留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

川西理塘-义敦断裂措普湖段第四纪晚期滑动速率与古地震序列

王世元 王竞 李福鹏 陶志刚 梁明剑 刘韶 屈淼 张力文 曾维祖 晋云霞

王世元, 王竞, 李福鹏, 等, 2024. 川西理塘-义敦断裂措普湖段第四纪晚期滑动速率与古地震序列. 地质力学学报, 30 (2): 275-288. DOI: 10.12090/j.issn.1006-6616.2023060
引用本文: 王世元, 王竞, 李福鹏, 等, 2024. 川西理塘-义敦断裂措普湖段第四纪晚期滑动速率与古地震序列. 地质力学学报, 30 (2): 275-288. DOI: 10.12090/j.issn.1006-6616.2023060
WANG Shiyuan, WANG Jing, LI Fupeng, et al., 2024. Late quaternary slip rate and paleoseismic sequence of the Cuopuhu section of the Litang-Yidun fault, western Sichuan, China. Journal of Geomechanics, 30 (2): 275-288. DOI: 10.12090/j.issn.1006-6616.2023060
Citation: WANG Shiyuan, WANG Jing, LI Fupeng, et al., 2024. Late quaternary slip rate and paleoseismic sequence of the Cuopuhu section of the Litang-Yidun fault, western Sichuan, China. Journal of Geomechanics, 30 (2): 275-288. DOI: 10.12090/j.issn.1006-6616.2023060

川西理塘-义敦断裂措普湖段第四纪晚期滑动速率与古地震序列

doi: 10.12090/j.issn.1006-6616.2023060
基金项目: 

国家自然科学基金项目 2019QZKK0708

中国地震局星火计划 XH24036B

中国地震局地震工程与工程振动重点实验室重点专项 2021EEEVL0101

详细信息
    作者简介:

    王世元(1982—),男,硕士,高级工程师,从事活动断层、地震灾害和工程地震相关工作。Email:544756125@qq.com

    通讯作者:

    王竞(1993—),女,硕士,工程师,从事活动断层、地震灾害和工程地震相关工作。Email:6277251285@qq.com

  • 中图分类号: P546;P65

Late quaternary slip rate and paleoseismic sequence of the Cuopuhu section of the Litang-Yidun fault, western Sichuan, China

Funds: 

the National Natural Science Foundation of China 2019QZKK0708

the Spark Program of the China Earthquake Administration XH24036B

the Scientific Research Fund of the Institute of Engineering Mechanics, China Earthquake Administration 2021EEEVL0101

  • 摘要: 理塘-义敦断裂是川滇菱形块体内部一条延伸约130 km的全新世活动的左旋走滑断裂带,是川西理塘地区地震活动的重要控震构造,目前其北段的措普湖段研究程度相对较低。将理塘-义敦断裂措普湖段作为研究对象,运用野外勘察、高精度测绘、探槽与14C测年等方法对措普湖段进行滑动速率和古地震探究。开挖的2处探槽位于冬欧山坡麓处,通过识别探槽内断裂与地层的切割关系、地层沉积特征、断层运动性质等标志;共识别出4次古地震事件:事件Ⅰ发生于BC 3382± 60 a之前;事件Ⅱ发生于BC 3382±60 a~BC 1094±51 a之间;事件Ⅲ与事件Ⅳ均发生于AD 1330±44 a之后。可以推断理塘-义敦断裂措普湖段具有大概率的古地震复发间隔为2.4 ka左右,不排除有小概率复发间隔0.4±0.3 ka的可能。理塘-义敦断裂措普湖段古地震事件与大毛垭坝段和理塘段古地震事件之间存在差异,但是不同分段断裂的地震活动性在全新世以来均表现出持续增强趋势。根据测绘断错地貌和末次冰期冰碛垄推算出晚更新世以来措普湖段平均滑动速率为4.15±0.5 mm/a,与理塘-义敦断裂第四纪晚期不同分支滑动速率处于同一量级水平。文章完善了理塘-义敦断裂的构造特征全貌和古地震、滑动速率等信息,有助于更好地理解该断裂及该地区地震活动史和构造变形模式,为今后地震的中长期预测提供更多的数据,同时也有助于川藏铁路沿线相关工程的地震风险评估。

     

  • 图  1  川滇菱形块体及周边主要断层分布图

    YS-GZF—玉树-甘孜断裂;XSHF—鲜水河断裂;ANHF—安宁河断裂;DLSF—大凉山断裂;ZMHF—则木河断裂;XJF—小江断裂;HHF—红河断裂;ZD-DJF—中甸-大具断裂;JSJF—金沙江断裂;LTF—理塘断裂;F1—理塘-义敦断裂理塘段;F2—理塘-义敦断裂大毛垭坝段;F3—理塘-义敦断裂措普湖段
    a—理塘断裂位置示意及川滇菱形块体周边主要断层分布图;b—理塘-义敦断裂及措普湖段断层分布图

    Figure  1.  Distribution map of the Sichuan-Yunnan rhomboid block and surrounding major faults

    (a) Location of the study area and surrounding major faults; (b) Distribution of the Litang-Yidun fault and the Cuopuhu section
    YS-GZF-Yushu-Ganzi fault; XSHF-Xianshuihe fault; ANHF-Anninghe fault; DLSF-Daliangshan fault; ZMHF-Zemuhe fault; XJF-Xiaojiang fault; HHF-Honghe fault; ZD-DJF-Zhongdian-Daju fault; JSJF-Jinshajiang fault; LTF-Litang fault; F1-Litang section of the Litang-Yidun fault; F2-Damaoyaba section of the Litang-Yidun fault; F3-Cuopuhu section of the Litang-Yidun fault

    图  2  理塘-义敦断裂措普湖段断层几何展布特征

    Figure  2.  Geometric distribution of the Cuopuhu section of the Litang-Yidun fault

    图  3  措普湖段南东端断层地貌(红色箭头指示断层走向)

    a—断层切过山前形成槽谷地貌;b—断层切过山前,形成明显坡折带;c—断层切过山前形成反向槽谷、山前坡折带等地貌;d—断层断错最新一期冲洪积扇

    Figure  3.  Fault topography at the southeastern end of the Cuopuhu segction (red arrows indicate fault trend)

    (a) Fault cutting through the mountain front forms a trough-valley landform, oriented towards SE; (b) Fault cutting through the mountain front creates distinct slope folding zones, oriented towards S; (c) Fault cutting through the mountain front forms reverse trough-valleys, mountain front slope folding zones, oriented towards E; (d) Fault dislocating the latest alluvial fan, oriented towards N

    图  4  措普湖东断错地貌

    a—措普湖东断错地貌影像图;b—措普湖东断错地貌实测图

    Figure  4.  Fault scarps in the eastern Cuopuhu section

    (a)Geomorphic image of the fault scarps; (b) Measured map of the fault scarps

    图  5  措普湖西断错地貌

    a—措普湖西实测微地貌位错图,红色箭头指示断层走向;b—措普湖西断错地貌影像图

    Figure  5.  Fault scarps in the western Cuopuhu section

    (a) Measured micro-topographic displacement map of the western Cuopuhu segment, with red arrows indicating the fault direction (oriented towards NE); (b) Geomorphic image of the fault scarps

    图  6  理塘-义敦断裂措普湖段水平平均滑动速率

    Figure  6.  Average horizontal slip rate of the Cuopuhu section of Litang-Yidun fault

    图  7  措普湖段TC1、TC2探槽微地貌实测地形

    a—TC1、TC2探槽附近的地形山影图(红色箭头指示断层走向);b—TC1、TC2探槽附近地质环境图

    Figure  7.  Measured microtopographic topography of TC1 and TC2 trenches in the Cuopuhu section

    (a) Topographic hillshade map near TC1 and TC2 trenches, with red arrows indicating fault orientation; (b) Geological environment map near TC1 and TC2 trenches

    图  8  措普湖段TC1探槽所处地貌环境图

    a—TC1探槽微地貌实测地形图;b—TC1探槽所处的地貌环境图(红色箭头指示断层走向)

    Figure  8.  Geomorphological environment map of TC1 trench in the Cuopuhu section

    (a) Measured microtopographic map of TC1 trench; (b) Geomorphological environment map of TC1 trench, with red arrows indicating fault orientation

    图  9  措普湖段TC2探槽所处地貌环境图

    a—TC2探槽微地貌实测地形图;b—TC2探槽所处的地貌环境图

    Figure  9.  Geomorphological environment map of TC2 trench in the Cuopuhu section

    (b) Measured microtopographic map of TC2 trench; (b) Geomorphological environment map of TC2 trench

    图  10  措普湖段TC1探槽东壁剖面

    a—TC1探槽东壁剖面照片(网格线尺寸为1 m×0.5 m);b—TC1探槽东壁剖面构造填图

    Figure  10.  East wall profile of trench TC1 in the Cuopuhu section

    (a) Photograph of the east wall profile of trench TC1, with grid lines measuring 1 m×0.5 m; (b) Structural mapping of the east wall profile of trench TC1

    图  11  措普湖段TC2探槽东壁剖面

    a—TC2探槽东壁剖面照片(网格线尺寸为1 m×1 m);b—TC2探槽东壁剖面构造填图

    Figure  11.  East wall profile of trench TC2 in the Cuopuhu section

    (a) Photograph of the east wall profile of trench TC2, with grid lines measuring 1 m×1 m; (b) Structural mapping of the east wall profile of trench TC2

    图  12  理塘-义敦断裂措普湖段古地震事件综合判别图

    Figure  12.  Comprehensive discrimination map of paleoseismic events in the Cuopuhu section of the Litang-Yidun fault

    表  1  理塘-义敦断裂(措普湖段)主要断错地貌位错量一览表

    Table  1.   Overview of the main fault scarps and displacement amounts along the Litang-Yidun fault (Cuopuhu section)

    序号 位移点位置/(°) 位移量/m 被断错的地质体
    经度 纬度 水平 垂直
    1 99.6085 30.4607 21±3 0.4 拉隆公玛沟口东冲洪积扇侧缘
    2 99.5886 30.4749 6.8 0.7 章德北东山前冲洪积扇上一纹沟
    3 99.5878 30.4745 8 - 章德北东山前冲洪积扇上一纹沟
    4 99.5235 30.5022 8.8 1.3 措普湖东边冰碛台地上一冲沟
    5 99.5533 30.4824 53±4 48±4 - 措普湖南东冰碛垄和冰水垄岗侧缘
    6 99.5279 30.5014 76±10 措普湖西山前冰碛扇侧缘
    7 99.4435 30.5422 - 2 别宗隆洼沟西阿冬山前冲洪积扇
    8 99.4424 30.5421 - 2.5 别宗隆洼沟西阿冬山前冲洪积扇
    9 99.4410 30.5424 - 2~3 别宗隆洼沟西阿冬山前冲洪积扇上断层陡坎高约2~3 m
    10 99.4405 30.5430 - 3 别宗隆洼沟西阿冬山前冲洪积扇
    11 99.4379 30.5430 - 3~4 别宗隆洼沟西阿冬山前冲洪积扇
    12 99.4368 30.5434 - 2 别宗隆洼沟西阿冬山前冲洪积扇
    13 99.4365 30.5434 - 3 别宗隆洼沟西阿冬山前冲洪积扇
    14 99.4357 30.5434 - 2.5 别宗隆洼沟西阿冬山前冲洪积扇
    15 99.4351 30.5436 - 1 别宗隆洼沟西阿冬山前冲洪积扇
    16 99.4926 30.5308 - 2~3 章柯河北岸陡石山前冲洪积扇
    17 99.4943 30.5300 - 3 章柯河北岸陡石山前冲洪积扇
    18 99.4966 30.5290 - 2 章柯河北岸陡石山前冲洪积扇
    下载: 导出CSV

    表  2  措普湖段(F3)探槽内及拉隆公玛沟口东冲洪积扇侧缘壁14C样品数据

    Table  2.   14C sample data from trenches within the Cuopuhu section (F3) and the sidewall of alluvial fan at the east margin of the Lalonggongma gully

    实验室编号 样品编号 样品描述 物质 碳峰值/ % 常规年龄/ a B.P. 95.4%(2σ)标准年龄/ Cal a B.P. 68.2%(2σ)标准年龄/ Cal a B.P.
    LUG12-153 CPTC1-1 黄褐色古土壤 散装有机物 89.84±0.57 861±44 689~907 700~898
    LUG12-154 CPTC1-2 黄褐色古土壤 散装有机物 92.69±0.63 610±47 539~662 553~650
    LUG12-155 CPTC1-3 黄褐色古土壤 散装有机物 92.57±0.59 620±44 543~663 556~653
    LUG12-156 CPTC1-4 黄褐色古土壤 散装有机物 68.46±0.51 3044±51 3079~3371 3172~3343
    LUG12-157 CPTC2-1 黄褐色古土壤 散装有机物 69.78±0.57 2891±69 2852~3245 2927~3256
    LUG12-158 CPTC2-2 黄褐色古土壤 散装有机物 51.50±0.45 5332±60 5948~6227 6002~6192
    LUG12-160 CPLL-1 灰褐色古土壤 散装有机物 75.40±0.35 8120±70 7860~8356 8532~8786
    下载: 导出CSV
  • BAI D H, UNSWORTH M J, MEJU M A, et al., 2010. Crustal deformation of the eastern Tibetan plateau revealed by magnetotelluric imaging[J]. Nature Geoscience, 3(5): 358-362. doi: 10.1038/ngeo830
    CHEN G H, XU X W, YUAN R M, et al., 2010. Late Quaternary climate and geomorphology on the northeastern margin of Sichuan-Yunnan block and their tectonomorphologic significance[J]. Quaternary Sciences, 30(4): 837-854. (in Chinese with English abstract)
    CHEVALIER M L, LELOUP P H, REPLUMAZ A, et al., 2016. Tectonic-geomorphology of the Litang fault system, SE Tibetan Plateau, and implication for regional seismic hazard[J]. Tectonophysics, 682: 278-292. doi: 10.1016/j.tecto.2016.05.039
    DONALDSON D G, WEBB A A G, MENOLD C A, et al., 2013. Petrochronology of Himalayan ultrahigh-pressure eclogite[J]. Geology, 41(8): 835-838. doi: 10.1130/G33699.1
    DONG X P, LI Z H, JING X H, et al., 2023. Stratigraphic sequence characteristics and geochronology research progress of the Cenozoic in the arcuate tectonic belt on the northeastern margin of the Tibet Plateau[J]. Journal of Geomechanics, 29(4): 465-484. (in Chinese with English Abstract)
    FAN T Y, CHEN Q C, WU Z H, et al., 2013. 3D viscoelastic modeling on the present stress of eastern Qingzang Plateau including active tectonics[J]. Progress in Geophysics, 28(3): 1140-1149. (in Chinese with English abstract)
    GAO S P, 2021. Late quaternary paleoseismology and faulting behavior of the internal and western boundary faults of Northwest Sichuan Subblock[D]. Beijing: Institute of Geology, China Earthquake Administration. (in Chinese with English abstract)
    GORDON R G, STEIN S, 1992. Global tectonics and space geodesy[J]. Science, 256(5055): 333-342. doi: 10.1126/science.256.5055.333
    HA G H, WU Z H, HE L, 2018. Late cenozoic sedimentary strata of Qiongduojiang graben, south Tibet: preliminary constraint on the initial rifting age of the SN-trending rift[J]. Acta Geologica Sinica, 92(10): 2051-2067. (in Chinese with English abstract)
    HE R Z, GAO R, 2003. Some significances of studying north-southern rift in Tibet Plateau[J]. Progress in Geophysics, 18(1): 35-43. (in Chinese with English abstract)
    HU X M, GARZANTI E, MOORE T, et al., 2015. Direct stratigraphic dating of India-Asia collision onset at the Selandian (middle Paleocene, 59±1Ma)[J]. Geology, 43(10): 859-862.
    HU X M, GARZANTI E, WANG J G, et al., 2016. The timing of India-Asia collision onset-Facts, theories, controversies[J]. Earth-Science Reviews, 160: 264-299.
    JI W Q, WU FY, CHUNG S L, et al., 2009. Zircon U-Pb geochronology and Hf isotopic constraints on petrogenesis of the Gangdese batholith, southern Tibet[J]. Chemical Geology, 262(3-4): 229-245.
    JI W Q, WU F Y, CHUNG S L, et al., 2016. Eocene Neo-Tethyan slab breakoff constrained by 45Ma oceanic island basalt-type magmatism in southern Tibet[J]. Geology, 44(4): 283-286.
    LIU K, LI Y F, GUO H W, et al., 2021. Determination of surface rupture length and analysis of Riedel shear structure of the Litang M7.3 earthquake in the west Sichuan in 1948[J]. Acta Geologica Sinca, 95(8): 2346-2360. (in Chinese with English abstract)
    WANG S Y, ZHOU R J, LIANG M J, et al., 2021. Co-seismic surface rupture and recurrence interval of large earthquakes along Damaoyaba-Litang segment of the Litang fault on the eastern margin of the Tibetan Plateau in China[J]. Journal of Earth Science, 32(5): 1139-1151.
    WANG Y Z, WANG E N, SHEN Z K, et al., 2008. GPS-constrained inversion of present-day slip rates along major faults of the Sichuan-Yunnan region, China[J]. Science in China Series D: Earth Sciences, 51(9): 1267-1283.
    WEI Y F, LUO S L, YANG M W, 2004. An analysis for sedimentary system, evolution, and paleoclimate in the Litang basin in west Sichuan in quaternary[J]. Acta Geologica Sichuan, 24(4): 194-197, 205.
    WU Z H, ZHANG Y S, HU D G, et al., 2008. The quaternary normal faulting of the Cona-Oiga Rift[J]. Seismology and Geology, 30(1): 144-160. (in Chinese with English Abstract).
    WU Z H, JIANG W, ZHANG S K, 2000. Analysis of the amount of late Himalayan crustal shortening in the central sector of the Qinghai-Tibet plateau[J]. Geological Review, (6): 561-568. (in Chinese with English Abstract)
    XU X W, WEN X Z, ZHENG R Z, et al., 2003a. Pattern of latest tectonic motion and its dynamics for Active Blocks in Sichuan-Yunnan Region, China[J]. Science in China Series D: Earth Sciences, 46(S2): 210-226.
    XU X W, CHENG G L, YU G H, et al., 2003b. Tectonic and paleomagnetic evidence for the clockwise rotation of the Sichuan-Yunnan rhombic block[J]. Seismology and Geology, 25(1): 61-70. (in Chinese with English Abstract).
    XU X W, WEN X Z, YU G H, et al., 2005. Average slip rate, earthquake rupturing segmentation and recurrence behavior on the Litang fault zone, western Sichuan province, China[J]. Science in China Series D: Earth Sciences, 48(8): 1183-1196.
    XU Z Q, YANG J S, LI H B, et al., 2011. On the tectonics of the India-Asia collision[J]. Acta Geologica Sinica, 85(1): 1-33. (in Chinese with English abstract)
    ZHANG H, GAO Y, SHI Y T, et al., 2012. Tectonic stress analysis based on the crustal seismic anisotropy in the northeastern margin of Tibetan plateau [J]. Chinese Journal of Geophysics, 55(1): 95-104. (in Chinese with English abstract)
    ZHANG K Q, WU Z H, ZHOU C J, et al., 2020. Paleoearthquake events and inhomogeneous activity characteristics in the Benge-Cunge section of the Litang fault zone in the western Sichuan Province[J]. Acta Geologica Sinica, 94(4): 1295-1303. (in Chinese with English abstract)
    ZHANG Y Z, REPLUMAZ A, WANG G C, et al., 2015. Timing and rate of exhumation along the Litang fault system, implication for fault reorganization in Southeast Tibet[J]. Tectonics, 34(6): 1219-1243.
    ZHAO G H, 2014. Study on fault activity and tectonic geomorphology of Litang fault within the Chuandian Blocks[D]. Chengdu: Chengdu University of Technology. (in Chinese with English abstract)
    ZHOU C J, WU Z H, ZHANG K Q, et al., 2015. New chronological constraint on the co-seismic surface rupture segments associated with the Litang Fault[J]. Seismology and Geology, 37(2): 455-467. (in Chinese with English abstract)
    ZHOU R J, CHEN G X, LI Y, et al., 2005. Research on active faults in Litang-Batang region, western Sichuan province, and the seismogenic structures of the 1989 Batang M6.7 earthquake swarm[J]. Seismology and Geology, 27(1): 31-43. (in Chinese with English abstract)
    ZHU D C, WANG Q, ZHAO Z D, et al., 2015. Magmatic record of India-Asia collision[J]. Scientific Reports, 5: 14289.
    ZHU N, XU Y D, JI J L, et al., 2023. Late Pleistocene paleoseismic events recorded by glacial erosive lake in the Litang Plateau, Western Sichuan[J]. Earth Science, 48(9): 3562-3576. (in Chinese with English abstract)
    陈桂华, 徐锡伟, 袁仁茂, 等, 2010. 川滇块体东北缘第四纪晚期区域气候-地貌分析及其构造地貌年代学意义[J]. 第四纪研究, 30(4): 837-854. https://www.cnki.com.cn/Article/CJFDTOTAL-DSJJ201004020.htm
    董晓朋, 李振宏, 井向辉, 等, 2023. 青藏高原东北缘弧形构造带新生代地层沉积序列及年代学研究进展[J]. 地质力学学报, 29(4): 465-484. doi: 10.12090/j.issn.1006-6616.2023048
    范桃园, 陈群策, 吴中海, 等, 2013. 青藏高原东缘活动构造与现今地应力场三维粘弹性模拟研究[J]. 地球物理学进展, 28(3): 1140-1149. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ201303004.htm
    高帅坡, 2021. 川西北次级块体内部及其西边界断裂的第四纪晚期活动习性[D]. 北京: 中国地震局地质研究所.
    哈广浩, 吴中海, 何林, 2018. 藏南邛多江地堑的晚新生代沉积地层及对南北向裂谷形成时代的初步限定[J]. 地质学报, 92(10): 2051-2067. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201810007.htm
    贺日政, 高锐, 2003. 西藏高原南北向裂谷研究意义[J]. 地球物理学进展, 18(1): 35-43. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ200301006.htm
    刘亢, 李岩峰, 郭辉文, 等. 2021. 1948年川西理塘M7.3地震地表破裂特征及Riedel剪切构造分析[J]. 地质学报, 95(8): 2346-2360. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE202108007.htm
    魏永峰, 罗森林, 杨明文, 2004. 川西理塘第四纪盆地沉积体系、演化及古气候分析[J]. 四川地质学报, 24(4): 194-197, 205. https://www.cnki.com.cn/Article/CJFDTOTAL-SCDB200404000.htm
    吴中海, 张永双, 胡道功, 等, 2008. 藏南错那-沃卡裂谷的第四纪正断层作用及其特征[J]. 地震地质, 30(1): 144-160. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDZ200801010.htm
    吴珍汉, 江万, 张淑坤, 2000. 青藏高原中段晚喜马拉雅期地壳缩短量分析[J]. 地质论评, (06): 561-568. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP200006000.htm
    徐锡伟, 闻学泽, 郑荣章, 等, 2003a. 川滇地区活动块体最新构造变动样式及其动力来源[J]. 中国科学(D辑), 33(S1): 151-162. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK2003S1016.htm
    徐锡伟, 程国良, 于贵华, 等, 2003b. 川滇菱形块体顺时针转动的构造学与古地磁学证据[J]. 地震地质, 25(1): 61-70. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDZ200301006.htm
    徐锡伟, 闻学泽, 于贵华, 等, 2005. 川西理塘断裂带平均滑动速率、地震破裂分段与复发特征[J]. 中国科学D辑地球科学, 35(6): 540-551. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200506006.htm
    许志琴, 杨经绥, 李海兵, 等, 2011. 印度-亚洲碰撞大地构造[J]. 地质学报, 85(1): 1-33. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201101001.htm
    张辉, 高原, 石玉涛, 等, 2012. 基于地壳介质各向异性分析青藏高原东北缘构造应力特征[J]. 地球物理学报, 55(01): 95-104. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201201010.htm
    张克旗, 吴中海, 周春景, 等, 2020. 川西理塘断裂带奔戈-村戈段古地震事件及其非均匀性活动特征[J]. 地质学报, 94(4): 1295-1303. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE202004018.htm
    赵国华, 2014. 川滇块体内理塘断裂活动性及其构造地貌研究[D]. 成都: 成都理工大学.
    周春景, 吴中海, 张克旗, 等, 2015. 川西理塘活动断裂最新同震地表破裂形成时代与震级的重新厘定[J]. 地震地质, 37(2): 455-467. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDZ201502009.htm
    周荣军, 陈国星, 李勇, 等, 2005. 四川西部理塘-巴塘地区的活动断裂与1989年巴塘6.7级震群发震构造研究[J]. 地震地质, 27(1): 31-43. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDZ200501003.htm
    朱宁, 徐亚东, 季军良, 等, 2023. 川西理塘高原冰蚀湖记录的晚更新世古地震事件[J]. 地球科学, 48(9): 3562-3576. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202309026.htm
  • 加载中
图(12) / 表(2)
计量
  • 文章访问数:  441
  • HTML全文浏览量:  95
  • PDF下载量:  69
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-04-20
  • 修回日期:  2024-02-28
  • 录用日期:  2024-03-13
  • 预出版日期:  2024-03-21
  • 刊出日期:  2024-04-28

目录

    /

    返回文章
    返回