 1.97 2.29 K-34 66.20 18.52 0.10 0.24 5.52 2.82 0.13 2.49 0.03 1.87 <0.05 0.16 1.85 99.93 2.22 1.71 2.99 注:σ为里特曼指数,σ=(K2O+Na2O)2/(SiO2-43),A/NK=Al2O3/(Na2O+K2O),A/CNK=Al2O3/(CaO+Na2O+K2O) 表 2 可尔因花岗岩和不同类型伟晶岩主量、微量及稀土元素分析结果平均值
Table 2. Average analysis results of major elements, trace elements and REEs in Ke'eryin granite and pegmatite of different types
岩性 样品数量 主量元素平均含量w/×10−2 特征值 微量元素平均含量w /×10−6 SiO2 Al2O3 Fe2O3 FeO Na2O K2O MgO CaO TiO2 P2O5 Li2O MnO LOI TOL A/NK A/CNK σ Li Sn B Ga 二云母花岗岩 5 71.44 14.83 0.18 1.13 3.12 5.07 0.34 1.29 0.20 0.16 0.02 0.03 1.48 99.28 1.81 1.57 2.38 133.39 8.76 28.62 23.82 伟晶相花岗岩 7 73.29 14.35 0.39 0.45 3.70 4.90 0.14 0.71 0.06 0.20 0.03 0.04 0.95 99.02 1.67 1.54 2.47 64.31 6.70 33.30 19.93 Ⅰ类伟晶岩 7 73.90 14.17 0.47 0.45 3.76 4.09 0.14 0.54 0.07 0.22 0.05 0.03 1.34 99.01 1.85 1.73 2.18 101.27 15.12 614.11 24.93 Ⅱ类伟晶岩 6 73.62 14.20 0.74 0.37 4.49 3.20 0.15 0.43 0.04 0.21 0.03 0.08 0.93 98.27 1.88 1.77 2.01 138.62 27.61 1032.21 22.90 Ⅲ类伟晶岩 8 73.57 14.76 0.54 0.30 4.60 3.47 0.07 0.25 0.03 0.25 0.10 0.17 1.33 99.32 1.88 1.82 2.19 469.70 104.06 278.37 34.71 Ⅳ类伟晶岩 15 72.80 16.48 0.27 0.24 3.54 2.91 0.20 0.32 0.03 0.27 1.58 0.17 1.15 99.72 2.82 2.68 1.62 7326.95 522.35 15.94 31.45 Ⅴ类伟晶岩 4 69.81 17.62 0.09 0.15 6.35 3.13 0.09 0.92 0.02 0.75 0.05 0.06 0.93 99.94 1.89 1.71 3.42 22.54 285.26 14.43 26.90 岩性 样品数量 微量元素平均含量w/×10-6 特征值 Be Rb Co Cs U Th Sr Ba Nb Ta Zr Hf Y Sc Cd Tl F Nb/Ta Ta/Zr Zr/Hf Ti2O/Ta 二云母花岗岩 5 6.04 325.92 13.27 15.73 7.92 16.81 135.33 571.01 15.54 1.82 104.39 2.16 15.27 3.86 0.06 1.34 733.01 9.78 0.03 63.80 1094.71 伟晶相花岗岩 7 5.59 286.31 12.52 10.54 2.85 4.23 37.70 62.00 12.78 1.03 14.67 0.94 10.99 5.83 0.08 1.16 319.45 12.67 0.08 16.22 548.33 Ⅰ类伟晶岩 7 34.81 344.69 16.03 16.14 2.31 3.05 33.42 50.41 25.26 2.85 10.72 0.89 7.48 4.46 0.08 1.68 455.50 8.63 0.27 13.31 242.14 Ⅱ类伟晶岩 6 49.51 577.80 13.82 47.07 2.62 2.51 14.95 39.07 27.46 7.05 19.49 1.05 7.75 3.42 0.17 2.90 545.30 5.16 0.47 16.16 59.81 Ⅲ类伟晶岩 8 143.11 939.61 9.76 72.26 6.18 1.63 8.89 44.04 67.70 26.55 16.45 1.35 3.33 1.77 1.83 3.85 1091.46 3.80 1.69 12.75 9.67 Ⅳ类伟晶岩 15 143.98 1090.21 3.60 76.61 3.89 3.65 14.44 37.94 72.41 48.40 14.05 1.54 1.42 1.24 1.16 4.93 827.47 1.98 4.16 9.58 5.31 Ⅴ类伟晶岩 4 122.25 1133.00 0.65 67.85 5.86 2.40 61.19 87.06 69.55 187.12 24.28 3.09 3.11 2.55 0.75 4.14 814.43 0.39 7.73 8.20 1.21 岩性 样品数量 稀土元素平均含量w/×10−6 特征值 La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu ΣREE ΣLREE ΣHREE LREE/HREE δEu δCe 二云母花岗岩 5 39.43 90.25 8.57 32.79 6.68 0.93 5.07 0.72 2.88 0.51 1.29 0.17 0.94 0.14 190.27 178.54 11.73 14.40 0.45 1.12 伟晶相花岗岩 7 7.39 18.93 1.63 5.19 1.49 0.26 1.34 0.29 1.71 0.29 0.81 0.15 0.90 0.13 40.52 34.89 5.63 7.26 0.55 1.28 Ⅰ类伟晶岩 7 5.45 13.41 1.14 3.77 1.02 0.21 0.93 0.20 1.22 0.21 0.55 0.10 0.52 0.07 28.79 25.00 3.79 6.85 0.69 1.25 Ⅱ类伟晶岩 6 4.87 12.83 1.02 3.25 0.97 0.12 0.85 0.19 1.16 0.19 0.52 0.10 0.62 0.09 26.78 23.06 3.72 6.79 0.50 1.43 Ⅲ类伟晶岩 8 3.14 8.89 0.65 2.19 0.49 0.11 0.45 0.09 0.54 0.10 0.28 0.05 0.30 0.05 17.33 15.47 1.86 8.35 0.73 1.62 Ⅳ类伟晶岩 15 1.69 4.48 0.33 1.09 0.23 0.08 0.21 0.04 0.25 0.05 0.14 0.03 0.14 0.03 8.79 7.90 0.89 9.47 1.55 1.59 Ⅴ类伟晶岩 4 2.76 6.45 0.59 2.07 0.41 0.12 0.41 0.08 0.49 0.10 0.28 0.05 0.29 0.04 14.13 12.40 1.73 7.58 0.82 1.13 注:σ为里特曼指数,σ=(K2O+Na2O)2/(SiO2-43),A/NK=Al2O3/(Na2O+K2O),A/CNK=Al2O3/(CaO+Na2O+K2O) 表 3 可尔因地区二云母花岗岩及伟晶岩微量元素分析结果
Table 3. Trace element analysis results of the Ke'eryin granite and pegmatite
岩性 送样
编号w/×10−6 Nb/Ta Zr/Hf Ta/Zr Ti2O/Ta Li Sn B Ga Be Rb Co Ni Cs U Th Sr Ba Nb Ta Zr Hf Y Sc Cd Tl F 二云母花岗岩 K-1 92.49 9.41 4.43 25.64 7.15 305 14.74 4.01 14.17 1.91 24.22 140.48 607.94 10.26 1.11 130.62 0.96 12.80 3.63 0.07 0.70 1178 9.25 136.47 0.01 2040.60 K-2 242.88 15.72 39.44 30.76 9.19 443 12.21 3.71 24.54 3.53 8.71 44.74 166.05 20.79 2.88 48.54 1.73 13.06 4.11 0.06 1.67 1076 7.21 28.11 0.06 274.68 K-3 71.19 5.85 3.93 24.51 3.94 333 12.88 3.39 10.11 3.19 40.11 96.25 437.08 12.76 0.95 143.49 1.48 15.21 3.84 0.06 1.63 471 13.4 96.64 0.01 2432.14 LJG-1 167.00 5.21 34.50 19.70 4.31 260 13.50 20.80 8.01 335.00 1486.00 13.30 1.08 141.00 4.32 17.10 660 12.3 32.64 0.01 3425.93 LJG-2 93.40 7.59 60.80 18.50 5.60 289 16.30 10.20 2.99 60.20 158.00 20.60 3.08 58.30 2.32 18.20 280 6.69 25.13 0.05 292.21 伟晶相微斜钠长花岗岩 K-4 55.50 6.39 61.35 17.96 4.51 226 13.48 3.84 10.32 1.93 2.95 33.46 55.92 12.81 0.79 10.00 0.65 4.36 3.37 0.09 0.97 289 16.15 15.35 0.08 627.73 K-5 21.62 8.04 38.08 18.84 6.10 246 11.76 3.43 10.07 3.29 4.02 31.19 59.72 4.32 0.35 21.44 0.84 15.35 6.38 0.20 0.96 517 12.30 25.47 0.02 341.11 K-6 54.62 8.24 19.68 22.78 4.48 336 9.36 3.59 11.23 1.47 2.94 31.76 84.98 16.23 1.04 14.20 0.72 18.04 7.90 0.09 1.15 151 15.67 19.73 0.07 622.29 K-7 74.02 5.78 13.65 18.54 4.10 403 14.72 3.92 15.48 1.55 4.68 23.36 44.97 13.80 1.06 10.00 0.88 14.03 9.50 0.04 1.23 342 13.02 11.43 0.11 421.69 K-8 39.03 8.18 5.98 19.25 6.58 242 13.00 3.50 7.86 5.72 4.81 62.08 62.74 11.57 1.20 13.41 1.12 10.26 3.96 0.07 1.08 507 9.63 12.00 0.09 444.72 K-9 57.51 4.53 80.30 21.92 3.55 291 13.05 4.15 10.23 2.94 4.56 35.75 49.50 17.85 1.60 10.00 1.29 4.72 5.90 0.05 1.56 185 11.1 7.78 0.16 685.03 K-10 147.85 5.72 14.06 20.23 9.84 262 12.28 3.57 8.59 3.08 5.64 46.29 76.18 12.90 1.20 23.63 1.08 10.20 3.78 0.03 1.17 246 10.8 21.78 0.05 525.61 Ⅰ类伟晶岩 K-11 49.81 7.83 16.36 21.20 4.57 543 14.08 3.90 18.93 0.85 0.83 37.06 87.59 11.25 1.49 10.00 0.48 8.07 2.50 0.04 3.01 353 7.56 20.83 0.15 211.14 K-12 145.04 15.90 1199.00 26.67 11.11 441 13.72 3.88 19.47 1.70 2.92 20.15 38.12 20.54 2.62 10.00 1.08 9.12 3.28 0.07 2.37 442 7.85 9.23 0.26 215.40 K-13 34.92 20.11 72.71 22.91 10.30 317 18.32 3.25 21.85 2.32 4.51 11.86 22.55 16.07 3.71 12.68 1.13 3.42 1.94 0.02 1.51 379 4.33 11.18 0.29 72.81 K-14 77.93 14.21 1939.00 24.75 182.36 273 19.85 3.44 11.95 4.52 3.41 34.19 61.47 16.38 1.34 10.00 1.18 6.01 5.80 0.04 1.39 704 12.2 8.46 0.13 912.56 K-15 65.97 15.51 7.71 26.10 5.03 276 13.93 3.93 15.10 3.36 4.40 51.64 70.60 13.41 1.29 12.35 1.00 9.93 8.81 0.22 1.18 609 10.4 12.29 0.10 878.58 K-16 302.86 28.73 818.00 29.89 17.04 458 14.44 3.66 19.80 2.56 3.34 21.97 33.18 85.89 7.41 10.00 0.77 10.25 4.84 0.15 1.94 285 11.6 12.96 0.74 134.85 K-17 32.38 3.53 246.00 22.99 13.26 105 17.89 3.76 5.84 0.85 1.95 57.08 39.34 13.27 2.07 10.00 0.55 5.59 4.04 0.05 0.40 416 6.40 18.21 0.21 156.88 Ⅱ类伟晶岩 K-18 146.61 97.04 28.23 26.22 51.57 1947 11.11 3.27 134.25 2.07 1.30 15.39 85.97 29.35 13.26 10.00 0.77 2.92 1.16 <0.02 10.24 403 2.21 12.96 1.33 12.46 K-19 91.66 9.90 942.00 18.13 105.70 206 13.52 4.20 40.72 3.46 3.85 9.44 22.74 25.97 5.07 10.00 0.94 8.17 5.19 0.18 1.09 507 5.13 10.69 0.51 56.58 K-20 135.27 13.07 1225.00 20.30 65.56 583 13.13 3.28 26.99 0.92 1.47 5.44 48.56 19.02 2.73 10.00 0.72 2.22 1.62 0.05 2.69 336 6.96 13.92 0.27 70.53 K-21 114.32 11.50 2424.00 23.19 67.01 224 14.08 3.48 27.37 6.71 2.54 10.97 11.82 43.18 16.00 68.60 2.08 15.03 2.79 0.55 1.19 487 2.70 32.90 0.23 28.44 K-22 272.21 37.85 1829.00 26.48 14.35 337 16.91 4.21 56.75 1.35 3.52 18.63 27.31 29.90 4.65 11.83 1.10 10.19 6.22 0.09 1.51 1040 6.43 10.79 0.39 183.41 K-23 109.03 8.78 163.14 21.07 7.57 402 11.99 3.75 27.24 1.54 1.86 11.40 26.69 19.55 4.79 15.30 0.82 8.22 2.50 0.05 1.90 589 4.08 18.58 0.31 64.41 Ⅲ类伟晶岩 K-24 224.8 53.81 1393.00 37.87 189.32 396 9.76 3.48 19.46 0.96 0.90 4.51 25.06 86.90 10.51 14.23 1.13 2.36 1.76 0.33 1.51 847 8.27 12.61 0.74 32.50 K-25 867.9 111.48 197.70 45.47 135.55 968 13.53 3.81 127.95 11.39 1.07 5.83 27.80 70.16 14.24 24.63 1.10 2.51 1.63 0.24 4.68 1510 4.93 22.49 0.58 18.54 K-26 535.0 103.82 45.82 36.59 106.23 1575 14.37 4.45 196.48 1.60 2.03 17.41 70.74 42.37 15.29 12.93 0.98 6.44 3.01 0.74 7.81 923 2.77 13.19 1.18 19.91 K-27 90.5 217.52 143.39 31.84 119.81 1352 13.89 4.36 82.47 0.88 3.07 18.66 112.59 41.11 13.95 10.00 1.10 4.75 2.69 <0.02 6.08 299 2.95 9.13 1.39 15.56 K-28 464.3 148.42 170.78 58.13 84.08 1330 24.81 5.02 46.98 8.73 2.36 7.89 42.97 94.72 19.25 10.00 0.71 3.99 3.55 <0.02 5.22 2191 4.92 14.04 1.92 18.26 DB-10 633.5 70.35 8.39 22.50 207.80 674 0.74 3.29 39.92 9.58 1.41 4.53 18.22 63.61 74.90 27.69 2.36 2.13 0.53 6.10 1.68 951 0.85 11.72 2.71 2.52 DB-11 653.6 76.58 7.88 23.99 192.30 651 0.48 4.13 36.86 9.20 1.57 8.49 33.15 102.03 53.65 12.02 1.62 1.90 0.54 0.66 1.89 533 1.90 7.44 4.46 3.67 DB-12 287.9 50.54 260.00 21.29 109.80 572 0.51 3.39 27.98 7.07 0.64 3.81 21.76 40.71 10.63 20.10 1.77 2.52 0.41 2.89 1.96 1478 3.83 11.34 0.53 17.88 Ⅳ类伟晶岩 K-29 4702.9 967.32 8.16 45.43 122.21 783 19.16 4.20 52.79 3.03 4.35 26.84 33.65 73.64 16.59 17.13 1.38 6.89 4.34 <0.02 3.57 583 4.44 12.46 0.97 15.52 K-30 5911.7 713.71 14.07 45.00 135.57 862 14.53 3.69 46.70 3.99 2.16 20.94 50.39 66.44 34.22 26.94 1.94 3.00 2.22 <0.02 4.59 233 1.94 13.91 1.27 6.20 DB-1 10700.4 507.84 11.19 26.40 105.70 692 0.41 3.52 45.21 2.95 1.28 7.18 22.16 59.91 87.55 10.00 1.09 0.96 0.47 1.58 3.41 591 0.68 9.16 8.76 2.44 DB-2 7313.0 450.24 9.40 27.09 128.90 1362 0.27 3.49 50.66 1.87 1.41 32.25 67.99 46.36 34.88 10.00 2.56 0.62 3.24 1.41 7.20 599 1.33 3.90 3.49 4.73 DB-3 8778.2 389.71 21.03 28.43 118.95 828 0.70 3.23 38.69 4.89 0.92 6.96 31.83 68.09 42.64 10.00 1.42 1.00 0.59 1.13 3.70 709 1.60 7.05 4.26 4.77 DB-4 8077.2 478.71 15.54 26.25 177.50 894 0.41 4.74 46.25 5.67 1.88 6.62 47.82 74.02 101.48 32.99 2.96 1.10 0.57 1.48 4.10 1471 0.73 11.16 3.08 2.50 DB-5 8147.3 803.01 14.52 26.47 204.50 1260 0.24 3.46 57.10 5.82 0.86 4.21 63.24 62.59 73.74 10.00 1.04 0.09 0.14 0.80 6.76 1345 0.85 9.62 7.37 2.53 DB-6 6712.5 274.73 24.09 28.54 164.80 1463 2.27 6.53 149.68 3.10 1.99 44.50 111.66 63.90 79.00 31.37 2.07 3.06 1.15 0.90 8.71 172 0.81 15.17 2.52 12.88 DB-7 4125.3 110.89 25.84 26.86 278.20 1013 0.32 3.65 33.62 7.06 0.69 4.65 40.01 57.13 31.04 10.00 0.71 0.54 0.15 1.37 5.24 192 1.84 14.01 3.10 7.42 DB-8 10185.1 444.22 7.55 29.00 151.95 906 0.43 3.71 36.99 7.75 1.62 3.81 33.67 75.09 67.22 11.73 1.32 0.59 0.30 1.03 5.10 580 1.12 8.90 5.73 3.08 DB-9 4172.8 292.83 13.46 22.70 229.60 848 0.87 6.55 52.02 7.74 0.95 12.45 46.94 64.36 48.78 10.00 2.12 1.44 0.52 0.79 1.83 997 1.32 4.73 4.88 3.73 LJG-3 11125.0 803.00 29.30 47.30 144.00 294 33.90 0.38 2.93 23.40 3.19 152.00 31.30 10.20 0.73 0.45 2490 4.86 13.97 3.07 4.47 LJG-4 1866.0 272.00 15.80 23.90 89.40 2643 293.00 2.17 10.90 3.89 4.09 18.00 21.20 4.02 1.59 0.31 490 0.85 2.53 5.27 7.55 LJG-5 13855.0 906.00 18.70 43.40 54.20 348 72.50 1.14 17.60 9.64 5.32 108.00 29.60 12.00 0.87 0.73 1270 3.65 13.79 2.47 8.45 LJG-6 4232.0 421.00 10.40 25.00 54.20 2158 140.00 0.84 5.18 9.32 7.11 96.70 26.70 4.32 1.30 0.52 690 3.62 3.32 6.18 6.74 Ⅴ类伟晶岩 K-31 22.2 142.78 3.07 25.32 105.00 1295 0.93 6.25 42.99 1.42 1.06 85.37 85.26 62.51 139.12 16.82 1.63 1.48 0.53 0.60 4.75 353 0.45 10.35 8.27 1.38 K-32 15.9 330.94 8.64 25.72 153.00 1420 0.49 4.24 103.57 1.61 1.70 20.05 71.72 65.43 254.11 30.06 3.90 1.76 0.58 0.48 4.75 1178 0.26 7.71 8.45 0.67 K-33 10.5 535.18 13.67 29.23 114.00 644 0.55 3.90 60.43 16.60 2.46 38.95 59.79 71.27 174.74 23.44 3.40 4.72 1.74 1.01 2.52 1283 0.41 6.90 7.45 1.24 K-34 41.6 132.15 32.35 27.32 117.00 1173 0.64 3.63 64.41 3.82 4.37 100.41 131.47 79.00 180.53 26.79 3.42 4.50 7.34 0.90 4.52 444 0.44 7.83 6.74 1.81 注:LJG-3—LJG-6等6件样品为2014年测试,未测试Co、Ni、Sc、Cd、Tl等元素,由于时间间隔较久现已无法补充分析,缺失的元素不影响本次地球化学指标总结 表 4 可尔因花岗岩及伟晶岩稀土元素分析结果
Table 4. Rare-earth element analysis results of the Ke'eryin granite and pegmatite
岩性 送样
编号w/×10−6 ΣREE LREE/HREE δEu δCe La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu 二云母花岗岩 K-1 52.20 130.44 10.37 42.25 7.66 0.88 5.83 0.70 2.69 0.40 1.10 0.14 0.70 0.10 255.10 20.88 0.39 1.27 K-2 14.64 36.05 3.42 11.80 2.88 0.31 2.47 0.44 2.33 0.38 0.98 0.17 0.91 0.14 76.93 8.84 0.35 1.19 K-3 58.50 148.24 12.37 42.39 9.57 0.81 7.33 0.97 3.88 0.55 1.30 0.13 0.64 0.09 286.57 18.25 0.28 1.26 LJG-1 54.90 102.00 12.50 50.40 8.91 2.10 6.05 0.79 3.18 0.61 1.59 0.22 1.30 0.21 244.76 16.55 0.83 0.90 LJG-2 16.90 34.50 4.21 17.10 4.38 0.55 3.68 0.71 2.34 0.62 1.49 0.20 1.14 0.17 87.99 7.50 0.41 0.96 伟晶相微斜
钠长花岗岩K-4 3.92 11.71 0.82 2.26 0.66 0.11 0.52 0.10 0.44 0.07 0.17 0.03 0.16 0.02 20.98 12.89 0.56 1.50 K-5 8.44 23.15 1.77 5.24 1.31 0.26 1.16 0.26 1.93 0.43 1.46 0.35 2.45 0.38 48.54 4.76 0.63 1.37 K-6 6.81 18.68 1.60 5.17 2.02 0.25 1.96 0.53 3.07 0.47 1.14 0.20 1.08 0.15 43.15 4.02 0.38 1.32 K-7 11.66 30.37 2.82 9.12 2.00 0.43 1.78 0.34 2.01 0.38 1.07 0.19 1.04 0.15 63.43 8.11 0.68 1.24 K-8 7.51 17.61 1.55 5.17 1.58 0.29 1.51 0.31 1.79 0.29 0.74 0.13 0.68 0.10 39.25 6.07 0.57 1.18 K-9 5.15 12.88 1.05 3.42 1.13 0.21 0.92 0.18 0.93 0.13 0.31 0.05 0.26 0.04 26.68 8.46 0.61 1.27 K-10 8.24 18.13 1.79 5.96 1.77 0.23 1.52 0.32 1.81 0.29 0.75 0.12 0.64 0.09 41.63 6.51 0.42 1.09 Ⅰ类伟晶岩 K-11 2.24 5.35 0.44 1.44 0.52 0.16 0.56 0.18 1.21 0.19 0.44 0.07 0.31 0.04 13.15 3.38 0.90 1.22 K-12 5.22 10.65 1.08 3.17 1.01 0.25 1.08 0.26 1.75 0.28 0.71 0.12 0.59 0.08 26.30 4.40 0.73 1.03 K-13 3.89 10.63 0.71 2.35 0.52 0.08 0.44 0.08 0.49 0.09 0.28 0.06 0.42 0.06 20.07 9.45 0.50 1.43 K-14 5.89 14.58 1.16 4.12 1.00 0.25 0.87 0.16 0.92 0.17 0.48 0.08 0.44 0.06 30.20 8.50 0.80 1.27 K-15 8.56 20.02 1.84 6.41 1.56 0.31 1.38 0.28 1.62 0.29 0.79 0.14 0.76 0.11 44.05 7.20 0.63 1.16 K-16 7.84 19.02 1.75 5.77 1.75 0.19 1.45 0.31 1.73 0.27 0.71 0.12 0.70 0.10 41.69 6.73 0.35 1.19 K-17 4.47 13.65 1.03 3.16 0.78 0.23 0.70 0.15 0.86 0.15 0.41 0.07 0.41 0.06 26.08 8.28 0.93 1.47 Ⅱ类伟晶岩 K-18 2.75 8.02 0.52 1.61 0.36 0.09 0.36 0.08 0.43 0.07 0.20 0.04 0.20 0.03 14.76 9.47 0.76 1.51 K-19 7.60 17.09 1.61 5.45 1.52 0.19 1.24 0.25 1.36 0.23 0.64 0.12 0.65 0.10 38.06 7.29 0.41 1.12 K-20 2.30 6.94 0.47 1.58 0.38 0.08 0.33 0.07 0.46 0.08 0.26 0.05 0.31 0.04 13.35 7.34 0.68 1.52 K-21 4.79 12.71 1.06 3.02 1.48 0.04 1.22 0.35 2.09 0.30 0.76 0.18 1.17 0.16 29.32 3.71 0.09 1.30 K-22 8.89 20.76 1.81 5.56 1.33 0.25 1.23 0.23 1.41 0.25 0.69 0.13 0.73 0.11 43.42 8.08 0.59 1.18 K-23 2.88 11.44 0.67 2.27 0.72 0.11 0.72 0.19 1.22 0.21 0.55 0.10 0.63 0.09 21.76 4.87 0.46 1.91 Ⅲ类伟晶岩 K-24 2.52 10.59 0.51 1.70 0.40 0.12 0.38 0.08 0.45 0.07 0.22 0.04 0.22 0.04 17.35 10.57 0.93 2.13 K-25 1.62 6.04 0.38 1.24 0.34 0.05 0.29 0.07 0.39 0.06 0.18 0.03 0.20 0.03 10.92 7.74 0.48 1.79 K-26 6.38 11.24 1.40 4.49 0.94 0.16 0.84 0.17 0.95 0.17 0.50 0.08 0.47 0.07 27.82 7.56 0.54 0.86 K-27 5.66 15.20 1.06 3.61 0.81 0.19 0.78 0.15 0.91 0.18 0.53 0.09 0.52 0.08 29.77 8.19 0.72 1.40 K-28 4.31 11.30 0.94 3.42 0.69 0.14 0.61 0.11 0.64 0.12 0.33 0.06 0.33 0.05 23.05 9.24 0.65 1.29 DB-10 1.68 5.16 0.32 1.07 0.23 0.08 0.22 0.04 0.29 0.06 0.17 0.03 0.23 0.04 9.62 7.91 1.07 1.59 DB-11 1.71 7.43 0.35 1.14 0.25 0.08 0.25 0.05 0.32 0.06 0.16 0.03 0.20 0.03 12.06 9.96 0.97 2.19 DB-12 1.24 4.19 0.27 0.82 0.24 0.04 0.23 0.06 0.38 0.06 0.18 0.03 0.24 0.03 8.01 5.62 0.51 1.67 Ⅳ类伟晶岩 K-29 5.96 16.03 1.25 3.98 0.85 0.19 0.79 0.15 1.29 0.17 0.49 0.09 0.56 0.08 31.85 7.80 0.70 1.34 K-30 1.75 6.25 0.33 1.08 0.28 0.06 0.25 0.05 0.34 0.06 0.17 0.03 0.21 0.03 10.89 8.55 0.68 1.85 DB-1 0.92 4.29 0.21 0.73 0.15 0.06 0.15 0.03 0.17 0.03 0.10 0.02 0.11 0.02 6.99 10.10 1.21 2.26 DB-2 0.72 4.02 0.15 0.52 0.10 0.03 0.10 0.02 0.10 0.02 0.05 <0.01 0.06 <0.01 5.93 14.21 0.91 2.80 DB-3 1.16 5.52 0.24 0.84 0.16 0.05 0.16 0.03 0.16 0.03 0.10 0.02 0.11 0.02 8.60 12.65 0.95 2.39 DB-4 1.29 4.10 0.26 0.84 0.17 0.05 0.16 0.03 0.19 0.04 0.11 0.02 0.13 0.02 7.41 9.59 0.91 1.61 DB-5 0.17 0.47 0.03 0.10 0.02 <0.01 0.02 <0.01 0.01 <0.01 <0.01 <0.01 0.01 <0.01 1.10 3.21 7.57 1.50 DB-6 3.80 7.05 0.81 2.82 0.49 0.11 0.46 0.08 0.48 0.10 0.30 0.05 0.31 0.05 16.91 8.24 0.70 0.92 DB-7 0.47 1.69 0.08 0.20 0.04 0.01 0.05 0.01 0.07 0.01 0.03 <0.01 0.03 <0.01 2.79 8.30 0.68 1.93 DB-8 0.96 3.58 0.18 0.54 0.09 0.02 0.09 0.01 0.08 0.01 0.04 <0.01 0.05 <0.01 5.75 14.13 0.67 1.94 DB-9 0.85 4.22 0.20 0.71 0.15 0.06 0.17 0.03 0.22 0.05 0.15 0.03 0.17 0.03 7.04 7.28 1.15 2.38 LJG-3 1.94 2.69 0.26 0.89 0.20 0.12 0.18 0.04 0.18 0.04 0.11 0.02 0.12 0.02 6.81 8.59 1.90 0.79 LJG-4 1.59 2.34 0.41 1.00 0.42 0.12 0.25 0.04 0.18 0.04 0.10 0.01 0.06 0.01 6.57 8.52 1.05 0.68 LJG-5 2.20 2.83 0.28 1.16 0.22 0.12 0.19 0.03 0.16 0.04 0.10 0.02 0.10 0.02 7.47 10.32 1.75 0.75 LJG-6 1.60 2.10 0.23 0.95 0.18 0.13 0.15 0.03 0.11 0.03 0.08 0.01 0.07 0.01 5.68 10.59 2.35 0.74 Ⅴ类伟晶岩 K-31 2.25 3.44 0.38 1.23 0.24 0.06 0.23 0.04 0.23 0.04 0.11 0.02 0.12 0.02 8.41 9.38 0.77 0.82 K-32 1.74 4.04 0.39 1.35 0.26 0.07 0.25 0.05 0.29 0.06 0.17 0.03 0.19 0.03 8.92 7.34 0.83 1.14 K-33 4.01 9.40 0.96 3.43 0.66 0.17 0.64 0.13 0.78 0.15 0.46 0.07 0.48 0.07 21.41 6.70 0.79 1.12 K-34 3.04 8.93 0.65 2.27 0.49 0.15 0.51 0.10 0.65 0.13 0.37 0.06 0.38 0.05 17.78 6.90 0.91 1.46 表 5 可尔因地区伟晶岩型锂矿地球化学找矿指标
Table 5. Geochemical prospecting indexes of the pegmatite type lithium deposits in the Ke'eryin area
平面变化 垂向变化 指标 含量/值
(矿体)平均值
(矿体)变化趋势
(Ⅰ~Ⅴ)指标 含量/值 平均值 变化趋势
(由浅到深)特征元素指标 Li 1866~13855 7202 突然升高 品位指标
(矿体)A/NK 1.42~4.82 2.72 正相关 B 5.36~162.49 21.06 突然降低 A/CNK 1.40~4.53 2.59 Sn 111~967 451 逐渐升高 σ 0.43~6.11 1.42 负相关 Rb 294~2643 1026 K+Na 3.75~12.32 6.31 Be 54.2~279.0 153 K/Na 0.20~2.43 0.7 Nb 18.0~152.0 71.5 Ta 16.6~290.0 68.9 指示指标 Cs 13.2~293.0 58.7 逐渐升高 指示指标
(矿体及伟晶岩)B 2.06~1000.00 51.57 突然升高 Tl 1.76~10.61 4.75 U 1.27~27.61 7.55 逐渐升高 F 151~2809 947 Zr 10.4~208.3 26.7 Zr 4.02~32.99 13.73 逐渐降低 Be 1.47~655.00 165.11 Y 0.09~6.89 1.94 Sn 50.5~922.3 313.5 逐渐降低 ΣREE 0.82~31.87 10.69 Rb 345~2094 968 Ta/Zr 0.97~17.08 5.33 逐渐升高 Sr 3.53~133.65 32.28 Nb/Ta 0.30~4.86 1.46 逐渐降低 Ba 13.6~551.3 69.5 Zr/Hf 2.53~18.00 9.23 Tl 1.34~10.61 4.33 K/Na 0.20~2.43 0.7 In 0.68~0.05 0.18 TiO2/Ta 0.73~15.52 4.61 注:元素含量单位均为10−6,K+Na=w(Na2O)+w (K2O)(%),K/Na=w(Na2O)/w(K2O),σ=(K2O+Na2O)2/(SiO2−43) 表 6 Li2O含量与品位指标的相关系数
Table 6. Correlation coefficient between Li2O content and grade indexes
指标 Li2O A/NK A/CNK σ K+Na K/Na Li2O 1 A/NK 0.81 1 A/CNK 0.82 0.99 1 σ −0.67 −0.70 −0.71 1 K+Na −0.79 −0.87 −0.87 0.95 1 K/Na −0.50 −0.62 −0.61 0.86 0.82 1 -
BEUS A A, GRIGORIAN S V, 1977. Geochemical exploration methods for mineral deposits[M]. TETERUK-SCHNEIDER R, trans. Applied Publishing: l-287. BOYNTON W V, 1984. Geochemistry of the Rare Earth Elements: Meteorite Studies[M]//In: Henderson, P., Ed., Rare Earth Element Geochemistry. Elsevier, Amsterdam, 63-114. ČERNÝ P, ERCIT T S, 2005.The classification of granitic pegmatites revisited[J]. The Canadian Mineralogist, 43(6): 2005-2026. CLARKE D B, 1992. Granitoid rocks[M]. London: Chapman and Hall: 1-283. DESCHAMPSF, DUCHÊNES, SIGOYERJ, et al. , 2017. Coeval mantle-derived and crust-derived magmas forming two neighbouring plutons in the Songpan Ganze accretionary orogenic wedge (SW China)[J]. Journal of Petrology, 58(11): 2221-2256. doi: 10.1093/petrology/egy007 FAN B C, ZHANG J, MENG G L, et al. , 2022. An assessment of lithium resource potentiality in Pamir syntax: basedon1: 1 million scale of geochemical survey[J]. Northwestern Geology, 55(1): 156-166. (in Chinese with English abstract) FEI G C, YUAN T J, TANG W C, et al. , 2014. Classification of ore bearing pegmatites in keeryin pegmatite type rare metal deposit in Western Sichuan[J]. Mineral Deposits, 33(S1): 187-188. (in Chinese) FEI G C, LI B H, YANG J Y, et al. , 2018. Geology, fluid inclusion characteristics and H-O-C isotopes of large Lijiagou Pegmatite spodumene deposit in Songpan-garze fold belt, eastern Tibet: implications for ore genesis[J]. Resource Geology, 68(1): 37-50. doi: 10.1111/rge.12145 FEI G C, MENUGE J F, LI Y Q, et al. , 2020. Petrogenesis of the Lijiagou spodumene pegmatites in Songpan-Garze Fold Belt, West Sichuan, China: evidence from geochemistry, zircon, cassiterite and coltan U-Pb geochronology and Hf isotopic compositions[J]. Lithos, 2020, 364-365: 105555. GU C H, 2014. Metallogenic regularity of spodumene deposits in the closely spaced pegmatite area in the southeastern Keeryin pegmatite field, Sichuan province[J]. Contributions to Geology and Mineral Resources Research, 29(1): 59-65. (in Chinese withEnglish abstract) LI H, 1993. An ideal pattern of primary superimposed halo of hydrothermal gold deposits[J]. Geology and Exploration, 29(4): 46-51. (in Chinese with English abstract) LI H, ZHANG W H, LIU B L, et al. , 1999a. Ideal model and principle of staching structure of axial geochemical parameter of gold deposit[J]. Geology and Exploration, 35(6): 40-43. (in Chinese with English abstract) LI H, ZHANG W H, CHANG F C, 1999b. Ideal models of overprint of primary halo for large, mega-size blind au ore deposits[J]. Contributions to Geology and Mineral Resources Research, 14(3): 25-33. (in Chinese with English abstract) LI H, ZHANG G Y, WANG Z N, et al. , 2003. The effect of applying structural superimposed halos to the prognosis of deep blind orebodies in the gold ore district[J]. Geophysical and Geochemical Exploration, 27(6): 438-440. (in Chinese with English abstract) LI H, ZHANG G Y, GAO Y L, et al. , 2008. The structural superimposed halo model for prognosis of No. 2 enrichment zone at the depth of the Xiao Qinling gold ore concentration area [J]. Geophysical and Geochemical Exploration, 32(5): 525-528. (in Chinese with English abstract) LI H, YU B, LI D L, et al. , 2010. Research results of a new method of structural superposition halo for deep blind ore prospecting in crisis mines [J]. Mineral Deposits, 29(S1): 709-710. (in Chinese) LI H, YU B, LI D L, et al. , 2013. Prediction of blind ore bodies using structural superimposed halo and research methods [J]. Geology and Exploration, 49(1): 154-161. (in Chinese with English abstract) LI J K, 2006. Mineralizing mechanism and continental geodynamics of typical pegmatite deposits in western Sichuan, China [D]. Beijing: China University of Geosciences (Beijing): 49-71. (in Chinese with English abstract) LI J K, WANG D H, FU X F, 2006. 40Ar/39Ar ages of the Keeryin pegmatite type rare metal deposit, western Sichuan, and its tectonic significances[J]. Acta GeologicaSinica, 80(6): 843-848. (in Chinese with English abstract) LI P, LIU X, LI J K, et al. , 2019. Petrographic and geochemical characteristics of Renli-Chuanziyuan No. 5 pegmatite, NE Hunan, and its metallogenic age[J]. Acta GeologicaSinica, 93(6): 1374-1391. (in Chinese with English abstract) LI X F, TIAN S H, WANG DH, et al. , 2020. Genetic relationship between pegmatite and granite in Jiajika lithium deposit in western Sichuan: evidence from zircon U-Pb dating, Hf-O isotope and geochemistry[J]. Mineral Deposits, 39(2): 273-304. (in Chinese with English abstract) LIAO Z H, ZHOU Z G, ZHANG H P, 2019. Geochemical characteristics and evidence of liquid immiscibility in keeryin rare metal deposit[J]. Acta Geologica Sichuan, 39(S1): 60-69. (in Chinese with English abstract) LIU C, WANG R C, WU F Y, et al. , 2020. Spodumene pegmatites from the Pusila pluton in the higher Himalaya, South Tibet: Lithium mineralization in a highly fractionated leucogranite batholith[J]. Lithos, 358-359: 105421. doi: 10.1016/j.lithos.2020.105421 LIU C M. 2006. Progress in studies on primary halos of ore deposit [J]. Acta Geologica Sinica, 80(10): 1528-1538. (in Chinese with English abstract) LIU C M, MA S M, 2007. The main achievements of the study on primary halo in the past 50 years in China[J]. Computing Techniques for Geophysical and Geochemical Exploration, 29(S1): 215-221. (in Chinese with English abstract) LIU T, TIAN S H, WANG DH, et al. , 2020. Genetic relationship between granite and pegmatite in Kalu'an hard-rock-type lithium deposit in Xinjiang: results from zircon U-Pb dating, Hf-O isotopes and whole-rock geochemistry[J]. Acta GeologicaSinica, 94(11): 3293-3320. (in Chinese with English abstract) doi: 10.3969/j.issn.0001-5717.2020.11.009 LIU X, ZHAN Q Y, ZHU D C, et al. , 2021. Provenance and tectonic uplift of the Upper Triassic strata in the southern Songpan-Ganzi fold belt, SW China: evidence from detrital zircon geochronology and Hf isotope[J]. Acta PetrologicaSinica, 37(11): 3513-3526. (in Chinese with English abstract) doi: 10.18654/1000-0569/2021.11.16 LUO W, LI Y G, LUO K J, et al. , 2018. Anomaly evaluation and prospecting prediction of 1∶50000 stream Sediment survey in Keeryin area, Sichuan Province[J]. Science Technology and Engineering, 18(9): 56-62. (in Chinese with English abstract) MA S C, WANG D H, LIU S B, et al. , 2019. Mineral chemistry of micas from Ke'eryin pegmatite type lithium orefield in western Sichuan and its indication for rare metal mineralization and prospecting[J]. Mineral Deposits, 38(4): 877-897. (in Chinese with English abstract) MCDONOUGH W F, SUN S S, RINGWOOD A E, et al., 1992. K, Rb and Cs in the Earth and Moon and the evolution of the Earth’s mantle[J]. Geochimica et Cosmochimica Acta, 56(3): 1001-1012. PULLEN A, KAPP P, GEHRELS G E, et al. , 2008. Triassic continental subduction in central Tibet and Mediterranean-style closure of the Paleo-Tethys Ocean[J]. Geology, 36(5): 351-354. doi: 10.1130/G24435A.1 QIN C S, PENG X H, XU B, et al. , 2011. Research progress of prospecting by primary halos [J]. Acta MineralogicaSinica, 31(S1): 828-829. (in Chinese with English abstract) REN L L, WANG R T, ZHANG C Y, et al. , 2019. Application of structural superimposed halo prospecting method to deep blind ore prediction in Yang Meitian copper mine[J]. Contributions to Geology and Mineral Resources Research, 34(2): 315-320. (in Chinese with English abstract) ROGERF, MALAVIEILLEJ, LELOUPPH, et al. , 2004. Timing of granite emplacement and cooling in the Songpan–Garze Fold Belt (eastern Tibetan Plateau) with tectonic implications[J]. Journal of Asian Earth Sciences, 22(5): 465-481. doi: 10.1016/S1367-9120(03)00089-0 ROGER F, JOLIVET M, MALAVIEILLE J, 2010. The tectonic evolution of the Songpan-Garzê (North Tibet) and adjacent areas from proterozoic to present: a synthesis[J]. Journal of Asian Earth Sciences, 39(4): 254-269. doi: 10.1016/j.jseaes.2010.03.008 SANG L K, MA C Q, 2012. Petrology[M]. 2rd ed. Beijing: Geology Press: 187-192. (in Chinese with English abstract) SHAND S J, 1947. Eruptive rocks[M]. 3rd ed. New York: John Wiley: 1-488. SHAO Y, 1997. Rock survey of hydrothermal deposits (primary halo method) prospecting [M]. Beijing: Geology Press: 1-143. (in Chinese) SUN W L, MA Y Q, SONG Q W, 2021. Characteristics and research progress of granitic pegmatite type lithium deposits in China [J]. Geology and Exploration, 57(3): 0478-0496. (in Chinese with English abstract) WANG B, SONG Y W, SUN B, et al. , 2021. Structural superimposing halo practical modeling and deep prospecting prediction of Zhaishang gold deposit in the Gansu province[J]. Geoscience, 35(6): 1504-1514. (in Chinese withEnglish abstract) WANG Z P, LIU S B, MA S C, et al. , 2018. Metallogenic regularity, deep and periphery prospecting of Dangbasuperlarge spodumene deposit in Aba, Sichuan province[J]. Earth Science, 43(6): 2029-2041. (in Chinese with English abstract) XU Z Q, HOU L W, WANG Z X, 1992. Orogenic processes of the Songpan-Ganze orogenic belt of China [M]. Beijing: Geology Press: 1-288. (in Chinese) XU Z Q, WANG R C, ZHAO Z B, et al. , 2018. On the structural backgrounds of the large-scale“hard-rock type”lithium ore belts in China [J]. Acta GeologicaSinica, 92(6): 1091-1106. (in Chinese with English abstract) XU ZQ, FU X F, ZHAO Z B, et al. , 2019. Discussion on relationships of gneiss dome and metallogenic regularity of pegmatite-type lithium deposits [J]. Earth Science, 44(5): 1452-1463. XU Z Q, FU X F, WANG R C, et al. , 2020. Generation of lithium-bearing pegmatite deposits within the Songpan-Ganze orogenic belt, east Tibet [J]. Lithos, 354-355: 105281. doi: 10.1016/j.lithos.2019.105281 YUE X Y, YANG B, ZHOU X, et al. , 2019. Geochemical characteristics and U-Pb age of Redamen granites in western Sichuan, China: petrogenesis and tectonic significance[J]. Geoscience, 33(5): 1015-1024. (in Chinese with English abstract) ZHANG D H, 2020. Geochemistry of hydrothermal ore-forming processes[M]. Beijing: Geology Press: 578-594. (in Chinese) ZHAO Z B, DU J X, LIANG F H, et al. , 2019. Structure and metamorphism of Markam gneiss dome from the eastern Tibetan Plateau and its implications for crustal thickening, metamorphism, and exhumation[J]. Geochemistry, Geophysics, Geosystems, 20(1): 24-45. doi: 10.1029/2018GC007617 ZHENG Y L, XU Z Q, GAO W Q, et al. , 2021. Tectonic genesis of the Markam gneiss dome and pegmatitic lithium deposits in western Sichuan province[J]. Acta GeologicaSinica, 95(10): 3069-3084. (in Chinese with English abstract) ZHOU X M, 2007. Genesis of late mesozoic granites in Nanling area and lithosphere dynamic evolution[M]. Beijing: Science Press: 1-691. (in Chinese) 范堡程, 张晶, 孟广路, 等, 2022. 帕米尔构造结锂矿资源潜力评价: 基于1: 100万地球化学调查[J]. 西北地质, 55(1): 156-166. 费光春, 袁天晶, 唐文春, 等, 2014. 川西可尔因伟晶岩型稀有金属矿床含矿伟晶岩分类浅析[J]. 矿床地质, 33(S1): 187-188. doi: 10.16111/j.0258-7106.2014.s1.096 古城会, 2014. 四川省可尔因伟晶岩田东南密集区锂辉石矿床成矿规律[J]. 地质找矿论丛, 29(1): 59-65. doi: 10.6053/j.issn.1001-1412.2014.01.007 李惠, 1993. 热液金矿床原生叠加晕的理想模式[J]. 地质与勘探, 29(4): 46-51. 李惠, 张文华, 刘宝林, 等, 1999a. 金矿床轴向地球化学参数叠加结构的理想模式及其应用准则[J]. 地质与勘探, 35(6): 40-43. 李惠, 张文华, 常凤池, 1999b. 大型、特大型金矿盲矿预测的原生叠加晕理想模型[J]. 地质找矿论丛, 14(3): 25-33. 李惠, 张国义, 王支农, 等, 2003. 构造叠加晕法在预测金矿区深部盲矿中的应用效果[J]. 物探与化探, 27(6): 438-440. 李惠, 张国义, 高延龙, 等, 2008. 小秦岭金矿集中区深部第二富集带预测的构造叠加晕模型[J]. 物探与化探, 32(5): 525-528. 李惠, 禹斌, 李德亮, 等, 2010. 危机矿山深部找盲矿的构造叠加晕新方法研究成果[J]. 矿床地质, 29(S1): 709-710. doi: 10.16111/j.0258-7106.2010.s1.355 李惠, 禹斌, 李德亮, 等, 2013. 构造叠加晕找盲矿法及研究方法[J]. 地质与勘探, 49(1): 154-161. 李建康, 2006. 川西典型伟晶岩型矿床的形成机理及其大陆动力学背景[D]. 北京: 中国地质大学(北京): 49-71. 李建康, 王登红, 付小方, 2006. 川西可尔因伟晶岩型稀有金属矿床的40Ar-39Ar年代及其构造意义[J]. 地质学报, 80(6): 843-848. doi: 10.3321/j.issn:0001-5717.2006.06.006 李鹏, 刘翔, 李建康, 等, 2019. 湘东北仁里-传梓源矿床5号伟晶岩岩相学、地球化学特征及成矿时代[J]. 地质学报, 93(6): 1374-1391. doi: 10.3969/j.issn.0001-5717.2019.06.016 李贤芳, 田世洪, 王登红, 等, 2020. 川西甲基卡锂矿床花岗岩与伟晶岩成因关系: U-Pb定年、Hf-O同位素和地球化学证据[J]. 矿床地质, 39(2): 273-304. 廖芝华, 周中国, 张洪平, 2019. 可尔因稀有金属矿床液态不混溶作用的地球化学特征证据[J]. 四川地质学报, 39(S1): 60-69. 刘崇民. 2006. 金属矿床原生晕研究进展[J]. 地质学报, 80(10): 1528-1538. 刘崇民, 马生明, 2007. 我国原生晕研究50年的主要成果[J]. 物探化探计算技术, 29(S1): 215-221. 刘涛, 田世洪, 王登红, 等, 2020. 新疆卡鲁安硬岩型锂矿床花岗岩与伟晶岩成因关系: 锆石U-Pb定年、Hf-O同位素和全岩地球化学证据[J]. 地质学报, 94(11): 3293-3320. doi: 10.3969/j.issn.0001-5717.2020.11.009 刘祥, 詹琼窑, 朱弟成, 等, 2021. 松潘-甘孜褶皱带南部上三叠统物源及构造抬升: 碎屑锆石年代学和Hf同位素证据[J]. 岩石学报, 37(11): 3513-3526. doi: 10.18654/1000-0569/2021.11.16 罗伟, 李佑国, 罗开杰, 等, 2018. 川西可尔因地区1∶5万水系沉积物测量异常评价及找矿预测[J]. 科学技术与工程, 18(9): 56-62. doi: 10.3969/j.issn.1671-1815.2018.09.008 马圣钞, 王登红, 刘善宝, 等, 2019. 川西可尔因锂矿田云母矿物化学及稀有金属成矿和找矿指示[J]. 矿床地质, 38(4): 877-897. doi: 10.16111/j.0258-7106.2019.04.013 卿成实, 彭秀红, 徐波, 等, 2011. 原生晕找矿法的研究进展[J]. 矿物学报, 31(S1): 828-829. doi: 10.16461/j.cnki.1000-4734.2011.s1.256 任良良, 王润涛, 张承玉, 等, 2019. 构造叠加晕找矿法在云南省杨梅田铜矿床深部盲矿预测中的应用[J]. 地质找矿论丛, 34(2): 315-320. doi: 10.6053/j.issn.1001-1412.2019.02.020 桑隆康, 马昌前, 2012. 岩石学[M]. 2版. 北京: 地质出版社: 187-192. 邵跃, 1997. 热液矿床岩石测量(原生晕法)找矿[M]. 北京: 地质出版社: 1-143. 孙文礼, 马叶情, 宋庆伟, 2021. 中国花岗伟晶岩型锂矿特征和研究进展[J]. 地质与勘探, 57(03): 478-496. 王斌, 宋伊圩, 孙彪, 等, 2021. 甘肃寨上金矿南矿带构造叠加晕实用模型及深部找矿预测[J]. 现代地质, 35(6): 1504-1514. doi: 10.19657/j.geoscience.1000-8527.2021.112 王子平, 刘善宝, 马圣钞, 等, 2018. 四川阿坝州党坝超大型锂辉石矿床成矿规律及深部和外围找矿方向[J]. 地球科学, 43(6): 2029-2041. 许志琴, 侯立炜, 王宗秀, 1992. 中国松潘—甘孜造山带的造山过程[M]. 北京: 地质出版社: 1-288. 许志琴, 王汝成, 赵中宝, 等 , 2018. 试论中国大陆“硬岩型”大型锂矿带的构造背景 [J]. 地质学报, 92(6): 1091-1106. doi: 10.3969/j.issn.0001-5717.2018.06.001 岳相元, 杨波, 周雄, 等, 2019. 川西地区热达门石英闪长岩锆石U-Pb年龄和岩石地球化学特征: 岩石成因与构造意义[J]. 现代地质, 33(5): 1015-1024. 张德会, 2020. 热液成矿作用地球化学 [M]. 北京: 地质出版社: 578-594. 郑艺龙, 许志琴, 高文琦, 等 , 2021. 川西马尔康片麻岩穹隆与伟晶岩型锂矿的构造成因 [J]. 地质学报, 95(10): 3069-3084. doi: 10.3969/j.issn.0001-5717.2021.10.009 周新民, 2007. 南岭地区晚中生代花岗岩成因与岩石圈动力学演化 [M]. 北京: 科学出版社: 1-691.