A STUDY ON NONLINEAR CONSTITUTIVE MODEL OF FROZEN SAND CONSIDERING PARTICLE BREAKAGE
-
摘要: 颗粒破碎是粒状材料在高应力状态下的一种基本现象。为了研究冻结砂土中颗粒破碎对应力应变关系的影响,将冻结砂土视为复合颗粒材料,忽略冰的压融,考虑内摩擦角随应力状态的变化,构建一个适用于冻结砂土的考虑颗粒破碎的非线性本构模型。构建过程分为三步,首先是基于三轴剪切前后颗粒分析对冻结砂土颗粒破碎模式和产生机理进行探讨;其次是基于考虑颗粒破碎的能量平衡方程,对冻土在三轴剪切试验过程中的颗粒破碎耗能进行分析,结果表明颗粒破碎耗能随轴向应变呈双曲线变化趋势;最后应用考虑颗粒破碎的剪胀方程修正沈珠江三参数非线性模型中的体积切线模量νt,得到一个考虑颗粒破碎的非线性本构模型,模型参数可以通过单轴压缩试验和常规三轴试验确定。将原模型和修正后模型的计算结果与控制温度为-6℃,围压为1 MPa、4 MPa、6 MPa、8 MPa和10 MPa时冻结砂土的试验结果进行对比,结果表明该模型能够较好的模拟冻结砂土从低围压到高围压的应变软化特征与剪胀特征。Abstract: Particle breakage is a basic phenomenon of granular materials under high stress. In order to study the effect of particle breakage on the stress-strain relationship of frozen sand, the frozen sand is regarded as composite particle material, ignoring the melting of ice, considering the change of internal friction angle with stress state, a nonlinear constitutive model considering particle breakage for frozen sand is proposed. Firstly, based on particle analysis before and after the triaxial shearing, the fracture mode and mechanism of frozen sand particles were discussed. Secondly, based on the energy balance equation considering particle breakage, the energy consumption of particle breakage during the triaxial shear test of frozen soil was analyzed. The results show that the energy consumption of particle breakage shows a hyperbolic trend with axial strain. Finally, the volumetric tangent modulus νt in the three-parameter nonlinear model proposed by Shen Zhujiang is modified by the dilatancy equation considering particle breakage, a nonlinear constitutive model considering particle breakage suitable for frozen sand is obtained and the model parameters can be determined by uniaxial compression test and conventional triaxial test. The calculation results of the original model and the modified model are compared with the test results of frozen sand with the test temperature controlled at -6℃ and the confining pressure setting at 1 MPa, 4 MPa, 6 MPa, 8 MPa and 10 MPa, respectively. The comparison results show that the proposed model can better simulate the strain softening characteristics and dilatancy characteristics of frozen sand from low confining pressure to high confining pressure.
-
Key words:
- frozen sand /
- particle breakage /
- energy principle /
- nonlinear constitutive model
-
表 1 与单轴压缩模量Mt与切线模量Et相关参数表
Table 1. Parameters related to the uniaxial compression modulus Mt and tangent modulus Et
σ3/MPa k km h i j 1.0 0.1700 0.1358 0.0017 4.0 0.1400 0.1219 0.0017 6.0 0.47 0.71 0.1200 0.1185 0.0017 8.0 0.1000 0.1121 0.0018 10.0 0.0980 0.0966 0.0025 表 2 与切线泊松比νt相关参数表
Table 2. Parameters related to the tangent poisson ratio νt
σ3/MPa a e f 其他参数 1.0 1.9006 0.0006 0.0227 4.0 1.0356 0.0005 0.0193 b=1.0200 6.0 0.7825 0.0004 0.0164 s=0.0009 8.0 0.603 0.0003 0.0144 t=0.0012 10.0 0.4638 0.0002 0.0125 -
[1] 屈智炯.土的细观结构与力学性关系的研究进展[J].水电站设计, 1993, 9(3):77~81. http://www.cqvip.com/Main/Detail.aspx?id=1172182QU Zhijiong. Research progress on the relationship between soil microstructure and mechanical properties[J]. Design of Hydroelectric Power Station, 1993, 9(3):77~81. (in Chinese) http://www.cqvip.com/Main/Detail.aspx?id=1172182 [2] Lee K L, Seed H B. Drained strength characteristics of sands[J]. Journal of the Soil Mechanics and Foundations Division, 1967, 93(6):117~141. http://cn.bing.com/academic/profile?id=b04cc251d41a643515143f9b4ab4a7b0&encoded=0&v=paper_preview&mkt=zh-cn [3] Vesic A S, Clough G W. Behavior of granular materials under high stresses[J]. Journal of Soil Mechanics & Foundations Div, 1968, 94(3):661~688. http://cn.bing.com/academic/profile?id=9cf8480c204047368e5b4313c99f1286&encoded=0&v=paper_preview&mkt=zh-cn [4] 杨礼宁, 姜振泉, 张卫强, 等.高温作用后砂岩力学性质研究[J].地震工程学报, 2016, 38(2):299~302. doi: 10.3969/j.issn.1000-0844.2016.02.0299YANG Lining, JIANG Zhenquan, ZHANG Weiqiang, et al. Mechanical properties of sandstone after high temperature[J]. China Earthquake Engineering Journal, 2016, 38(2):299~302. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-0844.2016.02.0299 [5] 郭庆国.关于粗粒土抗剪强度特性的试验研究[J].水利学报, 1987, (5):59~65. doi: 10.3321/j.issn:0559-9350.1987.05.009GUO Qingguo. Experimental study on shear strength characteristics of coarse-grained soil[J]. Journal of Hydraulic Engineering, 1987, (5):59~65. (in Chinese) doi: 10.3321/j.issn:0559-9350.1987.05.009 [6] 蒙进, 屈智炯.高压下冰碛土的颗粒破碎及应力应变关系[J].成都科技大学学报, 1989, (1):17~22, 56. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=SCLH198901002&dbname=CJFD&dbcode=CJFQMENG Jin, QU Zhijiong. Stress-strain behaviour of glacial till under high confining pressure[J]. Journal of Chengdu University of Science and Technology, 1989, (1):17~22, 56. (in Chinese with English abstract) http://kns.cnki.net/KCMS/detail/detail.aspx?filename=SCLH198901002&dbname=CJFD&dbcode=CJFQ [7] 汪稔, 孙吉主.钙质砂不排水性状的损伤-滑移耦合作用分析[J].水利学报, 2002, 33(7):75~78. doi: 10.3321/j.issn:0559-9350.2002.07.013WANG Ren, SUN Jizhu. Damage-slide coupled interaction behavior of undrained calcareous sand[J]. Journal of Hydraulic Engineering, 2002, 33(7):75~78. (in Chinese with English abstract) doi: 10.3321/j.issn:0559-9350.2002.07.013 [8] Chavez C, Alonso E E. A constitutive model for crushed granular aggregates which includes suction effects[J]. Soils and Foundations. 2003, 43(4):215~227. doi: 10.3208/sandf.43.4_215 [9] Varadarajan A, Sharma K G, Abbas S M, et al. Constitutive model for rockfill materials and determination of material constants[J]. International Journal of Geomechanics, 2006, 6(4):226~237. doi: 10.1061/(ASCE)1532-3641(2006)6:4(226) [10] 米占宽, 李国英, 陈铁林.考虑颗粒破碎的堆石体本构模型[J].岩土工程学报, 2007, 29(12):1865~1869. doi: 10.3321/j.issn:1000-4548.2007.12.019MI Zhankuan, LI Guoying, CHEN Tielin. Constitutive model for rockfill material considering grain crushing[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(12):1865~1869. (in Chinese with English abstract) doi: 10.3321/j.issn:1000-4548.2007.12.019 [11] 迟世春, 贾宇峰.土颗粒破碎耗能对罗维剪胀模型的修正[J].岩土工程学报, 2005, 27(11):1266~1269. doi: 10.3321/j.issn:1000-4548.2005.11.006CHI Shichun, JIA Yufeng. Rowe's stress-dilatancy model modified for energy dissipation of particle breakage[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(11):1266~1269. (in Chinese with English abstract) doi: 10.3321/j.issn:1000-4548.2005.11.006 [12] Rowe P W. The stress-dilatancy relation for static equilibrium of an assembly of particles in contact[J]. Proceedings of the Royal Society A:Mathematical, Physical and Engineering Sciences, 1962, 269(1339):500~527. doi: 10.1098/rspa.1962.0193 [13] 李兆明.考虑颗粒破碎的粗粒土本构模型[D].大连: 大连理工大学, 2007.LI Zhaoming. Constitutive model for coarse granular soil incorporating particle breakage[D]. Dalian: Dalian University of Technology, 2007. (in Chinese with English abstract) [14] 马巍, 吴紫汪, 常小晓, 等.围压作用下冻结砂土微结构变化的电镜分析[J].冰川冻土, 1995, 17(2):152~158. http://www.cnki.com.cn/Article/CJFDTOTAL-BCDT502.008.htmMA Wei, WU Ziwang, CHANG Xiaoxiao, et al. Analysis of microstructural changes in frozen sandy soil under confining pressures using scaning electronic microscope[J]. Journal of Glaciology and Geocryology, 1995, 17(2):152~158. (in Chinese with English abstract) http://www.cnki.com.cn/Article/CJFDTOTAL-BCDT502.008.htm [15] 马玲, 齐吉琳, 余帆, 等.冻结砂土三轴试验中颗粒破碎研究[J].岩土工程学报, 2015, 37(3):544~550. http://d.old.wanfangdata.com.cn/Periodical/ytgcxb201503020MA Ling, QI Jilin, YU fan, et al. Particle crushing of frozen sand under triaxial compression[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(3):544~550. (in Chinese with English abstract) http://d.old.wanfangdata.com.cn/Periodical/ytgcxb201503020 [16] 郑郧, 马巍, 邴慧.冻融循环对土结构性影响的机理与定量研究方法[J].冰川冻土, 2015, 37(1):132~137. http://d.old.wanfangdata.com.cn/Periodical/bcdt201501014ZHENG Yun, MA Wei, BING Hui. Impact of freezing and thawing cycles on the structures of soil and a quantitative approach[J]. Journal of Glaciology and Geocryology, 2015, 37(1):132~137. (in Chinese with English abstract) http://d.old.wanfangdata.com.cn/Periodical/bcdt201501014 [17] Legay J M. Du sac de billes au tas de sable Etienne Guyon, Jean-Paul Tioadec Odile Jacob, Paris, 1994, 236 p., 140 F.[J]. Natures Sciences Sociétés, 1997, 5(2):77. [18] 张建民.砂土的可逆性和不可逆性剪胀规律[J].岩土工程学报, 2000, 22(1):12~17. doi: 10.3321/j.issn:1000-4548.2000.01.002ZHANG Jianmin. Reversible and irreversible dilatancy of sand[J]. Chinese Journal of Geotechnical Engineering, 2000, 22(1):12~17. (in Chinese with English abstract) doi: 10.3321/j.issn:1000-4548.2000.01.002 [19] Ueng T S, Chen T J. Energy aspects of particle breakage in drained shear of sands[J]. Géotechnique, 2000, 50(1):65~72. doi: 10.1680/geot.2000.50.1.65 [20] Höeg K, Prévost J H. Soil mechanics and plasticity analysis of strain softening[J]. Géotechnique, 1975, 25(2):279~297. doi: 10.1680/geot.1975.25.2.279 [21] 沈珠江.考虑剪胀性的土和石料的非线性应力应变模式[J].水利水运科学研究, 1986, (4):1~14. http://www.cnki.com.cn/Article/CJFDTOTAL-SLSY198604000.htmSHEN Zhujiang. A nonlinear dilatant stress-strain model for soil and rock materials[J]. Hydro-Science and Engineering, 1986, (4):1~14. (in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-SLSY198604000.htm