留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

岩石非均质程度对水压致裂地应力测试方法影响的分析与讨论

陈东升 纪洪广 袁永忠 李芹涛

陈东升,纪洪广,袁永忠,等,2023. 岩石非均质程度对水压致裂地应力测试方法影响的分析与讨论[J]. 地质力学学报,29(3):365−374 doi: 10.12090/j.issn.1006-6616.20232906
引用本文: 陈东升,纪洪广,袁永忠,等,2023. 岩石非均质程度对水压致裂地应力测试方法影响的分析与讨论[J]. 地质力学学报,29(3):365−374 doi: 10.12090/j.issn.1006-6616.20232906
CHEN D S,JI H G,YUAN Y Z,et al.,2023. Influence of rock inhomogeneity degree on the crustal stress results measured by hydraulic fracturing method[J]. Journal of Geomechanics,29(3):365−374 doi: 10.12090/j.issn.1006-6616.20232906
Citation: CHEN D S,JI H G,YUAN Y Z,et al.,2023. Influence of rock inhomogeneity degree on the crustal stress results measured by hydraulic fracturing method[J]. Journal of Geomechanics,29(3):365−374 doi: 10.12090/j.issn.1006-6616.20232906

岩石非均质程度对水压致裂地应力测试方法影响的分析与讨论

doi: 10.12090/j.issn.1006-6616.20232906
基金项目: 山东省重大科技创新工程项目(2019SDZY02,2019SDYZ05)
详细信息
    作者简介:

    陈东升(1994—),男,在读博士,主要从事岩石力学与地应力测量等相关工作。E-mail: beikecds@163.com

    通讯作者:

    纪洪广(1963—),男,教授,博士生导师,主要从事岩石力学基础理论与岩土工程相关工作。E-mail: jihongguang@ces.ustb.edu.cn

  • 中图分类号: P553

Influence of rock inhomogeneity degree on the crustal stress results measured by hydraulic fracturing method

Funds: This research is financially supported by the Major Scientific and Technological Innovation Projects of Shandong Province, China (Grants 2019SDZY02 and 2019SDYZ05)
  • 摘要: 准确揭示原位地应力状态,对地下工程开挖支护设计和长期稳定性分析等具有十分重要的意义。利用水压致裂技术开展了纱岭金矿主竖井地应力测试工作,获得了20个测段地应力状态;室内进行了主竖井测试孔岩芯的岩石力学试验,包括巴西劈裂试验、单轴压缩试验及声发射监测试验,获得了岩石空间非均质度和强度分布特征,并分析了岩石非均质度与水压致裂测试结果的关系。结果表明:主应力大小随测量深度近似呈线性增大,测试孔的最大水平主应力值为20.78~45.20 MPa,最小水平主应力值为14.94~35.33 MPa,平均最大水平主应力方向为 NW65°;测试孔岩芯各层位非均质度不同,变辉长岩非均质度系数为0.1~0.3,且岩石不同强度条件下声发射信号数量变化不显著,岩石离散度较小,花岗岩非均质度系数最高,可达1.0,以加载后期强相破裂产生的声发射信号为主;岩石非均质度影响水压致裂裂纹的扩展方向,扩展方向和最大水平主应力方向的夹角$\varphi $影响着最大、最小水平主应力的测量结果,且对最小水平主应力的影响尤为显著。分析水压致裂测量结果与岩石性质之间的关系,对精确探测非均质地层的地应力场分布规律具有一定的指导作用。

     

  • 图  1  纱岭金矿区域地质构造简图与主井地质剖面图简图

    Figure  1.  Sketch map of the regional geological structure and the geological profile of the main shaft of the Shaling Gold Mine

    图  2  水压致裂典型压裂曲线

    Figure  2.  Typical fracturing curves of hydraulic fracturing

    图  3  主应力、孔隙水压力随深度变化规律

    Figure  3.  Distribution of principal stress and pore water pressure with depth

    图  4  单轴试件安装及劈裂试件应变片布置图

    Figure  4.  Uniaxial rock sample installation and splitting specimen strain gauge layout drawing

    图  5  不同深度岩石的劈裂应变及变异系数

    Figure  5.  Splitting strains and coefficients of variation for rocks at different depths

    图  6  岩样应力−应变曲线、声发射幅值演化及各应力下声发射信号占比

    Figure  6.  Stress–strain curves of rock samples, evolution of acoustic emission amplitude, and percentage of acoustic emission signal at each stress

    图  7  水压致裂岩石强弱相分布示意图

    σHσh—最大、最小水平主应力;$\varphi $—岩体和测试孔中心连线与最大水平主应力方向的夹角;r—测试孔半径

    Figure  7.  Schematic diagram showing the strong and weak phase distribution of rocks using hydraulic fracturing

    σH and σh–maximum and minimum horizontal principal stresses; $\varphi $–angle between the connecting line of the center of the rock and the test borehole and the direction of the maximum horizontal principal stress; r–radius of the test borehole

    图  8  水压致裂远场应力状态和坐标转化后应力状态

    Figure  8.  The far-field stress state and the stress state after coordinate transformation using hydraulic fracturing

    图  9  水压致裂测得水平主应力及误差与$\varphi $关系变化图

    Figure  9.  Plot of horizontal principal stress and error measured by hydraulic fracturing versus $\varphi $

    表  1  水压致裂地应力测量结果

    Table  1.   In-situ stress measurement results using hydraulic fracturing

    测段深度/m压裂参数/MPa主应力值/MPa破裂方位
    PbPrPsP0T${\sigma _{\text{H}}}$${\sigma _{\text{h}}}$${\sigma _{\text{v}}}$
    −632.0021.0517.8514.946.193.2020.7814.9416.72—  
    −700.0021.1916.7115.336.864.4822.4215.3318.52—  
    −757.5416.9315.8615.587.421.0723.4615.5820.04—  
    −789.0021.6416.9816.527.734.6624.8516.5220.88—  
    −814.7523.2218.1917.277.985.0325.6417.2721.56—  
    −856.2024.2418.7118.128.395.5327.2618.1222.66—  
    −900.0026.4720.5819.468.825.8928.9819.4623.81—  
    −950.0828.9423.2021.349.315.7431.5121.3425.14NW66.2°
    −993.0030.6726.2623.489.734.4134.4523.4826.27—  
    −1071.6235.2329.0024.8310.506.2334.9924.8328.36—  
    −1119.0037.1130.1025.3110.977.0134.8625.3129.61—  
    −1160.2738.6832.1626.0611.376.5234.6526.0630.70—  
    −1236.1434.8233.7427.2112.111.0835.7827.2132.71—  
    −1307.3039.8536.9128.9512.812.9437.1328.9534.59—  
    −1340.0246.2238.0329.8713.138.1938.4529.8735.46NW63.8°
    −1355.0044.8538.8030.6313.286.0539.8130.6335.85—  
    −1417.6847.2641.9132.7213.895.3542.3632.7237.51—  
    −1435.9052.1043.6533.5814.078.4543.0233.5837.99—  
    −1483.0047.7745.7134.9614.532.0644.6434.9639.24—  
    −1527.1551.4145.8235.3314.975.5945.2035.3340.41—  
    下载: 导出CSV
  • [1] BAO L H, DU Y, GUO Q L, et al. , 2017. In-situ stress measurement and research on tectonic stress field distribution law of Chengdu-Lanzhou railway[J]. Journal of Geomechanics, 23(5): 734-742. (in Chinese with English abstract)
    [2] BELL J S, GOUGH D I, 1979. Northeast-southwest compressive stress in Alberta evidence from oil wells[J]. Earth and Planetary Science Letters, 45(2): 475-482. doi: 10.1016/0012-821X(79)90146-8
    [3] CAI M, QIAO L, YU J, 1995. Study and tests of techniques for increasing overcoring stress measurement accuracy[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 32(4): 375-384.
    [4] CAI M, KAISER P K, TASAKA Y, et al. , 2004. Generalized crack initiation and crack damage stress thresholds of brittle rock masses near underground excavations[J]. International Journal of Rock Mechanics and Mining Sciences, 41(5): 833-847. doi: 10.1016/j.ijrmms.2004.02.001
    [5] CAI M F, LIU W D, LI Y, 2010. In-situ stress measurement at deep position of Linglong gold mine and distribution law of in-situ stress field in mine area[J]. Chinese Journal of Rock Mechanics and Engineering, 29(2): 227-233. (in Chinese with English abstract)
    [6] CAI M F, JI D, GUO Q F, 2013a. Study of rockburst prediction based on in-situ stress measurement and theory of energy accumulation caused by mining disturbance[J]. Chinese Journal of Rock Mechanics and Engineering, 32(10): 1973-1980. (in Chinese with English abstract)
    [7] CAI M F, GUO Q F, LI Y, et al. , 2013b. In situ stress measurement and its application in the 10th Mine of Pingdingshan Coal Group[J]. Journal of University of Science and Technology Beijing, 35(11): 1399-1406. (in Chinese with English abstract)
    [8] CHEN J L, 2019. Numerical simulation methods and experimental investigation of the hydraulic fracturing of heterogeneous Glutenites[D]. Beijing: China University of Mining & Technology (Beijing). (in Chinese with English abstract)
    [9] CHEN N, WANG C H, GAO G Y, et al. , 2021. Characteristics of in-situ stress field in the powerhouse area on the right bank of Baihetan based on stress polygon and borehole breakout method[J]. Rock and Soil Mechanics, 42(12): 3376-3384. (in Chinese with English abstract)
    [10] CHEN Y Q, NAGAYA Y, ISHIDA T, 2015. Observations of fractures induced by hydraulic fracturing in anisotropic granite[J]. Rock Mechanics and Rock Engineering, 48(4): 1455-1461. doi: 10.1007/s00603-015-0727-9
    [11] GOODMAN R E, 1963. Subaudible noise during compression of rocks[J]. GSA Bulletin, 74(4): 487-490. doi: 10.1130/0016-7606(1963)74[487:SNDCOR]2.0.CO;2
    [12] HOU K K, WU Q Z, ZHANG F P, et al. , 2022. Application of different in-situ stress test methods in the area of 2 005 m shaft construction of Sanshandao gold mine and distribution law of in-situ stress[J]. Rock and Soil Mechanics, 43(4): 1093-1102. (in Chinese with English abstract)
    [13] HUBBERT M K, WILLIS D G, 1957. Mechanics of hydraulic fracturing[J]. Petroleum Transactions, 210(1): 153-168.
    [14] JIANG M Y, 2019. Metallogeneses and tectonic setting analysis of Shaling gold deposit in Jiaodong[D]. Hebei GEO University. (in Chinese with English abstract)
    [15] LEE H, ONG S H, 2018. Estimation of in situ stresses with hydro-fracturing tests and a statistical method[J]. Rock Mechanics and Rock Engineering, 51(3): 779-799. doi: 10.1007/s00603-017-1349-1
    [16] LEEMAN E R, HAYES D J, 1966. A technique for determining the complete state of stress in rock using a single borehole[C]//Proceedings 1st congress international society of rock mechanics. Lisbon: 17-24.
    [17] LI B, ZHANG W, WEN R, 2022. Study on the hydraulic fracturing in-situ stress measurement in super-long highway tunnels in southern Shaanxi: engineering geological significance[J]. Journal of Geomechanics, 28(2): 191-202. (in Chinese with English abstract)
    [18] LIU J, HUI C, FAN J M, et al. , 2021. Distribution characteristics of the present-day in-situ stress in the Chang 6 tight sandstone reservoirs of the Yanchang Formation in the Heshui Area, Ordos Basin, China and suggestions for development[J]. Journal of Geomechanics, 27(1): 31-39. (in Chinese with English abstract)
    [19] LIU Y D, LIN J, FENG Y J, et al. , 2018. Research on tensile strength of rock based on hydraulic fracturing method[J]. Rock and Soil Mechanics, 39(5): 1781-1788. (in Chinese with English abstract)
    [20] LJUNGGREN C, CHANG Y T, JANSON T, et al. , 2003. An overview of rock stress measurement methods[J]. International Journal of Rock Mechanics and Mining Sciences, 40(7-8): 975-989. doi: 10.1016/j.ijrmms.2003.07.003
    [21] MENG X B, XU Y D, ZHANG Y J, et al. , 2019. Study on the variation law of crustal stress field in tight reservoir under multi field coupling[J]. Journal of Geomechanics, 25(4): 467-474. (in Chinese with English abstract)
    [22] QIN X H, CHEN Q C, ZHAO X G, et al. , 2020. Experimental study on the crucial effect of test system compliance on hydraulic fracturing in-situ stress measurements[J]. Chinese Journal of Rock Mechanics and Engineering, 39(6): 1189-1202. (in Chinese with English abstract)
    [23] QIU Y C, LIANG W G, LI J, et al. , 2022. Study on fracture morphology of hydraulic fracturing in heterogeneous elastoplastic coal[J]. Journal of China Coal Society, 47(10): 3668-3679. (in Chinese with English abstract)
    [24] REN Y, WANG D, LI T B, et al. , 2021. In-situ geostress characteristics and engineering effect in Ya’an—Xinduqiao section of Sichuan—Tibet Railway[J]. Chinese Journal of Rock Mechanics and Engineering, 40(1): 65-76. (in Chinese with English abstract)
    [25] SU X B, JI H G, QUAN D L, et al. , 2020. Relationship between spatial variability of rock strain and b value under splitting condition[J]. Journal of China Coal Society, 45(S1): 239-246. (in Chinese with English abstract)
    [26] TEUFEL L W, 1983. Determination of in-situ stress from anelastic strain recovery measurements of oriented core[C]//Symposium on low permeability gas reservoirs. Denver, Colorado: 421-430.
    [27] WANG L J, SUN D S, LIN W R, et al. , 2012. Anelastic strain recovery method to determine in-situ stress and application example[J]. Chinese Journal of Geophysics, 55(5): 1674-1681. (in Chinese with English abstract)
    [28] WU J W, ZHANG W Y, PENG H, et al. , 2021. In-situ stress measurement by hydraulic fracturing method around Panji coal mine exploration area in Huainan coalfield[J]. Journal of Engineering Geology, 29(4): 972-984. (in Chinese with English abstract)
    [29] YANG T H, TAN G H, TANG C A, et al. , 2002. Influence of heterogeneity on hydraulic fracturing in rocks[J]. Chinese Journal of Geotechnical Engineering, 24(6): 724-728. (in Chinese with English abstract)
    [30] ZHANG C Y, DU S H, HE M C, et al. , 2022. Characteristics of in-situ stresses on the western margin of the eastern Himalayan syntaxis and its influence on stability of tunnel surrounding rock[J]. Chinese Journal of Rock Mechanics and Engineering, 41(5): 954-968. (in Chinese with English abstract)
    [31] ZHANG H, SHI G, WU H, et al. , 2020. In-situ stress measurement in the shallow basement of the shanghai area and its structural geological significance[J]. Journal of Geomechanics, 26(4): 583-594. (in Chinese with English abstract)
    [32] ZHANG T Z, JI H G, SU X B, et al. , 2022. Evaluation and classification of rock heterogeneity based on acoustic emission detection[J]. International Journal of Minerals, Metallurgy and Materials, 29(12): 2117-2125. doi: 10.1007/s12613-021-2381-4
    [33] ZHANG Z X, 2002. An empirical relation between mode I fracture toughness and the tensile strength of rock[J]. International Journal of Rock Mechanics and Mining Sciences, 39(3): 401-406. doi: 10.1016/S1365-1609(02)00032-1
    [34] ZHAO X G, WANG J, MA L K, et al. , 2014. Distribution characteristics of geostress field in Xinchang rock block of candidate Beishan area for high level radioactive waste repository in China[J]. Chinese Journal of Rock Mechanics and Engineering, 33(S2): 3750-3759. (in Chinese with English abstract)
    [35] ZHUANG L, ZANG A, JUNG S, 2022. Grain-scale analysis of fracture paths from high-cycle hydraulic fatigue experiments in granites and sandstone[J]. International Journal of Rock Mechanics and Mining Sciences, 157: 105177. doi: 10.1016/j.ijrmms.2022.105177
    [36] 包林海, 杜义, 郭啟良, 等, 2017. 成兰铁路地应力测量与构造应力场分布规律研究[J]. 地质力学学报, 23(5): 734-742. doi: 10.3969/j.issn.1006-6616.2017.05.010
    [37] 蔡美峰, 刘卫东, 李远, 2010. 玲珑金矿深部地应力测量及矿区地应力场分布规律[J]. 岩石力学与工程学报, 29(2): 227-233.
    [38] 蔡美峰, 冀东, 郭奇峰, 2013a. 基于地应力现场实测与开采扰动能量积聚理论的岩爆预测研究[J]. 岩石力学与工程学报, 32(10): 1973-1980.
    [39] 蔡美峰, 郭奇峰, 李远, 等, 2013b. 平煤十矿地应力测量及其应用[J]. 北京科技大学学报, 35(11): 1399-1406. doi: 10.13374/j.issn1001-053x.2013.11.003
    [40] 陈佳亮, 2019. 非均质砂砾岩水压致裂的数值模拟方法与实验研究[D]. 北京: 中国矿业大学(北京).
    [41] 陈念, 王成虎, 高桂云, 等, 2021. 基于应力多边形与钻孔崩落的白鹤滩右岸厂房区地应力场特征研究[J]. 岩土力学, 42(12): 3376-3384. doi: 10.16285/j.rsm.2021.0380
    [42] 侯奎奎, 吴钦正, 张凤鹏, 等, 2022. 不同地应力测试方法在三山岛金矿2 005 m竖井建井区域的应用及其地应力分布规律研究[J]. 岩土力学, 43(4): 1093-1102.
    [43] 姜梦瑶, 2019. 胶东纱岭金矿床成矿机制及构造背景分析[D]. 河北地质大学.
    [44] 李彬, 张文, 文冉, 2022. 陕南特长公路隧道水压致裂法地应力测量结果及工程地质意义分析[J]. 地质力学学报, 28(2): 191-202.
    [45] 刘建, 惠晨, 樊建明, 等, 2021. 鄂尔多斯盆地合水地区长6致密砂岩储层现今地应力分布特征及其开发建议[J]. 地质力学学报, 27(1): 31-39.
    [46] 刘跃东, 林健, 冯彦军, 等, 2018. 基于水压致裂法的岩石抗拉强度研究[J]. 岩土力学, 39(5): 1781-1788.
    [47] 孟宪波, 徐佑德, 张曰静, 等, 2019. 多场耦合作用下致密储层地应力场变化规律研究: 以准噶尔盆地某区为例[J]. 地质力学学报, 25(4): 467-474. doi: 10.12090/j.issn.1006-6616.2019.25.04.044
    [48] 秦向辉, 陈群策, 赵星光, 等, 2020. 水压致裂地应力测量中系统柔度影响试验研究[J]. 岩石力学与工程学报, 39(6): 1189-1202. doi: 10.13722/j.cnki.jrme.2019.1204
    [49] 邱宇超, 梁卫国, 李静, 等, 2022. 非均质弹塑性煤体水压致裂裂纹形态研究[J]. 煤炭学报, 47(10): 3668-3679. doi: 10.13225/j.cnki.jccs.2021.1684
    [50] 任洋, 王栋, 李天斌, 等, 2021. 川藏铁路雅安至新都桥段地应力特征及工程效应分析[J]. 岩石力学与工程学报, 40(1): 65-76. doi: 10.13722/j.cnki.jrme.2020.0537
    [51] 苏晓波, 纪洪广, 权道路, 等, 2020. 劈裂条件下岩石应变空间变异性与b值关系[J]. 煤炭学报, 45(S1): 239-246.
    [52] 王连捷, 孙东生, 林为人, 等, 2012. 地应力测量的非弹性应变恢复法及应用实例[J]. 地球物理学报, 55(5): 1674-1681. doi: 10.6038/j.issn.0001-5733.2012.05.024
    [53] 吴基文, 张文永, 彭华, 等, 2021. 淮南煤田潘集煤矿外围勘查区水压致裂地应力测量研究[J]. 工程地质学报, 29(4): 972-984. doi: 10.13544/j.cnki.jeg.2021-0302
    [54] 杨天鸿, 谭国焕, 唐春安, 等, 2002. 非均匀性对岩石水压致裂过程的影响[J]. 岩土工程学报, 24(6): 724-728. doi: 10.3321/j.issn:1000-4548.2002.06.011
    [55] 张重远, 杜世回, 何满潮, 等, 2022. 喜马拉雅东构造结西缘地应力特征及其对隧道围岩稳定性的影响[J]. 岩石力学与工程学报, 41(5): 954-968.
    [56] 张浩, 施刚, 巫虹, 等, 2020. 上海地区浅部地应力测量及其构造地质意义分析[J]. 地质力学学报, 26(4): 583-594. doi: 10.12090/j.issn.1006-6616.2020.26.04.051
    [57] 赵星光, 王驹, 马利科, 等, 2014. 高放废物地质处置库北山预选区新场岩体地应力场分布规律[J]. 岩石力学与工程学报, 33(S2): 3750-3759. doi: 10.13722/j.cnki.jrme.2014.s2.044
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  517
  • HTML全文浏览量:  118
  • PDF下载量:  81
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-02-28
  • 修回日期:  2023-04-15
  • 预出版日期:  2024-03-04

目录

    /

    返回文章
    返回