留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

雅鲁藏布江大拐弯典型泥石流全新世以来发育历史及活动特征

龚凌枫 张运达 铁永波 高延超 刘文 李青春 张斌 杨洪 李光辉 卢佳燕 鲁拓

龚凌枫, 张运达, 铁永波, 等, 2022. 雅鲁藏布江大拐弯典型泥石流全新世以来发育历史及活动特征. 地质力学学报, 28 (6): 1024-1034. DOI: 10.12090/j.issn.1006-6616.20222826
引用本文: 龚凌枫, 张运达, 铁永波, 等, 2022. 雅鲁藏布江大拐弯典型泥石流全新世以来发育历史及活动特征. 地质力学学报, 28 (6): 1024-1034. DOI: 10.12090/j.issn.1006-6616.20222826
GONG Lingfeng, ZHANG Yunda, TIE Yongbo, et al., 2022. Development history and activity characteristics of typical debris flows in the Grand Bend of the Yarlung Zangbo River since the Holocene. Journal of Geomechanics, 28 (6): 1024-1034. DOI: 10.12090/j.issn.1006-6616.20222826
Citation: GONG Lingfeng, ZHANG Yunda, TIE Yongbo, et al., 2022. Development history and activity characteristics of typical debris flows in the Grand Bend of the Yarlung Zangbo River since the Holocene. Journal of Geomechanics, 28 (6): 1024-1034. DOI: 10.12090/j.issn.1006-6616.20222826

雅鲁藏布江大拐弯典型泥石流全新世以来发育历史及活动特征

doi: 10.12090/j.issn.1006-6616.20222826
基金项目: 

国家自然科学基金项目 U20A20110-01

中国地质调查局地质调查项目 DD20221746

详细信息
    作者简介:

    龚凌枫(1989—), 男, 博士, 工程师, 主要从事地质灾害风险评价及泥石流形成及致灾机理研究。E-mail: 308488910@qq.com

    通讯作者:

    铁永波(1979—), 男, 博士, 教授级高工, 博士生导师, 主要从事地质灾害形成机理与防治研究。E-mail: tyongbo@mail.cgs.gov.cn

  • 中图分类号: P642.22

Development history and activity characteristics of typical debris flows in the Grand Bend of the Yarlung Zangbo River since the Holocene

Funds: 

the National Natural Science Foundation of China U20A20110-01

the Geological Survey Project of the China Geological Survey DD20221746

  • 摘要:

    雅鲁藏布江大拐弯附近晚更新世末次冰期—全新世发育多期次泥石流, 组合形成了现代大规模扇形堆积体。以派镇蹦嘎沟泥石流为例, 采用地面调查、钻孔及14C测年等方法, 研究泥石流形成年代序列、堆积深度、冲出范围等特征, 分析结果表明: 现代蹦嘎沟依然有小规模的支沟泥石流发育且广泛堆积于沟道内, 现存堆积扇区域尚未发现泥石流堆积; 距今8500年左右为蹦噶沟全新世泥石流活跃期, 单期次累积堆积深度约10.9 m; 滨湖浅水相沉积(河流相)形成的浅灰色粉细砂中的两处碳样表明雅鲁藏布江现代河床在40~100年左右沉积深度约0.4 m, 年平均沉积速率4~10 mm; 海拔2906.1~2896.7 m及2849.4~2848.2 m处钻孔依次揭露厚度为9.4 m和1.2 m饼状青灰色粉质黏土, 推测发生两次堵江事件。上述结果可为该区域全新世以来泥石流活动性特征研究提供参考。

     

  • 图  1  研究区流域及扇形堆积特征

    Figure  1.  Characteristics of the research watershed and fan-delta accumulations

    图  2  蹦嘎沟流域特征

    a—研究区地质图;b—蹦嘎沟流域地形图

    Figure  2.  Characteristics of the Bengga watershed

    (a) Geological map of the study area; (b) Topographic map the Bengga watershed

    图  3  钻孔位置分布图

    Figure  3.  Location map of the boreholes

    图  4  现代泥石流调查

    a—沟道流通区现代泥石流侧碛垄;b—树木年轮调查

    Figure  4.  Debris flow investigation

    (a) Side moraine ridges in the channel flowing area; (b)Ring chronology investigation

    图  5  ZK135剖面及不同沉积成因物质成分特征照片

    Figure  5.  Characteristics of the material compositions of different sedimentary facies in the ZK135 profile

    图  6  蹦嘎沟新近泥石流特征

    a—堆积扇形态;b—扇顶稀性泥石流沉积;c—流通区漂木及漂石;d—主沟流通区泥石流堆积

    Figure  6.  Photos showing the features of recent debris flows in the Bengga gully

    (a) Morphology of the alluvial fan; (b) Debris flow sediments at the fanhead; (c) Driftwood and boulder in the inundation area; (d) Debris flow accumulation in the inundation area

    图  7  蹦嘎沟现代泥石流遗迹

    Figure  7.  Remains of the modern debris flows in the Bengga gully

    图  8  蹦嘎沟流域内崩滑物源及沟道堆积分布特征

    Figure  8.  Distribution characteristics of landslide sources and channel accumulations in the Bengga watershed

    图  9  蹦嘎沟第四纪堆积区域平面物质分区

    Figure  9.  Planar source zoning in the Quaternary accumulation area in the Bengga gully

    图  10  蹦嘎沟扇体表层残留湖相沉积体

    Figure  10.  Residual lacustrine sediments on the surface of the Bengga fan-delta

    图  11  研究区末次冰盛期以来测年数据时空对应关系

    a—测年数据空间位置;b—测年数据点海拔高度

    Figure  11.  Space-time correspondence of dating data since the last glacial period in the study area

    (a) Spatial location of the dating data; (b) Elevation of the dating points

    表  1  测年取样样品及其位置统计表

    Table  1.   Statistical table of the samples for dating and their locations

    样品位置及取样编号 样品照片
    下载: 导出CSV

    表  2  漂木样品测年结果

    Table  2.   Dating results of the driftwood samples

    样品编号 埋深/m 放射性碳年龄 公历校正 测年概率/%
    ZK135-1 12.6 7120+/-30 a B.P. 6062—5977 cal.B.C. 76.0
    5948—5919 cal.B.C. 19.4
    ZK135-4 13.0 7220+/-30 a B.P. 6100—6011 cal.B.C. 76.7
    6219—6135 cal.B.C. 18.7
    ZK135-3 38.5 7810+/-30 a B.P. 6696—6568 cal.B.C. 93.4
    ZK139-2 61.0 9370+/-40 a B.P. 8753—8547 cal.B.C. 93.7
    ZK139-1 61.8 9420+/-30 a B.P. 8792—8622 cal.B.C. 95.4
    下载: 导出CSV

    表  3  蹦嘎沟泥石流物源分布及时间变化特征

    Table  3.   Source distribution and temporal variation characteristics of the sources in the Bengga gully

    编号 类型 面积/m2 厚度/m 体积/×104 m3 影像日期
    BH01 崩滑物源 95734 4.21 40.29 2007-9-17
    BH02 崩滑物源 26254 3.13 8.21 2007-9-17
    BH03 崩滑物源 44733 3.54 15.81 2007-9-17
    BH04 崩滑物源 51883 3.66 18.98 2007-9-17
    BH05 崩滑物源 12012 2.61 3.14 2007-9-17
    BH06 崩滑物源 76095 3.99 30.39 2007-9-17
    BH07 崩滑物源 483453 6.10 294.98 2013-10-9
    BH08 崩滑物源 67118 3.88 26.04 2013-10-9
    BH09 崩滑物源 126595 4.49 56.81 2013-10-9
    BH10 崩滑物源 134525 4.55 61.21 2014-11-8
    BH11 崩滑物源 5820 2.21 1.29 2017-12-4
    BH12 崩滑物源 8658 2.43 2.10 2017-12-4
    BH13 崩滑物源 7208 2.33 1.68 2018-12-26
    BH14 崩滑物源 15242 2.76 4.21 2021-1-23
    GD01 沟道堆积 4149 2.05 0.85 2007-9-17
    GD02 沟道堆积 16190 2.80 4.53 2007-9-17
    GD03 沟道堆积 47282 3.58 16.93 2014-11-8
    GD04 沟道堆积 71395 3.94 28.09 2018-12-26
    下载: 导出CSV
  • BERNHARDT H, REISS D, HIESINGER H, et al., 2017. Debris flow recurrence periods and multi-temporal observations of colluvial fan evolution in central Spitsbergen (Svalbard)[J]. Geomorphology, 296: 132-141. doi: 10.1016/j.geomorph.2017.08.049
    CHEN J, CUI Z J, 2014. Development features of the Early Pleistocene debris-flow deposits at the Baima Mountain Pass, Yunnan Province and their paleoclimatic and tectonic significance[J]. Arid Land Geography, 37(2): 203-211. (in Chinese with English abstract)
    CHENG Z L, TIAN J C, ZHANG Z B, et al., 2009. Analysis on environment of disasters resulting from river blockage in Tibet[J]. Journal of Catastrophology, 24(1): 26-30. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-811X.2009.01.006
    HAN L M, 2018. Geological hazard characteristics and risk assessment of Brahmaputra from Wolong to Zhibai stream segment[D]. Chengdu: Chengdu University of Technology.
    HOYOS N, MONSALVE O, BERGER G W, et al., 2015. A climatic trigger for catastrophic Pleistocene-Holocene debris flows in the eastern Andean Cordillera of Colombia[J]. Journal of Quaternary Science, 30(3): 258-270. doi: 10.1002/jqs.2779
    HUANG C C, GUO Y Q, ZHANG Y Z, et al., 2019. Holocene sedimentary stratigraphy and pre-historical catastrophes over the Lajia Ruins within the Guanting Basin in Qinghai province of China[J]. Scientia Sinica Terrae, 49(2): 434-455. (in Chinese) doi: 10.1360/N072017-00378
    JABOYEDOFF M, CARREA D, DERRON M H, et al., 2020. A review of methods used to estimate initial landslide failure surface depths and volumes[J]. Engineering Geology, 267: 105478. doi: 10.1016/j.enggeo.2020.105478
    LEONG E C, CHENG Z Y, 2022. A geometry-modelling method to estimate landslide volume from source area[J]. Landslides, 19(8): 1971-1985. doi: 10.1007/s10346-022-01864-0
    LI C P, WANG P, QIAN D, et al., 2015. Ages of the recent two episodes of glacially dammed lakes along the upstream of the Yarlung Zangbo Gorge[J]. Seismology and Geology, 37(4): 1136-1146. (in Chinese with English abstract) doi: 10.3969/j.issn.0253-4967.2015.04.016
    LI Y H, ZHANG X Y, CUI Z J, et al, 2002. Periodic coupling of debris flow active periods and climate periods during Quaternary[J]. Quaternary Sciences, 22(4): 340-348. (in Chinese with English abstract) doi: 10.3321/j.issn:1001-7410.2002.04.006
    LI Y J, MENG X M, STEVENS T, et al., 2021. Distinct periods of fan aggradation and incision for tributary valleys of different sizes along the Bailong River, eastern margin of the Tibetan Plateau[J]. Geomorphology, 373: 107490. doi: 10.1016/j.geomorph.2020.107490
    LIU X W, 2015. Analysis of the meteorological and hydrological charateristics in the Yarlung Zangbo River Basins[D]. Beijing: Tsinghua University. (in Chinese with English abstract)
    LIU Y P, MONTGOMERY D R, HALLET B, et al., 2006. Quaternary glacier blocking events at the entrance of Yarlung Zangbo great canyon, Southeast Tibet[J]. Quaternary Sciences, 26(1): 52-62. (in Chinese with English abstract) doi: 10.3321/j.issn:1001-7410.2006.01.007
    MALIK I, TIE Y B, OWCZAREK P, et al., 2013. Human-planted alder trees as a protection against debris flows (a dendrochronological study from the Moxi Basin, Southwestern China)[J]. Geochronometria, 40(3): 208-216. doi: 10.2478/s13386-013-0113-x
    MONTGOMERY D R, HALLET B, LIU Y P, et al., 2004. Evidence for Holocene megafloods down the Tsangpo River gorge, southeastern Tibet[J] Quaternary Research, 62(2): 201-207. doi: 10.1016/j.yqres.2004.06.008
    MARC O, HOVIUS N, MEUNIER P, et al, 2015. Transient changes of landslide rates after earthquakes[J]. Geology, 43(10): 883-886. doi: 10.1130/G36961.1
    ŠILHÁN K, TICHAVSKY R, 2016. Recent increase in debris flow activity in the Tatras Mountains: Results of a regional dendrogeomorphic reconstruction[J]. CATENA, 143: 221-231. doi: 10.1016/j.catena.2016.04.015
    TANG C, ZHU J, DING J, et al, 2011. Catastrophic debris flows triggered by a 14 August 2010 rainfall at the epicenter of the Wenchuan earthquake[J]. Landslides, 8: 485-497. doi: 10.1007/s10346-011-0269-5
    TIE Y B, MALIK I, OWCZAREK P, 2014. Dendrochronological Dating of debris flow historical events in high mountain area: Take Daozao debris flow as an example[J]. Mountain Research, 32(2): 226-232. (in Chinese with English abstract) doi: 10.3969/j.issn.1008-2786.2014.02.013
    WANG H Y, TONG K Y, HU G, et al., 2021. Dam and megafloods at the first bend of the Yangtze River since the Last Glacial Maximum[J]. Geomorphology, 373: 107491. doi: 10.1016/j.geomorph.2020.107491
    WANG P, WANG H Y, HU G, et al., 2021. A preliminary study on the development of dammed paleolakes in the Yarlung Tsangpo River Basin, southeastern Tibet[J]. Earth Science Frontiers, 28(2): 35-45. (in Chinese with English abstract)
    YANG H, CUI C G, WANG X F, et al. 2019. Research progresses of precipitation variation over the Yarlung Zangbo River basin under global climate warming[J]. Torrential Rain and Disasters, 38(6): 565-575.
    ZHANG P Q, LIU X H, KONG P, 2008. Evidence for glacial movement since last glacial period in the Great Canyon, Yarlung Zangbo, SE Tibet and its tectono-environmental implications[J]. Chinese Journal of Geology, 43(3): 588-602. (in Chinese with English abstract) doi: 10.3321/j.issn:0563-5020.2008.03.013
    ZHANG P Q, GAO M X, LEI Y L, et al, 2009. Quantitative terrain analysis of the great canyon region of Yalungzangbo River, Tibet and discussion of its origin[J]. Journal of Earth Science: 34(4): 595-603.
    ZHAO Q Y, WEI M J, SONG B, et al., 2013. TL evidence of debris flow developments in the Late Pleistocene of Yunnan Jiangjia Valley Basin[J]. Nuclear Electronics & Detection Technology, 33(7): 865-868. (in Chinese with English abstract) doi: 10.3969/j.issn.0258-0934.2013.07.021
    ZHAO W J, 2015. The Formation characteristics and geomorphical evolution of the landslides and debris flow fans in Guide basin, the upper reaches of the Yellow River[D]. Beijing: China University of Geosciences (Beijing). (in Chinese with English abstract)
    ZHU S, 2012. River Landform and geological environment evolution in the Yarlung Zangbo River Vally[D]. Beijing: Chinese Academy of Geological Sciences. (in Chinese with English abstract)
    ZHU S, WU Z H, ZHAO X T, et al, 2013. The age of glacial dammed lakes in the Yarlung Zangbo River Grand Bend during Late Quaternary by OSL[J]. Acta Geoscientia Sinica, 34(2): 246-250. (in Chinese with English abstract)
    陈剑, 崔之久, 2014. 云南白马雪山垭口早更新世泥石流的发育特征及其古气候和构造意义[J]. 干旱区地理, 37(2): 203-211. https://www.cnki.com.cn/Article/CJFDTOTAL-GHDL201402001.htm
    程尊兰, 田金昌, 张正波, 等, 2009. 西藏江河堵溃灾害及成灾环境分析[J]. 灾害学, 24(1): 26-30. doi: 10.3969/j.issn.1000-811X.2009.01.006
    黄春长, 郭永强, 张玉柱, 等, 2019. 青海官亭盆地喇家遗址全新世地层序列与史前灾难研究[J]. 中国科学: 地球科学, 49(2): 434-455. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201902008.htm
    韩立明, 2018. 雅鲁藏布江卧龙至直白河段地质灾害发育特征及危险性评价[D]. 成都: 成都理工大学.
    李翠平, 王萍, 钱达, 等, 2015. 雅鲁藏布江大峡谷入口河段最近两期古堰塞湖事件的年龄[J]. 地震地质, 37(4): 1136-1146. doi: 10.3969/j.issn.0253-4967.2015.04.016
    刘湘伟, 2015. 雅鲁藏布江流域水文气象特性分析[D]. 北京: 清华大学.
    李永化, 张小咏, 崔之久, 等, 2002. 第四纪泥石流活动期与气候期的阶段性耦合过程[J]. 第四纪研究, 22(4): 340-348. doi: 10.3321/j.issn:1001-7410.2002.04.006
    刘宇平, MONTGOMERY D R, HALLET B, 等, 2006. 西藏东南雅鲁藏布大峡谷入口处第四纪多次冰川阻江事件[J]. 第四纪研究, 26(1): 52-62. doi: 10.3321/j.issn:1001-7410.2006.01.007
    铁永波, MALIK I, OWCZAREK P, 2014. 树木年代学在高寒山区泥石流历史事件重建中的应用: 以磨西河流域倒灶沟为例[J]. 山地学报, 32(2): 226-232. doi: 10.3969/j.issn.1008-2786.2014.02.013
    王萍, 王慧颖, 胡钢, 等, 2021. 雅鲁藏布江流域古堰塞湖群的发育及其地质意义初探[J]. 地学前缘, 28(2): 35-45. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY202102004.htm
    杨浩, 崔春光, 王晓芳, 等, 2019. 气候变暖背景下雅鲁藏布江流域降水变化研究进展[J]. 暴雨灾害, 38(6): 565-575. https://www.cnki.com.cn/Article/CJFDTOTAL-HBQX201906001.htm
    张沛全, 刘小汉, 孔屏, 2008. 雅鲁藏布江大拐弯地区末次冰期以来的冰川活动证据及其构造-环境意义[J]. 地质科学, 43(3): 588-602. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX200803014.htm
    张沛全, 高明星, 雷永良, 等, 2009. 西藏雅鲁藏布江大拐弯地区量化地貌特征及其成因[J]. 地球科学(中国地质大学学报): 34(4): 595-603. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200904005.htm
    赵秋月, 魏明建, 宋波, 等, 2013. 晚更新世云南蒋家沟流域泥石流发育的热释光证据[J]. 核电子学与探测技术, 33(7): 865-868. https://www.cnki.com.cn/Article/CJFDTOTAL-HERE201307020.htm
    赵无忌, 2015. 黄河上游贵德盆地滑坡泥石流扇发育特征及地貌演化过程[D]. 北京: 中国地质大学(北京).
    祝嵩, 2012. 雅鲁藏布江河谷地貌与地质环境演化[D]. 北京: 中国地质科学院.
    祝嵩, 吴珍汉, 赵希涛, 等, 2013. 用OSL方法确定雅鲁藏布江大拐弯第四纪晚期冰川堰塞湖年龄[J]. 地球学报, 34(2): 246-250. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB201302017.htm
  • 加载中
图(11) / 表(3)
计量
  • 文章访问数:  707
  • HTML全文浏览量:  197
  • PDF下载量:  115
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-21
  • 修回日期:  2022-09-24

目录

    /

    返回文章
    返回