Remobilization and transferring of rare earth elements in the formation of regolith-hosted REE deposits
-
摘要: 稀土元素(REE)广泛应用于新能源、国防军工等高科技产业中,是一类战略性关键矿产资源。风化壳型稀土矿床是中国最具竞争优势的稀土资源,其供应了全球90%以上的重稀土。阐明这类稀土矿床的成矿机制,可为寻找和高效开采利用该类稀土资源提供理论支持。文章以稀土元素的活化和迁移这两个关键过程为切入点,总结近年来取得的最新研究成果,并对未来的研究方向提出展望。该类矿床主要发育于富稀土花岗岩类的风化壳中,其中稀土配分模式主要受基岩控制。花岗岩类风化壳的形成以化学风化和生物风化作用为主。长石、云母和角闪石等主要造岩矿物风化形成的黏土矿物和铁锰氧化物是该类矿床中离子态稀土的主要赋存载体。而离子态稀土则来源于基岩中易风化和中等抗风化(含)稀土副矿物的风化和分解。此外,微生物分泌的有机酸等代谢产物可以促进难风化的独居石和磷钇矿等副矿物的风化和分解,加速稀土元素活化−迁移。与此同时,微生物作用还会导致轻稀土和重稀土的显著分异,其中革兰氏阳性细菌对重稀土的选择性显著高于轻稀土。在风化淋积过程中,稀土元素的络合离子可能是风化壳中稀土迁移的主要形式,主要受pH值、次生矿物形成和络合环境影响。值得注意的是,除了F−和CO2−3等无机配体,有机质也可以直接与稀土离子络合或螯合,充当有机配体促进稀土的运移。因此,风化壳型稀土矿床中稀土元素的活化和迁移机制主要受化学风化和生物风化过程控制,是无机和有机共同作用的结果,但其对该类矿床形成的贡献尚待定量评估。Abstract:
Objective Rare earth elements (REEs) are indispensable for high-tech industries, such as clean energy, national defense, and military industries, rendering them strategically critical minerals. In China, regolith-hosted REE deposits constitute one of the most important REE resources, supplying over 90% global heavy rare earth elements (HREE). Understanding the formation of such REE deposits can provide a theoretical basis for their efficient utilization. Methods This paper summarizes the recent research results on the two key processes of REE remobilization and transferring and puts forward prospects for future research to deepen the knowledge and understanding of the formation of regolith-hosted REE deposit. Results These deposits developed primarily in the weathering crusts of REE-rich granitic rocks, with the REE distribution patterns largely reflecting those of the underlying bedrock. The granitoid weathering crusts are primarily developed by chemical and biological weathering. Clay minerals and Fe–Mn (hydr) oxides, resulting from the weathering of major rock-forming minerals, such as feldspar, mica, and amphibole, serve as the primary hosts for REE ions in weathered crusts. These REE ions originate from the weathering and decomposition of REE-bearing accessory minerals in the bedrock, which exhibit varying degrees of susceptibility to weathering. Furthermore, metabolites such as microbial organic acids can breakdown refractory minerals like monazite and xenotime, facilitating REE remobilization. Simultaneously, microbial action can cause significant REE fractionation, and gram-positive bacteria are significantly more selective for HREE than for LREE. During weathering and leaching processes, REE primarily form REE complex ions within weathering crusts and are then transferred by meteoric water or groundwater. This process is primarily controlled by factors such as pH, secondary mineral formation, and the weathering environment. Notably, in addition to inorganic ligands, such as F− and CO2−3, organic matter can directly interact with REE, acting as organic ligands that aid in REE transfer. Conclusion Consequently, the REE remobilization and transferring mechanisms in regolith-hosted REE deposits are predominantly controlled by chemical and biological weathering processes, which result from interactions between inorganic and organic agents. However, the quantitative impact of these processes on the formation of these deposits requires further evaluation. -
0. 引言
稀土元素(REE)通常是指元素周期表中物理化学性质相似的镧系元素(La~Lu)以及同族的钇(Y)和钪(Sc)在内的17种元素。根据元素地球化学性质的相似性和差异性,稀土元素可以进一步分为轻稀土元素(LREE:La~Eu)和重稀土元素(HREE:Gd~Lu + Y)。稀土元素被称为“工业维生素”,已被广泛应用于航空航天、国防军工、低碳能源等诸多高科技领域。目前,稀土已成为一类重要的战略资源。
中国稀土资源丰富且种类齐全,拥有的稀土资源储量超过全球已探明储量的1/3,主要分布在内蒙古白云鄂博、川西地区和南方七省(何宏平和杨武斌,2022)。其中,南方七省的风化壳型(亦称“离子吸附型”)稀土矿床是中国特色的稀土资源类型,以富含重稀土为特征,供应了全球90%以上的重稀土(García et al.,2017;Li et al.,2019)。重稀土元素对全球清洁能源转型至关重要,例如钕永磁体在掺杂镝和铽等重稀土之后,性能会得到大幅提高,尤其是能够在高温条件下运行而不失去磁性。随着电动汽车和风力涡轮机等清洁能源技术的普及和推广,全球稀土资源的需求(特别是重稀土需求)将呈指数增长。
风化壳型稀土矿床是指富稀土的岩石经过风化淋积,释放出来的稀土以离子交换态形式被风化壳中黏土矿物等吸附富集而形成的一类独特的稀土矿床。近年来,国内外学者对风化壳型稀土矿床进行了大量的研究,在矿床基岩、风化壳中稀土富集−分异机制、稀土赋存状态以及开采技术等方面取得了重要进展(Fu et al.,2019;Li et al.,2019;Yang et al.,2019;Borst et al.,2020;Huang et al.,2021a,2021b;Wang et al.,2023a,2023b)。通常认为,风化壳型稀土矿床中稀土配分主要继承基岩的稀土特征(Bao and Zhao,2008;Sanematsu and Watanabe,2016;Li et al.,2017;Xu et al.,2017)。同时,风化壳型稀土矿床中可供利用的离子态稀土主要来源于(含)稀土副矿物的风化(Li et al.,2017;周美夫等,2020)。因此,在风化淋积过程中,稀土元素从基岩到风化壳中的活化和迁移行为是近年来被重点关注的科学问题。为了深入理解风化壳型稀土矿床成矿机制,文章从稀土元素的活化和迁移这两个关键过程展开探讨,总结近年来取得的最新研究成果,以期为寻找和高效开采利用该类矿床提供理论支持。
1. 风化壳型稀土矿床概况
1.1 全球分布
风化壳型稀土矿床一般发育在气候温暖湿润、降雨充沛的低山丘陵地区,以中国南方地区为代表(贺伦燕和王似男,1989;王登红等,2013;Li et al.,2017)。华南主要处在亚热带气候区,年平均气温在18 ℃~22 ℃之间,年平均降水量为1400~1800 mm;其地形以低山、丘陵为主,坡度小于25°,地势起伏高度在100~300 m之间,海拔高度多在500 m以下。区内植被发育,化学风化强烈,加上较平缓的地形地貌,有利于厚度较大的风化壳发育和保存。目前,中国的风化壳型稀土矿床主要分布于江西、广东、广西、福建、云南、湖南和浙江等南方七省区(图1)。其中,江西是风化壳型稀土资源最丰富的省份,已报道的稀土矿床数量超过50个(Li et al.,2017)。值得关注的是,近年来在云南临沧和腾冲等地发现了海拔超过1500 m的风化壳型稀土资源,打破了高海拔难成矿的认识(陆蕾等,2019;张彬等,2019)。
图 1 华南地区风化壳型稀土矿床分布图(据Li et al., 2019修改)Figure 1. The distribution of regolith-hosted rare earth element (REE) deposits in South China (modified from Li et al., 2019)由于全球对稀土资源的需求不断增长,近年来国外也开始关注风化壳型稀土矿床的找矿勘查。至今为止,国外已探明的该类稀土矿床(点)主要分布在马达加斯加、马拉维、巴西以及东南亚的缅甸、越南、菲律宾、泰国和老挝等地区(Li et al.,2017)。在全球范围内,风化壳型稀土矿床(点)虽然在北纬和南纬20°~30°之间都有分布,但主要发育在亚热带地区,少数分布在热带地区。究其主要原因可能是因为热带地区强烈的风化作用和快速的剥蚀速率会导致风化产物和稀土元素严重流失,难以成矿。
1.2 矿床分类
风化壳型稀土矿床中轻、重稀土含量变化较大,其工业价值在很大程度上取决于轻、重稀土的相对比例。根据风化壳离子吸附型稀土矿产地质勘查规范(DB36/T 1158-2019,2019)的规定,风化壳型稀土矿床的轻稀土氧化物(LREO)和重稀土氧化物(HREO)最低工业品位分别为0.08%和0.05%,其中LREO占稀土氧化物(TREO)总量50%以上则为轻稀土型矿床,否则为重稀土型矿床。江西省地质矿产局第七地质大队(原赣南地质调查大队)又将这两大类稀土矿床细分为高度重稀土富集型(∑HREO/∑TREO≥75%)、重稀土富集型(∑HREO/∑TREO:50%~70%)、高度轻稀土富集型(∑LREO/∑TREO≥75%)和轻稀土富集型(∑LREO/∑TREO:50%~70%)(江西省地质矿产局赣南地质调查大队,1985)。
1.3 基岩特征
风化壳型稀土矿床的基岩存在多种类型,主要为花岗岩类(黄典豪等,1988;包志伟,1992;Sanematsu and Watanabe,2016;Li et al.,2017),少数为火山岩(杨昌善等,2015;Fu et al.,2019)和变质岩(赵芝等,2018;陈斌锋等,2019;Huang et al.,2021b)。花岗岩类风化壳型稀土矿床在中国南方地区广泛分布,同时在国外也有报道(Sanematsu and Watanabe,2016)。火山岩风化壳型稀土矿床主要分布在中国广西崇左地区和江西寻乌河岭,基岩主要为流纹质凝灰岩、流纹岩和英安岩,具有轻稀土富集的特征(Fu et al.,2019;覃丰等,2019)。变质岩风化壳型稀土矿床仅在中国赣南宁都地区被发现,基岩为千枚岩、变质凝灰岩、变质砂岩和混合岩等(赵芝等,2018;Huang et al.,2021b)。就稀土储量和矿床数量而言,发育在花岗岩类风化壳中的稀土矿床数量最多、矿体品位最高而且规模较大(Li et al.,2017)。由于花岗岩类是风化壳型稀土矿床基岩最重要的类型,研究程度也最高,下面重点介绍与稀土矿床相关花岗岩类的基本特征。
根据花岗岩类中的稀土分布特征,可以将花岗岩类大致分为富轻稀土型和富重稀土型(吴澄宇等,1992)。富轻稀土花岗岩类主要包括黑云母花岗岩、二云母花岗岩、花岗斑岩、石英闪长岩、花岗闪长岩,富重稀土花岗岩类主要为白云母花岗岩和二云母花岗岩(周美夫等,2020)。稀土在基岩中的预富集是风化壳型稀土矿床形成的重要前提。Li et al.(2017)对比分析了富轻稀土和富重稀土花岗岩类特征,认为轻稀土的富集与岩浆结晶分异有关,而岩浆后期的热液活动导致重稀土的富集。然而,Sanematsu and Watanabe(2016)提出高度的岩浆分异有利于形成富重稀土的花岗岩。此外,有研究表明,外来氧化性流体的交代作用可能是花岗岩中重稀土富集的关键(Xu et al.,2017;Fan et al.,2023)。稀土在基岩中主要以类质同象置换的形式赋存在造岩矿物和一些副矿物中,或者形成独立的稀土副矿物。赵芝等(2017)将稀土含量大于20%的副矿物定义为独立稀土副矿物,而稀土含量在5%~20%之间的副矿物称为含稀土的副矿物。为了简化描述,文中将独立稀土副矿物和含稀土的副矿物合并称为(含)稀土副矿物。在花岗岩类中,长石、云母和角闪石等造岩矿物通常也含有一定量的稀土,而石英一般不含稀土或稀土含量极低。虽然造岩矿物中稀土含量整体不高,但造岩矿物占全岩比重高,尤其在富LREE的岩石中,造岩矿物中稀土含量有时可占全岩稀土的20%~36%(Bao and Zhao,2008;黄健等,2022)。
目前,已经发现的(含)稀土副矿物种类超过了250种,以硅酸盐类、氧化物类、磷酸盐类和氟碳酸盐类矿物居多(张培善等,1998)。其中,花岗岩类中常见的(含)稀土硅酸盐类矿物包括锆石、榍石、褐帘石、石榴子石、钇兴安石、硅铍钇矿、硅钍钇矿、钍石等。(含)稀土氧化物类矿物较为复杂,主要包括褐钇铌矿、黑稀金矿、复稀金矿、易解石、晶质铀矿、烧绿石以及方铈矿。(含)稀土磷/砷酸盐类矿物常见的有独居石、磷钇矿、磷灰石、砷钇矿等;(含)稀土氟碳酸盐类矿物主要有氟碳钙钇矿、氟碳钙铈矿、氟碳钇矿以及氟碳铈矿。相比于普通花岗岩类,富REE花岗岩类最明显的特征是(含)稀土副矿物相对丰富,且多数矿物易风化。一般而言,富LREE的花岗岩中(含)稀土副矿物组成相对简单,以榍石、褐帘石、锆石、磷灰石、独居石和氟碳铈矿为主。富HREE的花岗岩中(含)稀土副矿物种类较多,主要包括锆石、石榴子石、钇兴安石、硅铍钇矿、磷钇矿、褐钇铌矿、黑稀金矿、易解石、氟碳钙钇矿等(Li et al.,2017)。
1.4 稀土分布特征与赋存形式
在风化壳型稀土矿床中,矿体层的稀土含量通常是基岩的3~5倍,最高可达10~15倍(包志伟,1992;何耀等,2015)。矿体层的分布与风化壳内部的分层结构有关,同时受区域构造、地形地貌、水文条件,以及风化壳物理化学条件(如氧化还原环境、pH值)的影响。一般来说,风化壳越厚,矿体层也越厚,矿体品位可能也越高。由于不同风化壳中物理化学环境的差异,稀土元素在风化壳中富集层位和分布形式略有不同。
发育完整的风化壳在垂向上具有明显的分层结构,自上而下分为表土层、全风化层和半风化层,底部为基岩(包志伟,1992)。表土层一般厚度较小(<2 m),含丰富的腐殖质,主要由高岭石、埃洛石、三水铝石、赤铁矿、石英等矿物组成。全风化层通常较厚,一般在10~20 m之间,最大可超过40 m,主要由高岭石、埃洛石、伊利石等黏土矿物和赤铁矿、针铁矿等次生铁氧化物,以及风化残余的石英和钾长石等矿物组成。半风化层通常较薄,一般小于10 m,有时可达20 m,局部保留着残余的花岗岩结构,大多数长石(除钾长石外)和云母已风化形成了以高岭石、伊利石为主的黏土矿物。20世纪90年代,研究发现稀土主要富集在全风化层下部和半风化层上部(张祖海,1990;包志伟,1992),呈典型的“抛物线”式分布。随着越来越多的矿床被发现,稀土在风化壳中分布规律也在不断地完善。结合大量的钻孔资料,王登红等(2013)将稀土在风化壳中分布特征总结为标准式、浅伏式、深潜式、表露式和波浪式(图2)。
图 2 华南风化壳剖面及其REE分布特征(据王登红等,2013修改)A—表土层;B—全风化层;C—半风化层;P—基岩Figure 2. Profile and rare earth element (REE) distribution of the weathering crusts in South China (modified from Wang et al., 2013)(a) Aopsoil; (b) Completely weathered horizon; (c) Semi-weathered horizon; (d) Bedrock根据分步化学提取方法,稀土在风化壳中的赋存形式可分为:离子交换态、水溶态、碳酸盐结合态、有机结合态、铁锰氧化物结合态和残渣态等(Li et al.,2019;Huang et al.,2021a)。离子交换态是风化壳中稀土最重要的赋存形式,其占比最高可达总稀土的90%(Bao and Zhao,2008;Li et al.,2017)。水溶态和碳酸盐结合态稀土含量通常较低(Huang et al.,2021a),有机结合态稀土一般在表土层较高,但总体上对稀土总量贡献较小。铁锰氧化物是风化壳中常见且较丰富的次生矿物,铁锰氧化物结合态稀土在不同风化壳中占比略有差异。在江西足洞重稀土矿床中,铁锰氧化物结合态稀土占比很低(最高仅为5.5%;Li et al.,2019),而在广东仁居轻稀土矿床中,其占比最高可达15%(Huang et al.,2021a)。残渣态主要为难风化的(含)稀土副矿物(如锆石、独居石)或次生(含)稀土矿物(如水磷铈矿),通常在半风化层占比较高,最高可达90%(Huang et al.,2021a)。
2. 花岗岩类的化学风化
2.1 造岩矿物风化
在风化壳型稀土矿床分布的亚热带−热带地区,岩石风化以化学风化为主,常涉及矿物物相和化学成分的变化。花岗岩类常见造岩矿物包括长石、云母、角闪石等铝硅酸盐矿物,这些矿物在风化过程中逐渐转变为黏土矿物。例如,长石风化易沿着微裂隙、双晶面溶解,Ca2+、Na+、K+等阳离子从长石中析出,硅氧四面体“崩解”,在水合作用下形成硅酸铝胶体,然后重结晶形成黏土矿物(Banfield,1985)。长石风化形成黏土矿物的演变路径主要为:斜长石→蒙脱石→埃洛石→高岭石→三水铝石,钾长石→伊利石→埃洛石→高岭石→三水铝石,是一个典型的脱硅过程(胡淙声,1986)。长石也可以通过溶解−再结晶过程直接形成高岭石(图3a、3b;Li et al.,2022b)。黑云母风化先析出K+形成蛭石和黑云母−蛭石不规则混层矿物(也称水黑云母),再经脱Mg、Fe、Si后形成高岭石(图3c)。白云母相对于黑云母较稳定,其风化可转变为伊利石,再脱K+和Si2+形成高岭石(图3d)。角闪石风化可形成蒙脱石,后转变为高岭石和埃洛石(Banfield,1985)。基岩中这些造岩矿物风化形成的黏土矿物是风化壳中离子态稀土的主要赋存载体。上述黏土矿物的形成和演化过程受风化环境影响较大,不同风化剖面存在一定差异。
图 3 江西大埠弱风化花岗岩中造岩矿物风化的背散射电子(BSE)图像a—钠长石局部风化形成高岭石;b—风化残余的钠长石;c—黑云母风化形成高岭石;d—白云母局部风化形成高岭石Figure 3. Backscattered electron (BSE) images of the weathering of rock-forming minerals in the Dabu weakly weathered granites, Jiangxi Province(a) Albite is partly weathered to kaolinite; (b) Residual albite after weathering; (c) Biotite is weathered to kaolinite; (d) Muscovite is partly weathered to kaolinite2.2 (含)稀土副矿物的风化
风化壳型稀土矿床基岩中(含)稀土副矿物的抗风化能力存在显著差异,只有可被风化的(含)稀土副矿物才能为风化壳提供离子态稀土。常见的稀土矿物类型按抗风化能力从弱到强的顺序大致为:稀土氟碳酸盐类<稀土硅酸盐类<稀土铌钽酸盐类<稀土磷酸盐类(杨学明和张培善,1992)。尽管已报道的热力学计算结果显示氟碳铈矿在酸性环境中为热力学稳定(Li et al.,2022a),但无论是天然风化壳样品还是花岗岩风化实验研究均表明,稀土氟碳酸盐是最易风化的稀土矿物,其在弱酸性−酸性环境中易溶解释放稀土元素。硅铍钇矿和钇兴安石也是易风化的稀土矿物,通常在风化初期阶段就已分解释放稀土元素(Li et al.,2019)。这些易风化的稀土矿物通常在半风化层中已风化消失。除此之外,中等抗风化(含)稀土副矿物(如褐帘石、榍石、磷灰石、石榴子石)随着风化作用增强也能被风化并释放稀土元素,在半风化层或全风化层中可观察到这些矿物表面风化的痕迹。锆石、褐钇铌矿、易解石、独居石和磷钇矿等矿物的抗风化能力很强,虽然放射性损伤会减弱它们的抗风化能力,但它们在风化壳中风化程度很弱,难以提供离子态稀土(Sanematsu and Watanabe,2016)。鉴于上述,下面主要结合矿床中实例来探讨中等抗风化(含)稀土副矿物的风化。
矿物的风化主要有两种机制,一种由溶质运移控制的溶解,另一种则受表面反应控制(Velbel,1993;Price et al.,2013)。如果风化产物在原始矿物上形成保护性表面层(即产物的体积大于或等于反应矿物的体积),则可溶性物质通过矿物表面的运移受到该层的限制。因此,元素通过保护性表面层的扩散控制了矿物风化的进程(Velbel,1993;Price et al.,2013)。相反,如果产物未形成保护性表面层,则溶质的运移不受限制,风化受表面化学反应控制(Velbel,2009;Price et al.,2013)。在风化过程中,元素的运移与产物−反应物的体积比影响着风化矿物的表面特征(Velbel,1993)。表面反应控制的风化通常导致矿物表面形成溶蚀坑或不规则边界(Velbel,2009,2014)。
褐帘石在风化壳中较少被发现,表明其在风化初始阶段已被风化溶解(Sanematsu et al.,2013;Berger et al.,2014)。广东仁居轻稀土矿床弱风化基岩中可观察到褐帘石的风化溶解,矿物颗粒中出现大量溶蚀洞(图4a),表明风化受到表面反应控制。值得注意的是,褐帘石的部分溶蚀洞中填充了氟碳铈矿,可能是褐帘石风化释放的部分稀土元素与地下水中F−、CO32−结合形成了次生稀土矿物(Price et al.,2005)。随着风化作用增强,半风化层下部的褐帘石风化颗粒呈现碎片状(图4b),次生氟碳铈矿则完全溶解消失。褐帘石中U和Th含量通常较高,它们的放射性衰变会引起褐帘石出现不同程度的蜕晶化(Gieré and Sorensen,2004),促进其风化溶解。在全风化层中,褐帘石已完全风化消失。
图 4 广东仁居风化壳型轻稀土矿床中不同层位的褐帘石、榍石和磷灰石风化的BSE图像a—弱风化基岩中褐帘石溶蚀洞及其填充的氟碳铈矿;b—半风化层下部的褐帘石风化碎片;c—半风化层下部的榍石风化裂隙和溶蚀坑;d—半风化层上部的榍石风化崩解;e—半风化层上部的磷灰石溶蚀坑;f—全风化层下部磷灰石密集的溶蚀坑Figure 4. Backscattered electronic (BSE) images of the weathering of allanite, titanite and apatite in the profiles of the Renju regolith-hosted light rare earth element (LREE) deposit, Guangdong Province(a) The etch holes filled by bastnaesite in allanite in weakly weathered bedrock; (b) Fragments of allanite weathering in the lower part of the semi-weathered horizon; (c) Weathering fractures and etch pits of titanite in the lower part of the semi-weathered horizon; (d) The disintegration of titanite in the upper part of the semi-weathered horizon; (e) The etch pits of apatite in the upper part of the semi-weathered horizon; (f) Massive etch pits of apatite in the lower part of the completely weathered horizon褐帘石、榍石和磷灰石都是重要的含LREE矿物。相对于褐帘石,榍石和磷灰石的抗风化能力更强。溶解实验也表明,榍石和磷灰石的溶解速率明显低于褐帘石(Harlavan and Erel,2002)。在广东仁居稀土矿床风化壳中,半风化层下部的榍石颗粒发育有风化裂隙和小的溶蚀坑(图4c)。随着风化程度的增加,半风化层上部榍石表面的风化裂隙和溶蚀坑增多,榍石颗粒逐渐风化崩解(图4d),全风化层榍石几乎完全风化而消失。仁居稀土矿床基岩中一半以上的稀土赋存于榍石中,其风化释放的稀土制约着风化壳中的稀土配分特征(黄健等,2022)。风化的榍石从核部到边部稀土含量逐渐降低,表明边部稀土可能已风化流失(黄健等,2022)。另有研究表明,弱风化基岩中榍石风化优先溶出HREE,可能导致风化初期稀土分异(Dou et al.,2023)。磷灰石也是仁居稀土矿床基岩中重要的稀土赋存矿物(黄健等,2022)。在半风化层上部,磷灰石的边部出现溶蚀坑;在全风化层下部,磷灰石表面的溶蚀坑明显增加(图4e、4f),这表明其风化程度越来越高,风化受表面反应控制。在表土层,磷灰石已完全风化消失,表明磷灰石的风化是风化壳中离子态稀土的重要来源之一。实验研究表明,磷灰石的溶解速率随溶液的pH值降低而增加(Chaïrat et al.,2007),风化壳上部的酸性环境(pH = 4~5.5)有利于磷灰石风化溶解并释放稀土。磷灰石风化可能会形成次生磷稀土矿物(Sanematsu et al.,2013;Berger et al.,2014;Sanematsu and Watanabe,2016),但在广东仁居等风化壳型稀土矿床中没有发现磷灰石周围形成这些次生矿物,表明风化释放的稀土已发生迁移。
石榴子石是典型的富HREE矿物,广泛发育于华南风化壳型重稀土矿床的基岩中。曾有报道石榴子石沿着颗粒边界和裂隙发生风化,形成了高岭石、针铁矿和赤铁矿,风化释放的大部分重稀土元素被淋滤而迁移,只有少部分稀土被这些铁氧化物和高岭石固定(Baidya et al.,2019)。在江西大埠重稀土矿床中,弱风化基岩中石榴子石沿着裂隙风化形成高岭石(图5a、5b),成为其保护性表面层,因此其风化作用受溶质运移的控制。在全风化层中,由于较低的pH和强淋滤作用促进了Al和Si的迁移,抑制了高岭石在石榴子石表面形成保护性表面层,其风化过程受表面反应控制,因此在石榴子石表面形成了大量的溶蚀洞(图5c、5d)。随着风化的持续进行,溶蚀坑逐渐合并,最终穿透石榴子石颗粒,产生更多的裂隙,使其发生破碎(图5d)。在风化淋积过程中,石榴子石风化释放的HREE随流体向风化壳下部迁移;同时,全风化层中残留石榴子石的风化可以持续向风化壳中提供离子态HREE,进而促进风化壳中重稀土的富集。
图 5 江西大埠风化壳型重稀土矿床中石榴子石风化的BSE图像a—弱风化基岩中石榴子石沿着边界和裂隙风化形成高岭石;b—弱风化基岩中石榴子石沿着裂隙风化形成高岭石;c—全风化层下部石榴子石风化形成溶蚀洞;d—全风化层上部石榴子石风化形成大量小溶蚀洞Figure 5. Backscattered electronic (BSE) images of the weathering of garnet in the Dabu regolith-hosted heavy rare earth element (HREE) deposit, Jiangxi Province(a) Garnet weathering along the grain boundaries and fractures to form kaolinite in weakly weathered bedrock; (b) Garnet weathering at the fractures to form kaolinite in weakly weathered bedrock; (c) Weathering etch holes in garnet from the lower part of the completely weathered horizon; (d) Massive etch holes in garnet from the upper part of the completely weathered horizon3. 微生物风化作用
微生物约占全球生物量的75%,且绝大多数与岩石表面直接接触,是控制地表岩石风化和元素循环的重要因素之一(Cuadros,2017)。风化壳型稀土矿床所分布的亚热带–热带气候区微生物新陈代谢等生命活动极为旺盛(Taunton et al.,2000),微生物与稀土元素可能存在着复杂的相互作用。近年来,微生物作用对风化壳型稀土矿成矿的影响备受关注。一方面,微生物能够通过分泌有机酸等代谢产物促进成矿母岩风化,加速稀土元素活化−迁移;另一方面,微生物能在其细胞结构上选择性吸附稀土离子,进而制约着稀土元素的富集−分异过程。因此,微生物活动很可能是制约风化壳中稀土元素活化−迁移−富集的重要因素。
3.1 风化壳中的土著微生物
微生物活动是表生环境中最为活跃的地质营力之一,对花岗岩等成矿母岩的风化具有重要影响(Ehrlich,1998)。与物理作用和化学作用相比,表生环境中的岩石风化在一定情况下可由生物作用主导(吴秋芳等,2018)。虽然有研究证实了伯克氏菌属(Burkholderia)和链霉菌属(Streptomyces)等常见微生物对花岗岩风化和稀土溶出的作用(Wu et al.,2008; Zhang et al.,2018),但风化壳作为全球最大的微生物资源储库,仍潜藏着大量未知的岩石风化微生物类群。厘清风化壳中的土著微生物组成及其垂直结构变化特征,是理解微生物制约稀土元素活化、迁移、富集成矿的关键基础。
以广东仁居风化壳型稀土矿床为例,Li et al.(2022c)采用高通量测序技术对不同深度样品中的土著微生物群落进行分析,共检测到细菌37门,其中平均含量大于1%的优势门包括变形菌门、酸杆菌门、放线菌门、厚壁菌门、拟杆菌门、浮霉菌门和蓝藻门。检测到真菌6门,其中优势门为子囊菌门和担子菌门。仁居风化壳中的许多优势菌门在赣南稀土矿区、白云鄂博稀土矿区及森林土壤等多种环境中也有广泛分布,它们共同维持着微生物群落的稳定发展(Wei et al.,2019)。从属分类水平来看,不动杆菌属是丰度最高的细菌属。该属细菌在环境中具有促进矿物风化、磷酸盐溶解、铁螯合及降解代谢有机污染物的能力(魏志文,2019)。不动杆菌对高浓度重金属及寡营养环境的适应性使得其成为稀土矿床中的优势菌群,并进一步通过提高某些酶等分泌物的产生影响着风化壳的理化性质及稀土元素富集。
风化壳不同深度样品的微生物群落多样性分析表明,微生物群落的多样性并未随着深度增加而不断下降,但在不同深度存在明显差异。微生物与稀土元素在风化壳中的分布趋势具有显著相关性,表明微生物存在有助于风化壳中稀土元素的活化富集,稀土富集也影响了微生物的群落组成。不同土著微生物类型对稀土元素的吸附特征显著不同。革兰氏阳性细菌对重稀土的选择性显著高于轻稀土,这种特异性富集与细胞表面特有的磷壁酸结构有关(李旭锐等,2024)。革兰氏阴性细菌和真菌对稀土的吸附配分具有显著的四分组效应,但真菌同时对轻稀土表现出更高的吸附选择性。由此可见,风化壳土著微生物不同类群的组成差异可能是制约稀土元素富集−分异的重要因素。
3.2 微生物促进稀土的活化
微生物是岩石风化的重要驱动力,可以加速甚至启动花岗岩及其中造岩矿物的溶解。微生物和其他地球化学因素共同控制着风化过程中稀土元素的地球化学行为,但具体的作用机制目前仍未明晰。为此,He et al.(2023)利用从江西大埠风化壳型稀土矿床中分离到的4株土著细菌进行花岗岩溶解实验,发现实验菌株均能不同程度促进花岗岩中稀土元素的溶出。与无菌条件相比,微生物将总稀土元素的表观溶解量提升约4~21倍(图6)。同时,微生物分泌的代谢产物和细胞体吸附稀土元素,使得稀土元素的表观溶出率被降低约25%~82%(He et al.,2023)。进一步利用土著细菌溶解磷钇矿和独居石,发现稀土元素的溶解量被增大约两个数量级(He et al.,2024)。磷钇矿的溶解速率比独居石低约一个数量级,这主要是由于其自身的物理化学和矿物学特性导致其更耐风化。由于稀土磷酸盐的溶解度极低,溶解过程中部分释放的稀土元素可能发生再次沉淀,形成稳定性相对较低的次生磷酸盐,导致表观稀土元素释放量被低估。已有研究也发现,微生物能有效促进难风化含稀土矿物溶解,促进其中的稀土元素释放(Owusu-Fordjour and Yang,2023)。例如,亚铁氧化酸硫杆状菌(Acidithiobacillus ferrooxidans)能够加速锆石中的稀土溶出(Becker et al.,1986)。巨大芽胞杆菌(Bacillus megaterium)介导的磷灰石溶解速率比非生物条件下高50%~900%(Hutchens et al.,2006)。黑曲霉菌(Aspergillus niger)、土曲霉菌(Aspergillus terreus)和拟青霉菌(Paecilomyces spp.)能利用独居石作为磷酸盐源,从独居石中溶出稀土元素(Brisson et al.,2016)。
图 6 不同细菌在30天内对稀土元素的浸出量(据He et al., 2023修改)Figure 6. The contents of rare earth element (REE) leached by different bacteria in 30 days (modified from He et al., 2023)在风化壳中,岩石矿物与微生物存在着复杂的“互惠互利”关系。矿物为微生物提供生存环境和营养物质,保护微生物抵抗强酸、强碱等化学危害。微生物则附着在矿物表面,通过影响矿物表界面的微区环境加速矿物溶解,影响着岩石风化和稀土元素的活化(图7)。微生物活化稀土元素的作用机制十分复杂,其中酸解和络合是最重要的生物风化机制(图8)。在花岗岩溶解过程中,微生物生长代谢能导致溶液酸化并分泌丰富的小分子有机酸,通过酸解和络合作用致使花岗岩发生溶蚀,释放出稀土元素(He et al.,2023)。在弱酸性至近中性pH条件下,有机酸配体的络合作用是微生物促进稀土元素释放的主导机制。磷钇矿和独居石溶解实验同样表明微生物代谢能产生丰富的有机酸并酸化培养介质,通过质子催化和配体络合机制协同促进稀土磷酸盐矿物的溶解。微生物生长过程中对可溶性磷的吸收利用能促进稀土磷酸盐的溶解和抑制稀土磷酸盐的再沉淀。此外,微生物菌株和稀土矿物表面的相互作用也是控制矿物溶解的关键因素。如微生物通过分泌胞外聚合物,附着于矿物的解理面台阶或不规则断口处,最终形成生物膜(Wanger et al.,2006)。生物膜内部pH值、氧化还原电位和物质浓度等与大环境显著不同,能够介导细胞与矿物表面络合并对其进行攻击以提高稀土元素的溶解度。
图 7 微生物附着在矿物表面并留下溶蚀痕迹a—矿物裂隙中的真菌菌丝;b—真菌菌丝在矿物表面造成溶蚀痕迹;c—黏附在矿物表面的细菌;d—细菌在矿物表面分泌的胞外分泌物;a—d均为二次电子图像Figure 7. Microbial adhesion to mineral surfaces forms dissolution traces(a) Fungal hypha in mineral fractures; (b) Dissolution traces caused by fungal hyphae on mineral surfaces; (c) Bacteria adhering to mineral surfaces; (d) Extracellular secretions secreted by bacteria on mineral surfaces. (a–d) are secondary electron images.微生物不但能够促进花岗岩和难风化稀土矿物溶解,还制约着该过程中的稀土元素分异。风化壳型稀土矿中分离获得的土著芽孢杆菌能分泌丰富的有机酸,尤其是苹果酸和酒石酸,这可能是它们溶解花岗岩时中、重稀土元素优先释放的关键(He et al.,2023)。微生物分泌的小分子有机酸与不同稀土元素的络合稳定性差异或许是稀土元素分异的重要影响因素。
研究发现在矿物溶解能力方面,多种微生物共培养可能比纯培养更为有效(Fathollahzadeh et al.,2018)。在风化壳中,微生物介导的矿物溶解和稀土活化往往是通过微生物群落协同相互作用实现的,其作用机制涉及多种微生物及其复杂的代谢网络和调控过程(Finlay et al.,2020)。如菌根真菌可以在矿物周围富集大量具有高风化潜力的细菌,协同促进矿物风化(Sun and Lian,2019)。然而,现有研究大多采用纯培养的微生物进行溶解实验,研究结果很大程度上依赖于培养菌株的选择。然而,天然环境中的可培养菌株在微生物整体中占比尚不足1%(Solden et al.,2016),基于培养菌株所获结果并不能全面反映微生物对风化壳形成的影响(Van Schöll et al.,2008)。这些研究虽然为岩石矿物的天然生物风化和随之的稀土元素溶出过程提供了可信证据,但天然条件下风化壳中活跃的微生物活动对矿物表界面的局部控制作用仍可能被极大低估了。
4. 风化过程中稀土元素的迁移
基岩中(含)稀土副矿物风化释放的稀土元素会随着土壤溶液和地下水进行迁移,最后在适宜的层位被黏土矿物吸附进而富集。稀土元素在风化过程中的迁移主要受pH值、次生矿物形成和络合环境影响。例如,低pH条件下溶液中H+与REE3+存在较强的竞争关系,都能占据黏土矿物上的吸附位点,而pH值增加时这种竞争关系明显减弱,有利于稀土离子被吸附(吴澄宇等,1989)。实验研究表明,pH>5.5时,H+在高岭石表面的占位率<10%,竞争吸附极弱;当pH>6时,这种竞争吸附完全消失(Farrah and Pickering,1979)。此外,随着pH值增加,REE3+发生水解的可能性增加,其活动性相应减弱,更容易沉淀(Nesbitt,1979;马英军等,2004)。在风化壳中,表土层受到弱酸性大气降水的影响以及含有大量的有机酸,其pH值通常小于5(Li et al.,2017)。随着淋滤流体向下渗透,由于水岩反应的增加消耗了H+,使得pH值随深度的增加而出现上升的趋势。表土层的酸性环境不利于稀土被黏土矿物吸附,大量稀土随淋滤流体向下迁移,随着pH值升高,稀土的水解性增强,易被黏土矿物吸附富集。在风化淋滤过程中,LREE的离子半径大,更易被黏土矿物吸附;而HREE的离子半径小,更易向下迁移(包志伟,1992)。因此,长期的风化淋滤作用可能会导致LREE和HREE之间分异程度增强。
次生矿物的形成也影响着稀土元素的迁移。Ce是一个变价稀土元素,其迁移容易受到氧化还原环境的影响。表土层的高氧化环境使得Ce3+被氧化成Ce4+,而Ce4+容易水解形成难溶的氢氧化物,随后分解形成次生方铈矿(图9a、9b)。因此,Ce在风化壳中向下迁移较弱,其主要在表土层富集,导致了表土层普遍出现Ce正异常(Bao and Zhao,2008;Li et al.,2017)。当风化壳中磷含量较高时,部分稀土元素与其结合沉淀形成次生稀土磷酸盐矿物(如水磷铈矿、水磷镧矿、磷铝铈矿;图9c)。有研究表明,风化壳中离子态稀土含量与磷含量呈负相关,并在磷含量较高的风化壳中发现次生稀土磷酸盐的形成(Bern et al.,2017)。相对于重稀土来说,轻稀土与磷酸根的溶度积更小,更容易沉淀,导致重稀土更易迁移(Lee and Byrne,1992)。此外,风化壳中还存在较多的次生铁锰氧化物(图9d),能固定稀土离子(梁晓亮等,2022)。重稀土离子易在铁氧化物表面形成内圈络合物,导致HREE更富集(Quinn et al.,2006),而锰氧化物则相对富集LREE,尤其是促进Ce3+氧化,出现Ce正异常(Ohta and Kawabe,2001)。在广东仁居稀土矿床中,铁氧化物优先固定了大量的HREE,从而导致了风化壳中稀土的分异(Huang et al.,2021a)。
图 9 广东仁居风化壳型轻稀土矿床中次生矿物的BSE图像a—表土层中方铈矿与高岭石紧密接触;b—表土层中方铈矿集合体;c—全风化层中水磷铈矿;d—全风化层中铁锰氧化物Figure 9. BSE images of the secondary minerals in the Renju regolith-hosted light rare earth element (LREE) deposit, Guangdong Province(a) Cerianite associated with kaolinite in topsoil; (b) Cerianite aggregates in topsoil; (c) Churchite in the completely weathered horizon; (d) Fe−Mn (hydr) oxides in the completely weathered horizon稀土元素的络合离子可能是风化壳中稀土迁移的主要形式。土壤溶液和地下水中的配体主要为CO32−、HCO−3、PO3−4、HPO2−4、Cl−以及少量的SO4 2−、F−,与稀土可形成不同的络合物(马英军等,2004)。有研究表明,在酸性条件下,简单离子形式和硫酸盐络合物最为重要,而在弱酸性至碱性条件下,碳酸盐络合物占据主导地位(Wood,1990;Biddau et al.,2002)。大气中CO2溶解在水中将会产生大量的CO2−3、HCO−3,地表水的阴离子可能以碳酸根和碳酸氢根为主。当稀土与碳酸根络合时,随着原子序数的增加,稀土元素与其形成更稳定的络合物(Wood,1990;Lee and Byrne,1993),即HREE与碳酸盐络合更稳定。随着土壤溶液的pH值升高,碳酸盐的络合作用增强,导致HREE更易发生迁移,因而也会造成稀土的分异。有学者对江西半坑稀土矿床边坡不同部位和地下水中稀土的研究认为,山脊风化壳中HREE与碳酸盐络合,倾向于随地下水流动而流失到山脚,导致了山脚HREE更富集(Li et al.,2020)。除了这些无机配体,风化壳中还存在不同类型的有机质,其对稀土元素的迁移也有一定的影响。有机质可以改变土壤的pH值进而影响稀土的迁移,不仅如此,有机质还可以直接与REE3+络合或螯合,充当有机配体促进稀土的运移(陈志澄等,1997)。总体而言,稀土元素在风化过程中迁移是一个无机、有机共同作用的过程。
5. 结论与展望
在风化壳型稀土矿床成矿过程中,造岩矿物和副矿物的风化分解主要受化学风化和生物风化作用控制。长石、云母和角闪石等主要造岩矿物风化形成的黏土矿物和铁锰氧化物是该类矿床中离子态稀土的主要赋存载体。而离子态稀土则来源于基岩中易风化和中等抗风化(含)稀土副矿物的风化和分解。风化初期阶段,稀土氟碳酸盐、硅铍钇矿、钇兴安石等易风化的稀土矿物首先溶解并释放稀土元素。随着风化程度增加,中等抗风化(含)稀土副矿物(如褐帘石、榍石、磷灰石、石榴子石)也逐渐发生风化并释放稀土元素。其中,褐帘石、榍石和磷灰石是风化壳中离子态轻稀土的重要来源,石榴子石可作为风化壳中重稀土矿化的来源之一。同时,风化壳中大量微生物分泌的有机酸可以加速难风化的独居石和磷钇矿溶解并释放稀土元素,进而促进基岩中稀土的活化。在风化淋积过程中,少部分稀土离子被次生矿物固定,而大部分稀土离子将与无机、有机配体络合,并在大气降水和地下水作用下向风化壳下部迁移,最后在全风化层或半风化层的适宜位置富集。
总的来说,风化壳型稀土矿床的形成是多种控制因素长时间共同作用的结果。其中,微生物作用对稀土成矿贡献的研究仍处于起步阶段,尤其是微生物风化和吸附对稀土元素富集−分异的贡献有待定量评估,需进一步借助微生物学等手段开展深入研究。除化学风化和微生物作用的影响外,气候、地形地貌、水动力学条件等因素都可能对风化过程以及稀土的活化−迁移−富集过程产生重要影响。特别是风化与剥蚀速率的平衡,很可能是控制风化壳中稀土成矿的一个关键要素。持续的风化作用为稀土成矿提供了物源,而与风化速率相适应的剥蚀作用则是矿体能否有效保存的关键。但如何寻找适宜的地球化学指标来表征风化与剥蚀速率,至今仍没有突破性的进展。同时需要注意的是,目前几乎所有的研究均将风化壳底部的基岩默认为风化壳的母岩。事实上,由于风化壳母岩组成的复杂性、风化/剥蚀速率的差异等因素,其母岩与底部现存的基岩可能存在显著差异。如何建立可靠的矿物学、地球化学等指标来判识富稀土风化壳与其底部岩石之间的内在联系是解译风化壳型稀土矿成因的一个关键问题,并对该类型稀土资源的找矿勘查有重要指导意义。
致谢:衷心感谢特邀主编胡健民老师和编辑部的组织和约稿。
-
图 1 华南地区风化壳型稀土矿床分布图(据Li et al., 2019修改)
Figure 1. The distribution of regolith-hosted rare earth element (REE) deposits in South China (modified from Li et al., 2019)
图 2 华南风化壳剖面及其REE分布特征(据王登红等,2013修改)
A—表土层;B—全风化层;C—半风化层;P—基岩
Figure 2. Profile and rare earth element (REE) distribution of the weathering crusts in South China (modified from Wang et al., 2013)
(a) Aopsoil; (b) Completely weathered horizon; (c) Semi-weathered horizon; (d) Bedrock
图 3 江西大埠弱风化花岗岩中造岩矿物风化的背散射电子(BSE)图像
a—钠长石局部风化形成高岭石;b—风化残余的钠长石;c—黑云母风化形成高岭石;d—白云母局部风化形成高岭石
Figure 3. Backscattered electron (BSE) images of the weathering of rock-forming minerals in the Dabu weakly weathered granites, Jiangxi Province
(a) Albite is partly weathered to kaolinite; (b) Residual albite after weathering; (c) Biotite is weathered to kaolinite; (d) Muscovite is partly weathered to kaolinite
图 4 广东仁居风化壳型轻稀土矿床中不同层位的褐帘石、榍石和磷灰石风化的BSE图像
a—弱风化基岩中褐帘石溶蚀洞及其填充的氟碳铈矿;b—半风化层下部的褐帘石风化碎片;c—半风化层下部的榍石风化裂隙和溶蚀坑;d—半风化层上部的榍石风化崩解;e—半风化层上部的磷灰石溶蚀坑;f—全风化层下部磷灰石密集的溶蚀坑
Figure 4. Backscattered electronic (BSE) images of the weathering of allanite, titanite and apatite in the profiles of the Renju regolith-hosted light rare earth element (LREE) deposit, Guangdong Province
(a) The etch holes filled by bastnaesite in allanite in weakly weathered bedrock; (b) Fragments of allanite weathering in the lower part of the semi-weathered horizon; (c) Weathering fractures and etch pits of titanite in the lower part of the semi-weathered horizon; (d) The disintegration of titanite in the upper part of the semi-weathered horizon; (e) The etch pits of apatite in the upper part of the semi-weathered horizon; (f) Massive etch pits of apatite in the lower part of the completely weathered horizon
图 5 江西大埠风化壳型重稀土矿床中石榴子石风化的BSE图像
a—弱风化基岩中石榴子石沿着边界和裂隙风化形成高岭石;b—弱风化基岩中石榴子石沿着裂隙风化形成高岭石;c—全风化层下部石榴子石风化形成溶蚀洞;d—全风化层上部石榴子石风化形成大量小溶蚀洞
Figure 5. Backscattered electronic (BSE) images of the weathering of garnet in the Dabu regolith-hosted heavy rare earth element (HREE) deposit, Jiangxi Province
(a) Garnet weathering along the grain boundaries and fractures to form kaolinite in weakly weathered bedrock; (b) Garnet weathering at the fractures to form kaolinite in weakly weathered bedrock; (c) Weathering etch holes in garnet from the lower part of the completely weathered horizon; (d) Massive etch holes in garnet from the upper part of the completely weathered horizon
图 6 不同细菌在30天内对稀土元素的浸出量(据He et al., 2023修改)
Figure 6. The contents of rare earth element (REE) leached by different bacteria in 30 days (modified from He et al., 2023)
图 7 微生物附着在矿物表面并留下溶蚀痕迹
a—矿物裂隙中的真菌菌丝;b—真菌菌丝在矿物表面造成溶蚀痕迹;c—黏附在矿物表面的细菌;d—细菌在矿物表面分泌的胞外分泌物;a—d均为二次电子图像
Figure 7. Microbial adhesion to mineral surfaces forms dissolution traces
(a) Fungal hypha in mineral fractures; (b) Dissolution traces caused by fungal hyphae on mineral surfaces; (c) Bacteria adhering to mineral surfaces; (d) Extracellular secretions secreted by bacteria on mineral surfaces. (a–d) are secondary electron images.
图 9 广东仁居风化壳型轻稀土矿床中次生矿物的BSE图像
a—表土层中方铈矿与高岭石紧密接触;b—表土层中方铈矿集合体;c—全风化层中水磷铈矿;d—全风化层中铁锰氧化物
Figure 9. BSE images of the secondary minerals in the Renju regolith-hosted light rare earth element (LREE) deposit, Guangdong Province
(a) Cerianite associated with kaolinite in topsoil; (b) Cerianite aggregates in topsoil; (c) Churchite in the completely weathered horizon; (d) Fe−Mn (hydr) oxides in the completely weathered horizon
-
[1] BAIDYA A S, PAL D C, UPADHYAY D, 2019. Chemical weathering of garnet in Banded Iron Formation: implications for the mechanism and sequence of secondary mineral formation and mobility of elements[J]. Geochimica et Cosmochimica Acta, 265: 198-220. doi: 10.1016/j.gca.2019.08.037 [2] BANFIELD J F, 1985. The mineralogy and chemistry of granite weathering[D]. Canberra: The Australian National University. [3] BAO Z W, 1992. A geochemical study of the granitoid weathering crust in Southeast China[J]. Geochimica, 21(2): 166-174. (in Chinese with English abstract [4] BAO Z W, ZHAO Z H, 2008. Geochemistry of mineralization with exchangeable REY in the weathering crusts of granitic rocks in South China[J]. Ore Geology Reviews, 33(3-4): 519-535. doi: 10.1016/j.oregeorev.2007.03.005 [5] BECKER S, BULLMANN M, DIETZE H J, et al., 1986. Mass spectrographic analysis of selected chemical elements by microbial leaching of zircon[J]. Fresenius’ Zeitschrift für Analytische Chemie, 324(1): 37-42. [6] BERGER A, JANOTS E, GNOS E, et al., 2014. Rare earth element mineralogy and geochemistry in a laterite profile from Madagascar[J]. Applied Geochemistry, 41: 218-228. doi: 10.1016/j.apgeochem.2013.12.013 [7] BERN C R, YESAVAGE T, FOLEY N K, 2017. Ion-adsorption REEs in regolith of the Liberty Hill pluton, South Carolina, USA: an effect of hydrothermal alteration[J]. Journal of Geochemical Exploration, 172: 29-40. doi: 10.1016/j.gexplo.2016.09.009 [8] BIDDAU R, CIDU R, FRAU F, 2002. Rare earth elements in waters from the albitite-bearing granodiorites of Central Sardinia, Italy[J]. Chemical Geology, 182(1): 1-14. doi: 10.1016/S0009-2541(01)00272-8 [9] BORST A M, SMITH M P, FINCH A A, et al., 2020. Adsorption of rare earth elements in regolith-hosted clay deposits[J]. Nature Communications, 11(1): 4386. doi: 10.1038/s41467-020-17801-5 [10] BRISSON V L, ZHUANG W Q, ALVAREZ-COHEN L, 2016. Bioleaching of rare earth elements from monazite sand[J]. Biotechnology and Bioengineering, 113(2): 339-348. doi: 10.1002/bit.25823 [11] CHAÏRAT C, SCHOTT J, OELKERS E H, et al., 2007. Kinetics and mechanism of natural fluorapatite dissolution at 25 °C and pH from 3 to 12[J]. Geochimica et Cosmochimica Acta, 71(24): 5901-5912. doi: 10.1016/j.gca.2007.08.031 [12] CHEN B F, ZOU X Y, PENG L L, et al., 2019. Geological characteristics and prospecting direction of the metamorphic rock ion-adsorption REE ore deposit in South Jiangxi[J]. East China Geology, 40(2): 143-151. (in Chinese with English abstract [13] CHEN Z C, YU S Y, FU Q C, et al., 1997. Study on the organic metallogenic mechanism of weathering crust REE deposits[J]. Journal of the Chinese Rare Earth Society, 15(3): 244-250. (in Chinese with English abstract [14] CUADROS J, 2017. Clay minerals interaction with microorganisms: A review[J]. Clay Minerals, 52(2): 235-261. doi: 10.1180/claymin.2017.052.2.05 [15] DB36/T 1158-2019, 2019. Specifications for weathered crust ion-absorbed rare earth mineral geological exploration[S]. Nanchang: Department of Natural Resources of Jiangxi Province. (in Chinese) [16] DOU J Z, WANG C Y, XING Y L, et al., 2023. Redistribution of REE in granitic bedrocks during incipient weathering: insights into the role of groundwater in the formation of regolith-hosted REE deposit[J]. Contributions to Mineralogy and Petrology, 178(10): 69. doi: 10.1007/s00410-023-02054-4 [17] EHRLICH H L, 1998. Geomicrobiology: its significance for geology[J]. Earth-Science Reviews, 45(1-2): 45-60. doi: 10.1016/S0012-8252(98)00034-8 [18] FAN C X, XU C, SHI A G, et al., 2023. Origin of heavy rare earth elements in highly fractionated peraluminous granites[J]. Geochimica et Cosmochimica Acta, 343: 371-383. doi: 10.1016/j.gca.2022.12.019 [19] FARRAH H, PICKERING W F, 1979. pH effects in the adsorption of heavy metal ions by clays[J]. Chemical Geology, 25(4): 317-326. doi: 10.1016/0009-2541(79)90063-9 [20] FATHOLLAHZADEH H, HACKETT M J, KHALEQUE H N, et al., 2018. Better together: potential of co-culture microorganisms to enhance bioleaching of rare earth elements from monazite[J]. Bioresource Technology Reports, 3: 109-118. doi: 10.1016/j.biteb.2018.07.003 [21] FINLAY R D, MAHMOOD S, ROSENSTOCK N, et al., 2020. Reviews and syntheses: biological weathering and its consequences at different spatial levels - from nanoscale to global scale[J]. Biogeosciences, 17(6): 1507-1533. doi: 10.5194/bg-17-1507-2020 [22] FU W, LUO P, HU Z Y, et al., 2019. Enrichment of ion-exchangeable rare earth elements by felsic volcanic rock weathering in South China: genetic mechanism and formation preference[J]. Ore Geology Reviews, 114: 103120. doi: 10.1016/j.oregeorev.2019.103120 [23] Gangnan Geological Brigade of Jiangxi Bureau of Geology and Mineral Resource, 1985. Exploration report of ion adosrption type REE resources survey in Jiangxi Province [R]. Nanchang: Gangnan Geological Brigade of Jiangxi Bureau of Geology and Mineral Resource. (in Chinese) [24] GARCÍA M V R, KRZEMIEŃ A, DEL CAMPO M Á M, et al., 2017. Rare earth elements mining investment: it is not all about China[J]. Resources Policy, 53: 66-76. doi: 10.1016/j.resourpol.2017.05.004 [25] GIERÉ R, SORENSEN S S, 2004. Allanite and other REE-rich epidote-group minerals[J]. Reviews in Mineralogy and Geochemistry, 56(1): 431-493. doi: 10.2138/gsrmg.56.1.431 [26] HARLAVAN Y, EREL Y, 2002. The release of Pb and REE from granitoids by the dissolution of accessory phases[J]. Geochimica et Cosmochimica Acta, 66(5): 837-848. doi: 10.1016/S0016-7037(01)00806-7 [27] HE H P, YANG W B, 2022. REE mineral resources in China: review and perspective[J]. Geotectonica et Metallogenia, 46(5): 829-841. (in Chinese with English abstract [28] HE L Y, WANG S N, 1989. The ion adsorption type rare earth deposits in South China[J]. Chinese Rare Earths, 10(1): 39-44. (in Chinese) [29] HE Y, CHENG L, LI Y, et al., 2015. The mineralization mechanism of the ion adsorption type rare earths ore and prospecting marks[J]. Chinese Rare Earths, 36(4): 98-103. (in Chinese with English abstract [30] HE Y L, MA L Y, LI X R, et al., 2023. Mobilization and fractionation of rare earth elements during experimental bio-weathering of granites[J]. Geochimica et Cosmochimica Acta, 343: 384-395. doi: 10.1016/j.gca.2022.12.027 [31] HE Y L, MA L Y, LIANG X L, et al., 2024. Resistant rare earth phosphates as possible sources of environmental dissolved rare earth elements: insights from experimental bio-weathering of xenotime and monazite[J]. Chemical Geology, 661: 122186. doi: 10.1016/j.chemgeo.2024.122186 [32] HU C S, 1986. Study on mineralization regularity of ion-adsorption type REE deposits in southern Jiangxi Province[R]. Nanchang: Gangnan Geological Brigade of Jiangxi Bureau of Geology and Mineral Resource. (in Chinese) [33] HUANG D H, WU C Y, HAN J Z, 1988. REE Geochemistry and mineralization characteristics of the Zudong and Guanxi granites, Jiangxi Province[J]. Acta Geologica Sinica, 62(4): 311-328. (in Chinese with English abstract [34] HUANG J, TAN W, LIANG X L, et al., 2021a. REE fractionation controlled by REE speciation during formation of the Renju regolith-hosted REE deposits in Guangdong Province, South China[J]. Ore Geology Reviews, 134: 104172. doi: 10.1016/j.oregeorev.2021.104172 [35] HUANG J, TAN W, LIANG X L, et al., 2022. Weathering characters of REE-bearing accessory minerals and their effects on REE mineralization in Renju regolith-hosted REE deposits in Guangdong Province[J]. Geochimica, 51(6): 684-695. (in Chinese with English abstract [36] HUANG Y F, HE H P, LIANG X L, et al., 2021b. Characteristics and genesis of ion adsorption type REE deposits in the weathering crusts of metamorphic rocks in Ningdu, Ganzhou, China[J]. Ore Geology Reviews, 135: 104173. doi: 10.1016/j.oregeorev.2021.104173 [37] HUTCHENS E, VALSAMI-JONES E, HAROUIYA N, et al., 2006. An experimental investigation of the effect of Bacillus megaterium on apatite dissolution[J]. Geomicrobiology Journal, 23(3-4): 177-182. doi: 10.1080/01490450600599239 [38] LEE J H, BYRNE R H, 1992. Examination of comparative rare earth element complexation behavior using linear free-energy relationships[J]. Geochimica et Cosmochimica Acta, 56(3): 1127-1137. doi: 10.1016/0016-7037(92)90050-S [39] LEE J H, BYRNE R H, 1993. Complexation of trivalent rare earth elements (Ce, Eu, Gd, Tb, Yb) by carbonate ions[J]. Geochimica et Cosmochimica Acta, 57(2): 295-302. doi: 10.1016/0016-7037(93)90432-V [40] LI M Y H, ZHAO W W, ZHOU M F, 2017. Nature of parent rocks, mineralization styles and ore genesis of regolith-hosted REE deposits in South China: an integrated genetic model[J]. Journal of Asian Earth Sciences, 148: 65-95. doi: 10.1016/j.jseaes.2017.08.004 [41] LI M Y H, ZHOU M F, WILLIAMS-JONES A E, 2019. The genesis of regolith-hosted heavy rare earth element deposits: insights from the world-class Zudong deposit in Jiangxi Province, South China[J]. Economic Geology, 114(3): 541-568. doi: 10.5382/econgeo.4642 [42] LI M Y H, ZHOU M F, WILLIAMS-JONES A E, 2020. Controls on the dynamics of rare earth elements during subtropical hillslope processes and formation of regolith-hosted deposits[J]. Economic Geology, 115(5): 1097-1118. doi: 10.5382/econgeo.4727 [43] LI M Y H, KWONG H T, WILLIAMS-JONES A E, et al., 2022a. The thermodynamics of rare earth element liberation, mobilization and supergene enrichment during groundwater-regolith interaction[J]. Geochimica et Cosmochimica Acta, 330: 258-277. doi: 10.1016/j.gca.2021.05.002 [44] LI S Y, HE H P, LIANG X L, et al., 2022b. Transformation of ordered albite into kaolinite: implication for the “Booklet” morphology[J]. ACS Earth and Space Chemistry, 6(4): 1133-1142. doi: 10.1021/acsearthspacechem.2c00030 [45] LI X R, LIANG X L, HE H P, et al., 2022c. Microorganisms accelerate REE mineralization in supergene environments[J]. Applied and Environmental Microbiology, 88(13): e00632-22. [46] LI X R, TAN W, LIANG X L, et al., 2024. Adsorption behavior and mechanism of REEs by Bacillus pumilus isolated from ion adsorption REE deposit in South China[J]. Geochimica, 53(1): 77-86. (in Chinese with English abstract [47] LIANG X L, TAN W, MA L Y, et al., 2022. Mineral surface reaction constraints on the formation of ion-adsorption rare earth element deposits[J]. Earth Science Frontiers, 29(1): 29-41. (in Chinese with English abstract [48] LU L, WANG D H, WANG C H, et al., 2019. Mineralization regularity of ion-adsorption type REE deposits on Lincang granite in Yunnan Province[J]. Acta Geologica Sinica, 93(6): 1466-1478. (in Chinese with English abstract [49] MA Y J, HUO R K, XU Z F, et al., 2004. REE behavior and influence factors during chemical weathering[J]. Advance in Earth Sciences, 19(1): 87-94. (in Chinese with English abstract [50] NESBITT H W, 1979. Mobility and fractionation of rare earth elements during weathering of a granodiorite[J]. Nature, 279(5710): 206-210. doi: 10.1038/279206a0 [51] OHTA A, KAWABE I, 2001. REE(III) adsorption onto Mn dioxide (δ-MnO2) and Fe oxyhydroxide: Ce(III) oxidation by δ-MnO2[J]. Geochimica et Cosmochimica Acta, 65(5): 695-703. doi: 10.1016/S0016-7037(00)00578-0 [52] OWUSU-FORDJOUR E Y, YANG X B, 2023. Bioleaching of rare earth elements challenges and opportunities: a critical review[J]. Journal of Environmental Chemical Engineering, 11(5): 110413. doi: 10.1016/j.jece.2023.110413 [53] PRICE J R, VELBEL M A, PATINO L C, 2005. Allanite and epidote weathering at the Coweeta Hydrologic Laboratory, western North Carolina, U. S. A.[J]. American Mineralogist, 90(1): 101-114. doi: 10.2138/am.2005.1444 [54] PRICE J R, BRYAN-RICKETTS D S, ANDERSON D, et al., 2013. Weathering of almandine garnet: influence of secondary minerals on the rate-determining step, and implications for regolith-scale Al mobilization[J]. Clays and Clay Minerals, 61(1): 34-56. doi: 10.1346/CCMN.2013.0610104 [55] QIN F, TAN J, ZHOU Y Q, et al., 2019. Characteristics and genesis of ion-adsorbed rare-earth deposits in volcanic weathering crust in Chongzuo area of Guangxi[J]. Mineral Resources and Geology, 33(2): 234-241. (in Chinese with English abstract [56] QUINN K A, BYRNE R H, SCHIJF J, 2006. Sorption of yttrium and rare earth elements by amorphous ferric hydroxide: influence of pH and ionic strength[J]. Marine Chemistry, 99(1-4): 128-150. doi: 10.1016/j.marchem.2005.05.011 [57] SANEMATSU K, KON Y, IMAI A, et al., 2013. Geochemical and mineralogical characteristics of ion-adsorption type REE mineralization in Phuket, Thailand[J]. Mineralium Deposita, 48(4): 437-451. doi: 10.1007/s00126-011-0380-5 [58] SANEMATSU K, WATANABE Y, 2016. Characteristics and genesis of ion adsorption-type rare earth element deposits[M]//VERPLANCK P L, HITZMAN M W. Rare earth and critical elements in ore deposits. Littleton: Society of Economic Geologists, Inc. : 55-79. [59] SOLDEN L, LLOYD K, WRIGHTON K, 2016. The bright side of microbial dark matter: lessons learned from the uncultivated majority[J]. Current Opinion in Microbiology, 31: 217-226. doi: 10.1016/j.mib.2016.04.020 [60] SUN Q B, LIAN B, 2019. The different roles of Aspergillus nidulans carbonic anhydrases in wollastonite weathering accompanied by carbonation[J]. Geochimica et Cosmochimica Acta, 244: 437-450. doi: 10.1016/j.gca.2018.10.022 [61] TAUNTON A E, WELCH S A, BANFIELD J F, 2000. Microbial controls on phosphate and lanthanide distributions during granite weathering and soil formation[J]. Chemical Geology, 169(3-4): 371-382. doi: 10.1016/S0009-2541(00)00215-1 [62] VAN SCHÖLL L, KUYPER T W, SMITS M M, et al., 2008. Rock-eating mycorrhizas: their role in plant nutrition and biogeochemical cycles[J]. Plant and Soil, 303(1-2): 35-47. doi: 10.1007/s11104-007-9513-0 [63] VELBEL M A, 1993. Formation of protective surface layers during silicate-mineral weathering under well-leached, oxidizing conditions[J]. American Mineralogist, 78(3-4): 405-414. [64] VELBEL M A, 2009. Dissolution of olivine during natural weathering[J]. Geochimica et Cosmochimica Acta, 73(20): 6098-6113. doi: 10.1016/j.gca.2009.07.024 [65] VELBEL M A, 2014. Etch-pit size, dissolution rate, and time in the experimental dissolution of olivine: implications for estimating olivine lifetime at the surface of Mars[J]. American Mineralogist, 99(11-12): 2227-2233. doi: 10.2138/am-2014-4654 [66] WANG D H, ZHAO Z, YU Y, et al., 2013. Progress, problems and research orientation of ion-adsorption type rare earth resources[J]. Rock and Mineral Analysis, 32(5): 796-802. (in Chinese with English abstract [67] WANG G F, XU J, RAN L Y, et al., 2023a. A green and efficient technology to recover rare earth elements from weathering crusts[J]. Nature Sustainability, 6(1): 81-92. [68] WANG H, HE H P, YANG W B, et al., 2023b. Zircon texture and composition fingerprint HREE enrichment in muscovite granite bedrock of the Dabu ion-adsorption REE deposit, South China[J]. Chemical Geology, 616: 121231. doi: 10.1016/j.chemgeo.2022.121231 [69] WANGER G, SOUTHAM G, ONSTOTT T C, 2006. Structural and chemical characterization of a natural fracture surface from 2.8 kilometers below land surface: biofilms in the deep subsurface[J]. Geomicrobiology Journal, 23(6): 443-452. doi: 10.1080/01490450600875746 [70] WEI L L, LI Y, NOGUERA D R, et al., 2017. Adsorption of Cu2+ and Zn2+ by extracellular polymeric substances (EPS) in different sludges: effect of EPS fractional polarity on binding mechanism[J]. Journal of Hazardous Materials, 321: 473-483. doi: 10.1016/j.jhazmat.2016.05.016 [71] WEI Z W, 2019. Study on the bacterial diversity in the restoration area of rare earth mine tailings of Gannan[D]. Wuxi: Jiangnan University. (in Chinese with English abstract [72] WOOD S A, 1990. The aqueous geochemistry of the rare-earth elements and yttrium: 1. Review of available low-temperature data for inorganic complexes and the inorganic REE speciation of natural waters[J]. Chemical Geology, 82: 159-186. doi: 10.1016/0009-2541(90)90080-Q [73] WU C Y, HUANG D H, GUO Z X, 1989. REE geochemistry in the weathering process of granites in Longnan County, Jiangxi Province[J]. Acta Geologica Sinica, 63(4): 349-362. (in Chinese with English abstract [74] WU C Y, BAI G, HUANG D H, et al. , 1992. Characteristics and significance of HREE-rich granitoids of the Nanling Mountain area[J]. Bulletin of the Chinese Academy of Geological Sciences(13): 43-58. (in Chinese with English abstract [75] WU L L, JACOBSON A D, HAUSNER M, 2008. Characterization of elemental release during microbe–granite interactions at T = 28 oC[J]. Geochimica et Cosmochimica Acta, 72(4): 1076-1095. doi: 10.1016/j.gca.2007.11.025 [76] WU Q F, HU H B, ZHANG X, 2018. Effect of Aspergillus niger and its metabolites on weathering of granite[J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 42(1): 81-88. (in Chinese with English abstract [77] XU C, KYNICKÝ J, SMITH M P, et al., 2017. Origin of heavy rare earth mineralization in South China[J]. Nature Communications, 8: 14598. doi: 10.1038/ncomms14598 [78] YANG C S, GU Z F, WANG B, et al., 2015. Content and mineralization of Xunwu rare earth ore[J]. Bulletin of the Chinese Ceramic Society, 34(S1): 231-233. (in Chinese with English abstract [79] YANG M J, LIANG X L, MA L Y, et al., 2019. Adsorption of REEs on kaolinite and halloysite: a link to the REE distribution on clays in the weathering crust of granite[J]. Chemical Geology, 525: 210-217. doi: 10.1016/j.chemgeo.2019.07.024 [80] YANG X M, ZHANG P S, 1992. Study on the occurrence state and mass balance of REE in granites[J]. Chinese Rare Earths, 13(5): 6-11. (in Chinese) [81] ZHANG B, ZHU X P, ZHANG B H, et al., 2019. Geochemical characteristics of Tuguanzhai ion-adsorption type REE deposit in Tengchong, Yunnan[J]. Journal of the Chinese Society of Rare Earths, 37(4): 491-506. (in Chinese with English abstract [82] ZHANG L M, DONG H L, LIU Y, et al., 2018. Bioleaching of rare earth elements from bastnaesite-bearing rock by actinobacteria[J]. Chemical Geology, 483: 544-557. doi: 10.1016/j.chemgeo.2018.03.023 [83] ZHANG P S, TAO K J, YANG Z M, et al. , 1998. Rare earth mineralogy in China[M]. Beijing: Science Press. (in Chinese) [84] ZHANG Z H, 1990. A study on weathering crust ion adsorption type REE deposits, South China[J]. Contributions to Geology and Mineral Resources Research, 5(1): 57-71. (in Chinese with English abstract [85] ZHAO Z, WANG D H, CHEN Z H, et al., 2017. Progress of research on metallogenic regularity of ion-adsorption type REE deposit in the Nanling Range[J]. Acta Geologica Sinica, 91(12): 2814-2827. (in Chinese with English abstract [86] ZHAO Z, CHEN Z H, ZOU X Y, et al., 2018. REE mineralization of epimetamorphic rocks from an ion-adsorption type REE deposit in southern Jiangxi Province[J]. Earth Science, 43(10): 3652-3663. (in Chinese with English abstract [87] ZHOU M F, LI M Y H, WANG Z C, et al., 2020. The genesis of regolith-hosted rare earth element and scandium deposits: current understanding and outlook to future prospecting[J]. Chinese Science Bulletin, 65: 3809-3824. (in Chinese with English abstract doi: 10.1360/TB-2020-0350 [88] 包志伟,1992. 华南花岗岩风化壳稀土元素地球化学研究[J]. 地球化学,21(2):166-174. [89] 陈斌锋,邹新勇,彭琳琳,等,2019. 赣南地区变质岩离子吸附型稀土矿床地质特征及找矿方向[J]. 华东地质,40(2):143-151. [90] 陈志澄,俞受鋆,符群策,等,1997. 风化壳稀土矿有机成矿机理研究[J]. 中国稀土学报,15(3):244-250. [91] DB36/T 1158-2019,2019. 风化壳离子吸附型稀土矿产地质勘查规范[S]. 南昌:江西省自然资源厅. [92] 何宏平,杨武斌,2022. 我国稀土资源现状和评价[J]. 大地构造与成矿学,46(5):829-841. [93] 贺伦燕,王似男,1989. 我国南方离子吸附型稀土矿[J]. 稀土,10(1):39-44. [94] 何耀,程柳,李毅,等,2015. 离子吸附型稀土矿的成矿机理及找矿标志[J]. 稀土,36(4):98-103. [95] 胡淙声,1986. 赣南离子吸附型稀土矿成矿规律研究[R]. 南昌:江西省地质矿产局赣南地质调查大队. [96] 黄典豪,吴澄宇,韩久竹,1988. 江西足洞和关西花岗岩的稀土元素地球化学及矿化特征[J]. 地质学报,62(4):311-328. [97] 黄健,谭伟,梁晓亮,等,2022. 富稀土副矿物的风化特征及其对稀土成矿过程的影响:以广东仁居离子吸附型稀土矿床为例[J]. 地球化学,51(6):684-695. [98] 江西省地质矿产局赣南地质调查大队,1985. 江西省离子吸附型稀土资源勘查报告[R]. 南昌:江西省地质矿产局赣南地质调查大队. [99] 李旭锐,谭伟,梁晓亮,等,2024. 一株分离自华南离子吸附型稀土矿的短小芽孢杆菌对稀土元素的吸附行为及机理研究[J]. 地球化学,53(1):77-86. [100] 梁晓亮,谭伟,马灵涯,等,2022. 离子吸附型稀土矿床形成的矿物表/界面反应机制[J]. 地学前缘,29(1):29-41. [101] 陆蕾,王登红,王成辉,等,2019. 云南临沧花岗岩中离子吸附型稀土矿床的成矿规律[J]. 地质学报,93(6):1466-1478. [102] 马英军,霍润科,徐志方,等,2004. 化学风化作用中的稀土元素行为及其影响因素[J]. 地球科学进展,19(1):87-94. [103] 覃丰,谭杰,周业泉,等,2019. 广西崇左地区火山岩风化壳离子吸附型稀土矿床地质特征及成因[J]. 矿产与地质,33(2):234-241. [104] 王登红,赵芝,于扬,等,2013. 离子吸附型稀土资源研究进展、存在问题及今后研究方向[J]. 岩矿测试,32(5):796-802. [105] 魏志文,2019. 赣南稀土尾矿修复区细菌多样性研究[D]. 无锡:江南大学. [106] 吴澄宇,黄典豪,郭中勋,1989. 江西龙南地区花岗岩风化壳中稀土元素的地球化学研究[J]. 地质学报,63(4):349-362. [107] 吴澄宇,白鸽,黄典豪,等,1992. 南岭富重稀土花岗岩类的特征和意义[J]. 中国地质科学院院报:43-58. [108] 吴秋芳,胡海波,张鑫,2018. 黑曲霉及其代谢产物对花岗岩风化作用的影响[J]. 南京林业大学学报(自然科学版),42(1):81-88. [109] 杨昌善,谷志峰,王宾,等,2015. 寻乌稀土矿的稀土含量及成矿原理研究[J]. 硅酸盐通报,34(S1):231-233. [110] 杨学明,张培善,1992. 花岗岩中稀土元素的赋存状态及质量平衡研究[J]. 稀土,13(5):6-11. [111] 张彬,祝向平,张斌辉,等,2019. 云南腾冲土官寨离子吸附型稀土矿床地球化学特征[J]. 中国稀土学报,37(4):491-506. [112] 张培善,陶克捷,杨主明,等,1998. 中国稀土矿物学[M]. 北京:科学出版社. [113] 张祖海,1990. 华南风化壳离子吸附型稀土矿床[J]. 地质找矿论丛,5(1):57-71. [114] 赵芝,王登红,陈郑辉,等,2017. 南岭离子吸附型稀土矿床成矿规律研究新进展[J]. 地质学报,91(12):2814-2827. [115] 赵芝,陈郑辉,邹新勇,等,2018. 赣南某离子吸附型稀土矿床浅变质岩的矿化特征[J]. 地球科学,43(10):3652-3663. [116] 周美夫,李欣禧,王振朝,等,2020. 风化壳型稀土和钪矿床成矿过程的研究进展和展望[J]. 科学通报,65(33):3809-3824. -