Processing math: 50%

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

2021年阿克塞MS 5.5地震区形变特征及发震机制研究

邹小波 李兴坚 邵延秀 袁道阳 邱江涛 尹欣欣 寇俊阳

邹小波,李兴坚,邵延秀,等,2024. 2021年阿克塞MS 5.5地震区形变特征及发震机制研究[J]. 地质力学学报,30(6):978−990 doi: 10.12090/j.issn.1006-6616.2023125
引用本文: 邹小波,李兴坚,邵延秀,等,2024. 2021年阿克塞MS 5.5地震区形变特征及发震机制研究[J]. 地质力学学报,30(6):978−990 doi: 10.12090/j.issn.1006-6616.2023125
ZOU X B,Li X J,SHAO Y X,et al.,2024. Tectonic deformation and seismic mechanism of the 2021 Aksai MS 5.5 earthquake[J]. Journal of Geomechanics,30(6):978−990 doi: 10.12090/j.issn.1006-6616.2023125
Citation: ZOU X B,Li X J,SHAO Y X,et al.,2024. Tectonic deformation and seismic mechanism of the 2021 Aksai MS 5.5 earthquake[J]. Journal of Geomechanics,30(6):978−990 doi: 10.12090/j.issn.1006-6616.2023125

2021年阿克塞MS 5.5地震区形变特征及发震机制研究

doi: 10.12090/j.issn.1006-6616.2023125
基金项目: 第二次青藏高原综合科学考察研究项目(2019QZKK0901);甘肃省青年科技基金计划项目(22JR11RA088);地震动力学国家重点实验室项目(LED2023B04) ;甘肃省地震局地震科技发展基金项目(2021Y12,2019Y05)
详细信息
    作者简介:

    邹小波(1987—),男,硕士,高级工程师,主要从事构造地貌和地震学研究。Email:ynuzou@163.com

    通讯作者:

    李兴坚(1980—),男,高级工程师,从事地震监测工作。Email:lixj20@163.com

  • 中图分类号: P315.2

Tectonic deformation and seismic mechanism of the 2021 Aksai MS 5.5 earthquake

Funds: This research is financially supported by the Second Tibetan Plateau Scientific Expedition and Research Program (STEP) (Grant No. 2019QZKK0901), Science and Technology Plan of Gansu Province (Grant No. 22JR11RA088), State Key Laboratory of Earthquake Dynamics (Grant No. LED2023B04) , and the Earthquake Science and Technology Development Fund, Gansu Earthquake Agency (Grants No. 2021Y12 and 2019Y05).
  • 摘要: 2021年8月26日甘肃阿克塞党河南山地区发生了MS 5.5地震,震中位于阿尔金走滑断裂与祁连山西段挤压逆冲断裂的构造转换区。明确此次地震的形变特征及发震机制,有助于认识边界走滑断裂与逆冲断裂系之间应变分配和构造转换的大陆动力学问题,同时对祁连山西段的地震危险性评价也具有重要意义。利用远近场地震波形联合反演(the generalized Cut-and-Paste joint, gCAPjoint)此次地震的震源机制解。通过对地震序列走时信息以及地震前后的合成孔径雷达(Synthetic Aperture Radar, SAR)影像数据进行处理,得到了此次地震序列的精确空间位置和同震形变场。结合震中附近活动构造和构造地貌实地调查,认为此次地震的发震构造为党河南山南缘断裂,断裂活动性质为逆冲型。该断裂走向为315°、倾角为41°、滑动角为81°,震源矩心深度为6.9 km。随着青藏高原向北东向的挤压扩展,柴达木地块北部地震活动显著增强,未来阿尔金断裂东段和祁连山西段的地震危险性应重点关注。

     

  • 根据中国地震台网中心(CENC)测定,2021年8月26日7时38分在甘肃省阿克塞县发生了MS 5.5地震,地震震中位于祁连山西段的党河南山地区,该区域主要发育党河南山断裂,该断裂总体呈北西走向,西端与阿尔金断裂相接,是青藏高原巨型走滑断裂向挤压逆冲构造转换的重要区域(Meyer et al.,19961998van der Woerd et al.,2001Tapponnier et al.,2001徐锡伟等,2003)。由于该区域在高原构造变形和构造转换中具有重要作用,相关学者曾对该区域活动构造的几何展布、活动特征、滑动速率和古地震等开展了深入研究(赵朋,2009邵延秀,2010邵延秀等,2011Shao et al.,20172023王朋涛,2016)。但由于交通条件、数据资料和技术手段等因素的限制,这些研究主要集中在党河南山北缘断裂,并且以地表构造变形研究为主,对于断裂深部的构造特征以及党河南山南缘断裂的研究却很少。厘定此次阿克塞地震的发震构造及其发震机制,对于理解党河南山地区地震的构造成因和未来地震危险性评估具有重要意义。

    阿克塞MS 5.5地震的发生为探查认识该区域深部构造提供了重要途径。文章采用近远场地震波形联合反演阿克塞MS 5.5地震的震源机制解,并对此次地震序列进行了精确定位,通过地震空间展布特征和震源机制解明确了深部断裂的几何特征和运动学性质;在此基础上,结合卫星影像解译、野外地质调查和合成孔径雷达干涉测量技术(Interferometric Synthetic Aperture Radar, InSAR)等技术获取到地表和近地表的变形特征,并对此次地震的发震构造的变形特征和发震机制进行了探讨,从而可以更好地理解祁连山西段的孕震机理和强震迁移规律。

    新生代以来,受印度板块与欧亚大陆碰撞的影响,青藏高原持续隆升并向周边挤压扩展(Tapponnier et al.,2001张培震等,20062014Yuan et al.,2013郑文俊等,2016)。祁连山造山带西段位于青蔵高原向北扩展的前缘部位,处于阿尔金断裂和广义海原断裂所围限的右阶挤压区(Hetzel et al.,2002郑文俊等,20092016Zheng et al.,2013),构造活动十分强烈。边界巨型走滑断裂在此转换形成了一系列挤压逆冲构造,如党河南山断裂、野马河−大雪山断裂、疏勒南山断裂和昌马断裂等(Meyer et al.,1998van der Woerd et al.,2001)。这些活动断裂都以挤压逆冲为主,部分兼具左旋走滑特征。其中,党河南山断裂西接阿尔金断裂,南部与柴达木地块相邻,由于其特殊地理位置,使得其在阿尔金走滑断裂与祁连山挤压构造区之间的构造转换和应变分配中承担着重要作用(Meyer et al.,19961998van der Woerd et al.,2001Tapponnier et al.,2001)。

    党河南山断裂分布于党河南山南、北两麓,包括党河南山南缘断裂、党河南山北缘断裂。党河南山断裂西端与阿尔金断裂相接,经大别盖、扎子沟向东延伸至哈拉湖,走向呈北西向(图1a)。Shao et al.(2023)研究认为,党河南山北缘断裂为逆冲性质,倾向南西。基于质量守恒模型计算出党河南山北缘断裂西段的总隆升和缩短速率分别为1~2 mm/a和1 mm/a,东段盐池湾一带的隆升速率和缩短速率为0.17±0.02 mm/a和0.34±0.05 mm/a(van der Woerd et al.,2001)。古地震探槽揭示出6700 a以来党河南山北缘断裂至少发生过4次古地震事件,最新一次古地震事件的活动时间可能为公元1289年,震级约为MW 6.6±0.5(Shao et al.,2017)。王朋涛(2016)通过地貌测量和古地震探槽剖面揭示出党河南山北缘断裂盐池湾段总体走向为北西向,全长约为110 km,倾向为南南西,倾角为20°~30°,为低角度逆冲断裂。党河南山北缘断裂晚更新世以来构造活动强烈,其隆升速率为0.3±0.1mm/a,缩短速率为0.8±0.2 mm/a。2021年阿克塞地震震中位于党河南山南麓山前,附近发育党河南山南缘断裂。相较于党河南山北缘断裂,党河南山南缘断裂的相关研究较少;但通过高分辨率遥感影像和野外实地踏勘可以清晰识别其断错山前冲洪积扇地层,并形成断层陡坎。

    图  1  震中台站分布图和文中使用的地壳速度模型
    F1—党河南山南缘断裂;F2—党河南山北缘断裂;F3—阿尔金南缘断裂;F4—阿尔金断裂;F5—野马河−大雪山断裂;F6—疏勒南山断裂;F7—中祁连北缘断裂;F8—昌马断裂;F9—肃南−祁连断裂;F10—红崖子−佛洞庙断裂;F11—柴达木北缘断裂a—近震波形台站分布;b—远震波形台站分布;c—研究区地壳速度模型(Vp 为P波速度,VS为S波速度)
    Figure  1.  Epicenter and station distribution, and crustal velocity model used in this study
    (a) Distribution of local station and active faults; (b) Distribution of teleseismic station; (c) The crustal velocity model for this study (the dashed line represents the S-wave and the solid line represents the P-wave, Vp is the P-wave velocity, and VS is the S-wave velocity) F1— Southern Danghe Nan Shan Fault; F2— Northern Danghe Nan Shan Fault; F3 and F4 are the south and north strands of the Altyn Tagh Fault; F5—Yemahe–Daxue shan Fault; F6—Shule Nan Shan Fault; F7—North Central Qilian Fault; F8— Changma Fault; F9— Sunan–Qilian Fault; F10—Hongyazi–Fodongmiao Fault; F11—North Qaidam Fault

    震源机制解可以直观反映发震断裂的几何学和运动学特征,为发震机制研究提供丰富的深部信息(易桂喜等,2016王光明等,2021)。研究区位于青蔵高原北部,地震台站分布稀疏,主要分布于震中北侧,在震中以南半区350 km内没有台站,350 km以内台站的最大空隙角达到190°。远震波形可以很好地弥补近震波形数量和台站分布的不足,有利于优化反演台站分布(图1a、1b)。同时,由于震中距30°~90°的远震波形清晰记录了pP、sP、sS等对深度敏感的自由表面反射震相,从而可以更好地对震源深度进行约束(Engdahl et al.,1998)。

    文章采用gCAPjoint方法综合利用近远震波形联合反演震源机制解(陈伟文等,2012谢祖军等,2013Bai et al.,2020)。将近震波形分为体波(Pnl)和面波,远震波形分为垂向分量(Z分量)的P波和切向分量的SH波,并赋予不同权重,通过网格搜索算法得到理论波形与观测波形拟合的全局最优解,从而得到震源机制解和最佳震源矩心深度(Zhao and Helmberger,1994Zhu and Helmberger,1996)。

    gCAPjoint方法通过对观测波形与理论波形进行互相关分析获取时移来对齐波形(Zhao and Helmberger, 1994),从而减小速度模型误差的影响。拟合误差函数采用绝对振幅,在引入距离影响因子的同时,赋予不同波形不同的权重,避免近台和面波的主导作用,并保留波形中丰富的震源信息,从而大大降低了反演对速度模型和记录数量的要求。联合反演时,设定相关权重参数满足:

    wPrmsPnP=wSrmsSnS (1)

    式中,P—近震体波或远震P波,S—近震面波或远震SH波, w—\mathrm{反}\mathrm{演}\mathrm{波}\mathrm{形}\mathrm{权}\mathrm{重}, rms—理论波形与记录波形的L2范数残差之和,n—反演波形数量。这样设定可以均分近震与远震数据、远震P波与SH波、近震Pnl波与面波在反演中的误差,使得各波形在联合反演中具有相同的权重(Bai et al.,2020)。

    近震波形数据选取350 km内的宽频带台站波形,来自甘肃和青海地震台网。远震数据为震中距30°~90°的宽频带台站波形,来自IRIS网站(www.iris.edu)。台站分布见图1a、1b。经过去均值、去趋势和去除仪器响应后,将波形旋转至径向分量(R分量)、切向分量(T分量)、垂向分量(Z分量)。

    计算近震和远震格林函数时采用Crust 2.0速度模型(图1c),地幔模型采用PREM模型。分别使用频率−波数(F-K)程序和Tel 3程序计算近震和远震的格林函数。

    全局搜索时,Pnl波和P波的时移为5 s,面波和SH波的时移为10 s;近震和远震波形的搜索窗长均为60 s。为减少速度结构误差和背景噪声的影响,反演时需要对波形进行Butterworth带通滤波,Pnl波和P波的滤波频率为0.02~0.1 Hz、面波和SH波的滤波频率为0.02~0.08 Hz。

    采用双差定位法(Waldhauser and Ellsworth,2000)对此次阿克塞MS 5.5地震序列进行重定位。该方法选取2个距离非常近的地震事件组成地震对,根据地震对走时残差的差(即走时双差)反演地震对的相对位置。由于地震对到同一台站的射线传播路径几乎相同,双差定位方法降低了传播路径不均匀和速度模型误差的影响,从而极大提高了相对定位的精度(张广伟等,2013王光明等,2021薛善余等,2023)。但是该方法比较依赖震源区速度模型和初始地震定位的精度。因此,研究先通过VELEST反演研究区最小一维速度模型(Kissling et al.,1994),并采用Hypoinverse定位法(Klein,1978)对地震序列进行初始绝对定位,再利用双差定位法对重定位结果进行精定位。

    地震精定位使用的地震观测报告来自中国地震台网中心的全国地震编目系统,数据时段为2008年1月—2023年7月。首先挑选记录台站数不少于5个、最近台站震中距小于90 km、平均台站震中距小于250 km的地震事件进行最小一维速度模型反演。根据观测报告绘制的震相走时曲线,对明显偏离理论走时曲线的数据进行剔除(图2a),得到理论波速比为VP/VS=1.70(VP为P波速度,VS为S波速度)。然后通过VELEST程序反演得到最小一维P波、S波速度模型和台站校正值(Kissling et al.,19941995图2b)。最后利用最小一维速度模型,绝对定位得到共计202次地震事件的初始震源位置。

    图  2  波速比和地壳速度模型
    a—波速比(横坐标为P波走时(Pj)与最小P波走时(Pi)的差,纵坐标为对应S波走时(Sj)与最小S波走时(Si)的差;其中黑色×为波速比拟合数据中的离群点,不参与拟合;红色实心圆为参与波速比拟合的数据点;蓝色虚线为波速比拟合线);b—文中所使用的地壳速度模型
    Figure  2.  Wave velocity ratio and velocity model used in this study
    (a) Wave velocity ratio (The horizontal axis represents the difference between P-wave travel time (Pj) and the minimum P-wave travel time (Pi), while the vertical axis represents the difference between corresponding S-wave travel time (Sj) and the minimum S-wave travel time (Si). The black "×" marks indicate outliers in the velocity ratio fitting data and are not included in the fitting process. The blue dashed line represents the fitted velocity ratio line.); (b) Velocity model (The dashed line is the initial velocity model and the solid line is the VELEST velocity model; the red line represents the S-wave, and the blue line represents the P-wave.)

    利用ph2dt程序得到目录走时差数据,速度模型为区域最小一维速度模型(图2b),反演方法为共轭梯度法(LSQR)。双差定位时对不同的地震事件丛集设置不同的参数,考虑人工震相拾取误差,反演过程中P波震相权重设定为1.0,S波震相权重设定为0.6,通过调整阻尼因子(damping factor, DAMP)使得条件数(condition number, CND)始终维持在40~80。

    合成孔径雷达干涉测量(Interferometric Synthetic Aperture Radar, InSAR)利用卫星发射微波在地面的反射进行相位差分,从而可以计算地表微小变形(Massonnet and Feigl,1998)。由于其高分辨率、准确高效等优势,在滑坡识别、地表形变监测中得到广泛应用(肖星光,2019李凌婧等,2022)。利用覆盖整个震区的C波段Sentinel-1 SAR影像数据(干涉宽模式,IW),采用二轨法进行D-InSAR处理(Massonnet and Feigl,1998),外部高程模型采用30m分辨率的SRTM数据(Shuttle Radar Topography Mission;https://dwtkns.com/srtm30m/)。在生成差分干涉图像的影像配准时,多视比例设置为10∶2(距离向∶方位向)。采用频率域自适应滤波方法对干涉图像进行滤波,利用枝切法(Goldstein and Werner,1998)解缠得到差分干涉相位,并通过额外的迭代步骤对干涉图中存在的解缠误差进行校正(邱江涛等,2019邱江涛和孙建宝,2023)。此外,针对原始干涉图中的相位延迟,利用数字高程模型建立大气相位延迟模型,对于大气水汽引起的相位延迟进行去除,最后进行地理编码输出,最终获取升、降轨同震形变场。

    经过全局搜索,远、近震数据联合反演得到最佳震源机制解为:节面1走向为315°、倾角为41°、滑动角为81°;节面2走向为146°、倾角为49°、滑动角为97°;矩心深度为6.9 km,矩震级(MW)为5.3(图3图4)。近震和远震射线在震源球的投影分布在震源球的不同区域,其中近震射线主要分布于边缘区域,远震射线则分布于中心区域,联合反演显著增加了对震源球的采样区域(图3),优化了反演台站分布,提升了震源机制反演的准确性。从图3可以看出,合成波形与实际波形拟合较好,近震波形互相关系数在90%左右,远震波形基本都在75%以上。表1列出了不同机构震源机制解结果,由于所使用的数据和方法的不同,不同机构给出的震源机制解有显著差异,其中震源矩心深度范围为6.1~17.4 km,差异达11.3 km。文中结果与万永革(2019)利用最小空间旋转角给出的震源机制中心解比较接近,表明联合反演能更好地利用不同震中距波形对震源参数的约束作用,从而获得更加可靠的震源参数。

    图  3  2021年阿克塞地震震源机制反演结果
    注:红线和黑线分别代表合成波形和观测波形;波形下方数字代表波形相对时移和互相关系数;波形左侧为台站名称;台站名下方为方位角和震中距;震源球上三角形为P波的离源角投影,正三角为近震Pnl,倒三角为远震P波
    Figure  3.  The focal mechanism solution of 2021 Aksai mainshock
    The red and black lines represent the synthesized and observed waveforms, respectively. The numbers below the waveforms are the time shifts (in seconds) and the maximum cross-correlation coefficients. The station codes are shown on the left, and the azimuth and epicentral distances are shown below the station codes. The triangles on the beach ball are the off-source angle projections of the P-wave, the positive triangles represent the local Pnl, and the inverted triangles represent the teleseismic P-wave.
    图  4  反演拟合误差随深度变化图
    注:震源球上的数字代表反演所得的矩震级
    Figure  4.  The inversion residuals vary with depth
    Number above the beach ball represents the corresponding moment magnitude.
    表  1  阿克塞地震震源机制解
    Table  1.  The results of focal mechanisms by different organizations
    节面I节面IIP轴T轴深度/
    km
    数据来源
    走向/
    (º)
    倾角/
    (º)
    滑动角/
    (º)
    走向/
    (º)
    倾角/
    (º)
    滑动角/
    (º)
    方位角/
    (º)
    倾伏角/
    (º)
    方位角/
    (º)
    倾伏角/
    (º)
    31039711545410523481117617.4Globe CMT
    Ekström et al.,2012
    3314710712745724913157811.5美国地质调查局 (USGS)
    324.940.093.6140.250.187.0232.45.127.984.4万永革,2019
    331.337.666.6180.056.0107.0257.99.5134.973.06.1薛善余等,2023
    315418114649972314105836.9文中
    下载: 导出CSV 
    | 显示表格

    此次重定位后共得到3个地震丛集,共计78个地震精确定位结果(图5a)。相较于初始定位结果,双差精定位后地震分布更为紧凑,并聚集在断裂带附近。其中丛集1(54个地震事件)主要位于党河南山西段,处于阿尔金南缘断裂和党河南山断裂交汇区域,该地震丛集走时残差(Root Mean Square, RMS)从0.348 s降低到0.093 s。2021年阿克塞MS 5.5地震序列所在的丛集2(15个地震事件)分布于党河南山南缘断裂,其走时残差从0.494 s降低到0.060 s,地震序列主震震源位置为38.878°N、95.577°E,初始破裂深度为9.3 km。丛集3(9个地震事件)分布于党河南山北缘断裂东北部区域。丛集2深度剖面(图5b)显示地震主要分布深度范围为1.5~9.8 km,其中主震深度为9.3 km,倾向北东,倾角约为44°。该结果与震源机制解节面I(走向313°、倾角41°、滑动角81°)的倾向、倾角一致。丛集1的震中分布和深度剖面(图5c)显示出地震向北东迁移的特征,2019年以来的地震主要发生于党河南山北缘断裂,其总体倾向南西。从地震序列的时空分布特征可以看出党河南山地区的地震呈现向北、向东迁移的规律,震源深度越来越浅(图5)。

    图  5  地震震中重新定位分布图及剖面两侧各7 km范围内的地震深度分布图
    注:深度剖面上的彩色实心圆为剖面两侧7 km范围内地震在剖面上的垂直投影,沙滩球的投影剖面为AA’, 彩色实心圆的颜色表示发震时间, 黑色虚线为拟合断层面a—重新定位地震震中分布;b—AA’剖面上的地震深度分布;c—BB’剖面上的地震深度分布
    Figure  5.  Map view and depth distribution of the aftershocks along profiles. Earthquakes within 7 km of the line are included
    (a) Epicenter distribution of the relocated events; (b) Depth distribution of the aftershocks along AA’ profiles; (c) Depth distribution of the aftershocks along BB’ profiles Note:Colored solid circles on each depth profile represent the vertical projections of earthquakes within a 7 km range on both sides. The beach balls represent the focal mechanisms, and the projection profile is AA’; The colors of the solid circles indicate the occurrence time of the earthquakes; The black dashed line represents the fitted fault plane.

    利用InSAR获得的阿克塞地震同震形变场特征显示(图6a、6b),震中附近雷达视线方向存在显著形变,形变最大位置位于党河南山南缘断裂附近。升降轨道的同震形变均表现为视线方向抬升,最大变形量约为29 mm。这表明地震造成的地表形变以隆升形变为主(王思佳,2020),为逆冲型地震形变的主要特征,可以初步判断党河南山南缘断裂应该是此次地震的发震断裂,断裂活动性质主要为逆冲型。该结果也得到了震源机制解和地震精定位结果的印证。

    图  6  2021年阿克塞MS 5.5地震InSAR同震形变场特征
    a—升轨(A172)视线方向形变场;b—降轨(D77)视线方向形变场
    Figure  6.  Coseismic deformation fields from InSAR of 2021 Aksai earthquake
    (a) and (b) coseismic deformation fields in the ascending (A172) and descending (D77) orbits, respectively

    地震精定位结果显示,2021年阿克塞MS 5.5地震序列分布在党河南山南缘断裂附近(图5a),地震深度剖面显示断裂倾向北东(图5b),这与党河南山北缘断裂位置和几何特征有较大区别(邵延秀,2010王朋涛,2016)。InSAR地表同震形变场指示的宏观震中与精定位结果相同(图6),表明精定位结果较为可靠。同时升、降轨的地表形变场均显示震中附近抬升,且视线方向形变量符号相同、大小近似,表明此次地震破裂以逆冲为主。在高分辨率数字高程模型(Digital Elevation Model,DEM)山影图和卫星影像上,党河南山南麓山前可见明显的断层陡坎(图7a、7b)。野外实地踏勘也发现山前洪积扇上的断层陡坎,陡坎展布为北西走向,倾向北东,呈逆冲断裂陡坎的地貌特征(图7c—7h)。综合震源机制解、地震精定位、InSAR同震形变场结果以及野外地质调查可以看出,2021年阿克塞MS5.5地震的发震构造为走向北西、倾向北东的逆冲断裂。发震断层面应为震源机制解的节面1(走向315°、倾角41°、滑动角81°)。

    图  7  阿克塞MS5.5 地震发震构造和断层陡坎地貌
    a—地震发震构造和破裂模式(δ为断裂倾角);b—震中卫星影像解译;c—h—党河南山南缘断裂断层陡坎地貌
    Figure  7.  Seismogenic fault of the Aksai earthquake and fault scarps along the southern Danghe Nan Shan Fault
    (a) Seismogenic tectonics and rupture patterns of the Aksai earthquake (δ is the dip of the fault); (b) Geomorphic interpretation from satellite image; (c)—(h) Geomorphology of fault scarps along the southern Danghe Nan Shan Fault

    震源机制解给出震源矩心深度为6.9 km,地震精定位得到的初始破裂深度为9.3 km,2种手段测定的地震深度较为一致。InSAR同震形变场指示的宏观震中位置和地震精定位给出的震中位置均位于党河南山南缘,按照震源深度6.9 km、断裂倾角41°和倾向北东来计算,若该断裂自深部向地表延伸,则断层出露地表位置应位于震中西南方向约8 km,考虑断裂倾角变化和震源位置误差等因素,此次地震的发震断裂应为位于震中西南方向约5 km的党河南山南缘断裂(图7a)。

    党河南山断裂处于阿尔金断裂与广义海原断裂之间的右阶挤压区,震源机制解显示该区域主压应力轴方向为北东向(P轴方位角为231°),在此构造应力场环境中,阿尔金断裂的走滑变形被一系列北西向的挤压逆冲构造所吸收(郑文俊等,2016)。随着阿尔金走滑断裂的构造变形向祁连山西段逆冲断裂系的转化迁移,在党河南山地区发育形成一系列北西向逆冲断裂。2021年阿克塞MS 5.5地震是受阿尔金断裂东段左旋走滑活动影响,促使位于祁连山西段构造转换区内的党河南山南缘断裂活动而引发的一次地震。袁道阳等(2020)通过对青藏块体大震迁移规律和最新地震活动趋势分析提出,柴达木块体北部边界构造带存在发生大地震的潜在风险,并指出阿尔金断裂带东段、祁连山西段构造转换区等地震离逝时间较长的空区应重点关注。2013年2月青海海西MS 5.1地震后,祁连山西段出现长时间的MS 5.0地震平静期(图8),直到2021年6月青海茫崖发生MS 5.7地震。随着青藏高原向北东方向的挤压扩展,柴达木块体北部地区发生多次中—强地震,且地震频次和强度均有显著增强(图8)。此外,祁连山西段的地震活动也呈现向北向东迁移的规律(图5),2023年10月22日甘肃酒泉肃北MS 4.7地震、10月24日MS 5.5地震和12月1日MS 5.0地震的相继发生进一步印证了这一规律。因此,未来阿尔金断裂东段和祁连山西端发生大震的危险性需要高度关注。

    图  8  2008年至今祁连山西段(92°—100°E、37°—41.5°N)MS≥4.0地震震级−时间图
    黑竖线为震级,粉红色影区示意地震活跃期,红色虚线为MS 5.0示意线
    Figure  8.  The Magnitude-time(M-t)diagram of the western Qilian Shan region since 2008
    The seismic data used is Ms≥ 4.0 earthquakes in the western Qilian Shan region (longitude 92°–100°; latitude 37°–41.5°), since 2008. Seismic data in the western Qilian Shan region (longitude 92°–100°; latitude 37°–41.5°) with Ms≥ 4.0 magnitude since 2008. The black vertical line represents the magnitude, pink shaded area indicates the active period, and red dashed line represents the symbol line for Ms 5.0.

    (1)2021年阿克塞MS 5.5地震的精定位结果显示,其主震的震源位置为38.878°N、95.577°E,初始破裂深度为9.3 km。InSAR同震形变场显示该区域存在显著形变,发震构造为党河南山南缘断裂。

    (2)基于InSAR同震形变场、震源机制解、地震精定位结果以及震中附近的断错地貌分析,此次阿克塞地震为逆冲型,走向北西,倾向北东,震源矩心深度为6.9 km,矩震级(MW)为5.3。震源机制解节面1(走向为315°,倾角为41°,滑动角为81°)为党河南山南缘断裂的断层节面。

    (3)党河南山南缘断裂位于阿尔金断裂和广义海原断裂的右阶挤压区,主压应力方向为北东向(P轴方位角为231°),此次地震是阿尔金断裂滑动致使祁连山西段的党河南山南缘断裂发生活动引起的。鉴于该区域地震向北东迁移的趋势,未来祁连山西段发生地震的危险性需要重点关注。

    致谢:感谢中国地震台网中心提供的地震观测报告和甘肃省地震局提供的波形数据。

  • 图  1  震中台站分布图和文中使用的地壳速度模型

    F1—党河南山南缘断裂;F2—党河南山北缘断裂;F3—阿尔金南缘断裂;F4—阿尔金断裂;F5—野马河−大雪山断裂;F6—疏勒南山断裂;F7—中祁连北缘断裂;F8—昌马断裂;F9—肃南−祁连断裂;F10—红崖子−佛洞庙断裂;F11—柴达木北缘断裂a—近震波形台站分布;b—远震波形台站分布;c—研究区地壳速度模型(Vp 为P波速度,VS为S波速度)

    Figure  1.  Epicenter and station distribution, and crustal velocity model used in this study

    (a) Distribution of local station and active faults; (b) Distribution of teleseismic station; (c) The crustal velocity model for this study (the dashed line represents the S-wave and the solid line represents the P-wave, Vp is the P-wave velocity, and VS is the S-wave velocity) F1— Southern Danghe Nan Shan Fault; F2— Northern Danghe Nan Shan Fault; F3 and F4 are the south and north strands of the Altyn Tagh Fault; F5—Yemahe–Daxue shan Fault; F6—Shule Nan Shan Fault; F7—North Central Qilian Fault; F8— Changma Fault; F9— Sunan–Qilian Fault; F10—Hongyazi–Fodongmiao Fault; F11—North Qaidam Fault

    图  2  波速比和地壳速度模型

    a—波速比(横坐标为P波走时(Pj)与最小P波走时(Pi)的差,纵坐标为对应S波走时(Sj)与最小S波走时(Si)的差;其中黑色×为波速比拟合数据中的离群点,不参与拟合;红色实心圆为参与波速比拟合的数据点;蓝色虚线为波速比拟合线);b—文中所使用的地壳速度模型

    Figure  2.  Wave velocity ratio and velocity model used in this study

    (a) Wave velocity ratio (The horizontal axis represents the difference between P-wave travel time (Pj) and the minimum P-wave travel time (Pi), while the vertical axis represents the difference between corresponding S-wave travel time (Sj) and the minimum S-wave travel time (Si). The black "×" marks indicate outliers in the velocity ratio fitting data and are not included in the fitting process. The blue dashed line represents the fitted velocity ratio line.); (b) Velocity model (The dashed line is the initial velocity model and the solid line is the VELEST velocity model; the red line represents the S-wave, and the blue line represents the P-wave.)

    图  3  2021年阿克塞地震震源机制反演结果

    注:红线和黑线分别代表合成波形和观测波形;波形下方数字代表波形相对时移和互相关系数;波形左侧为台站名称;台站名下方为方位角和震中距;震源球上三角形为P波的离源角投影,正三角为近震Pnl,倒三角为远震P波

    Figure  3.  The focal mechanism solution of 2021 Aksai mainshock

    The red and black lines represent the synthesized and observed waveforms, respectively. The numbers below the waveforms are the time shifts (in seconds) and the maximum cross-correlation coefficients. The station codes are shown on the left, and the azimuth and epicentral distances are shown below the station codes. The triangles on the beach ball are the off-source angle projections of the P-wave, the positive triangles represent the local Pnl, and the inverted triangles represent the teleseismic P-wave.

    图  4  反演拟合误差随深度变化图

    注:震源球上的数字代表反演所得的矩震级

    Figure  4.  The inversion residuals vary with depth

    Number above the beach ball represents the corresponding moment magnitude.

    图  5  地震震中重新定位分布图及剖面两侧各7 km范围内的地震深度分布图

    注:深度剖面上的彩色实心圆为剖面两侧7 km范围内地震在剖面上的垂直投影,沙滩球的投影剖面为AA’, 彩色实心圆的颜色表示发震时间, 黑色虚线为拟合断层面a—重新定位地震震中分布;b—AA’剖面上的地震深度分布;c—BB’剖面上的地震深度分布

    Figure  5.  Map view and depth distribution of the aftershocks along profiles. Earthquakes within 7 km of the line are included

    (a) Epicenter distribution of the relocated events; (b) Depth distribution of the aftershocks along AA’ profiles; (c) Depth distribution of the aftershocks along BB’ profiles Note:Colored solid circles on each depth profile represent the vertical projections of earthquakes within a 7 km range on both sides. The beach balls represent the focal mechanisms, and the projection profile is AA’; The colors of the solid circles indicate the occurrence time of the earthquakes; The black dashed line represents the fitted fault plane.

    图  6  2021年阿克塞MS 5.5地震InSAR同震形变场特征

    a—升轨(A172)视线方向形变场;b—降轨(D77)视线方向形变场

    Figure  6.  Coseismic deformation fields from InSAR of 2021 Aksai earthquake

    (a) and (b) coseismic deformation fields in the ascending (A172) and descending (D77) orbits, respectively

    图  7  阿克塞MS5.5 地震发震构造和断层陡坎地貌

    a—地震发震构造和破裂模式(δ为断裂倾角);b—震中卫星影像解译;c—h—党河南山南缘断裂断层陡坎地貌

    Figure  7.  Seismogenic fault of the Aksai earthquake and fault scarps along the southern Danghe Nan Shan Fault

    (a) Seismogenic tectonics and rupture patterns of the Aksai earthquake (δ is the dip of the fault); (b) Geomorphic interpretation from satellite image; (c)—(h) Geomorphology of fault scarps along the southern Danghe Nan Shan Fault

    图  8  2008年至今祁连山西段(92°—100°E、37°—41.5°N)MS≥4.0地震震级−时间图

    黑竖线为震级,粉红色影区示意地震活跃期,红色虚线为MS 5.0示意线

    Figure  8.  The Magnitude-time(M-t)diagram of the western Qilian Shan region since 2008

    The seismic data used is Ms≥ 4.0 earthquakes in the western Qilian Shan region (longitude 92°–100°; latitude 37°–41.5°), since 2008. Seismic data in the western Qilian Shan region (longitude 92°–100°; latitude 37°–41.5°) with Ms≥ 4.0 magnitude since 2008. The black vertical line represents the magnitude, pink shaded area indicates the active period, and red dashed line represents the symbol line for Ms 5.0.

    表  1  阿克塞地震震源机制解

    Table  1.   The results of focal mechanisms by different organizations

    节面I节面IIP轴T轴深度/
    km
    数据来源
    走向/
    (º)
    倾角/
    (º)
    滑动角/
    (º)
    走向/
    (º)
    倾角/
    (º)
    滑动角/
    (º)
    方位角/
    (º)
    倾伏角/
    (º)
    方位角/
    (º)
    倾伏角/
    (º)
    31039711545410523481117617.4Globe CMT
    Ekström et al.,2012
    3314710712745724913157811.5美国地质调查局 (USGS)
    324.940.093.6140.250.187.0232.45.127.984.4万永革,2019
    331.337.666.6180.056.0107.0257.99.5134.973.06.1薛善余等,2023
    315418114649972314105836.9文中
    下载: 导出CSV
  • [1] BAI Q P, NI S D, CHU R S, et al., 2020. gCAPjoint, a software package for full moment tensor inversion of moderately strong earthquakes with local and teleseismic waveforms[J]. Seismological Research Letters, 91(6): 3550-3562. doi: 10.1785/0220200031
    [2] CHEN W W, NI S D, WANG Z J, et al., 2012. Joint inversion with both local and teleseismic waveforms for source parameters of the 2010 Kaohsiung earthquake[J]. Chinese Journal of Geophysics, 55(7): 2319-2328. (in Chinese with English abstract
    [3] EKSTRÖM G, NETTLES M, DZIEWOŃSKI A M, 2012. The global CMT project 2004-2010: centroid-moment tensors for 13, 017 earthquakes[J]. Physics of the Earth and Planetary Interiors, 200-201: 1-9. doi: 10.1016/j.pepi.2012.04.002
    [4] ENGDAHL E R, VAN DER HILST R, BULAND R, 1998. Global teleseismic earthquake relocation with improved travel times and procedures for depth determination[J]. Bulletin of the Seismological Society of America, 88(3): 722-743. doi: 10.1785/BSSA0880030722
    [5] GOLDSTEIN R M, WERNER C L, 1998. Radar interferogram filtering for geophysical applications[J]. Geophysical Research Letters, 25(21): 4035-4038. doi: 10.1029/1998GL900033
    [6] HETZEL R, NIEDERMANN S, TAO M X, et al., 2002. Low slip rates and long-term preservation of geomorphic features in Central Asia[J]. Nature, 417(6887): 428-432. doi: 10.1038/417428a
    [7] KISSLING E, ELLSWORTH W L, EBERHART-PHILLIPS D, et al., 1994. Initial reference models in local earthquake tomography[J]. Journal of Geophysical Research: Solid Earth, 99(B10): 19635-19646. doi: 10.1029/93JB03138
    [8] KISSLING E, KRADOLFER U, MAURER H, 1995. Program VELEST USER'S guide-short introduction[R]. Technical report. Institute of Geophysics, ETH Zuerich.
    [9] KLEIN F W, 1978. Hypocenter location program HYPOINVERSE: part I: users guide to versions 1, 2, 3, and 4. Part II. Source listings and notes[R]. Menlo Park: U.S. Geological Survey: 78-694.
    [10] LI L J, YAO X, ZHOU Z K, et al., 2022. The applicability assessment of Sentinel-1 data in InSAR monitoring of the deformed slopes of reservoir in the mountains of southwest China: a case study in the Xiluodu Reservoir[J]. Journal of Geomechanics, 28(2): 281-293. (in Chinese with English abstract
    [11] MASSONNET D, FEIGL K L, 1998. Radar interferometry and its application to changes in the earth's surface[J]. Reviews of Geophysics, 36(4): 441-500. doi: 10.1029/97RG03139
    [12] MEYER B, TAPPONNIER P, GAUDEMER Y, et al., 1996. Rate of left-lateral movement along the easternmost segment of the Altyn Tagh fault, east of 96°E (China)[J]. Geophysical Journal International, 124(1): 29-44. doi: 10.1111/j.1365-246X.1996.tb06350.x
    [13] MEYER B, TAPPONNIER P, BOURJOT L, et al., 1998. Crustal thickening in Gansu-Qinghai, lithospheric mantle subduction, and oblique, strike-slip controlled growth of the Tibet plateau[J]. Geophysical Journal International, 135(1): 1-47. doi: 10.1046/j.1365-246X.1998.00567.x
    [14] QIU J T, LIU L, LIU C J, et al., 2019. The deformation of the 2008 Zhongba earthquakes and the tectonic movement revealed[J]. Seismology and Geology, 41(2): 481-498. (in Chinese)
    [15] QIU J T, SUN J B, 2023. Characteristics of normal-fault earthquake deformation in the Qinghai-Tibet Plateau revealed by InSAR[J]. Reviews of Geophysics and Planetary Physics, 54(6): 600-611 (in Chinese with English abstract
    [16] SHAO Y X, 2010. The activity features during late Quaternary of Yema River-Banghe Nan Shan faults in western Qilian Shan[D]. Lanzhou: China Earthquake Administration Lanzhou Institute of Seismology. (in Chinese with English abstract
    [17] SHAO Y X, YUAN D Y, LEI Z S, et al, 2011. The features of earthquake surface rupture zone on northern margin fault of Danghe Nanshan[J]. Technology for Earthquake Disaster Prevention, 6(4): 427-435. (in Chinese with English abstract
    [18] SHAO Y X, YUAN D Y, OSKIN M E, et al., 2017. Historical (Yuan Dynasty) earthquake on the North Danghe Nanshan Thrust, western Qilian Shan, China[J]. Bulletin of the Seismological Society of America, 107(3): 1175-1184. doi: 10.1785/0120160289
    [19] SHAO Y X, VAN DER WOERD J, LIU-ZENG J, et al., 2023. Shortening rates and recurrence of large earthquakes from folded and uplifted terraces in the Western Danghe Nan Shan foreland, North Tibet[J]. Journal of Geophysical Research: Solid Earth, 128(1): e2021JB023736. doi: 10.1029/2021JB023736
    [20] TAPPONNIER P, XU Z Q, ROGER F, 2001. Oblique stepwise rise and growth of the Tibet Plateau[J]. Science, 294(5547): 1671-1677. doi: 10.1126/science.105978
    [21] VAN DER WOERD J, XU X W, LI H B, et al., 2001. Rapid active thrusting along the northwestern range front of the Tanghe Nan Shan (western Gansu, China)[J]. Journal of Geophysical Research: Solid Earth, 106(B12): 30475-30504. doi: 10.1029/2001JB000583
    [22] WALDHAUSER F, ELLSWORTH W L, 2000. A Double-Difference earthquake location algorithm: method and application to the northern Hayward fault, California[J]. Bulletin of the Seismological Society of America, 90(6): 1353-1368. doi: 10.1785/0120000006
    [23] WAN Y G, 2019. Determination of center of several focal mechanisms of the same earthquake[J]. Chinese Journal of Geophysics, 62(12): 4718-4728. (in Chinese)
    [24] WANG G M, WU Z H, PENG G L, et al., 2021. Seismogenic fault and it's rupture characteristics of the 21 May, 2021 Yangbi MS 6.4 earthquake: analysis results from the relocation of the earthquake sequence[J]. Journal of Geomechanics, 27(4): 662-678. (in Chinese with English abstract
    [25] WANG P T, 2016. A study on the rupture characteristics of great earthquake along Danghenanshan north piedmont fault with high resolution aerial-survey data[D]. Lanzhou: China Earthquake Administration Lanzhou Institute of Seismology. (in Chinese)
    [26] WANG S J, 2020. Research on co-seismic and post-seismic deformation of the 2015 Pishan earthquake based on sentinel-1a data[D]. Xi’an: Chang' an University. (in Chinese with English abstract
    [27] XIAO X G, 2019. Study on the evolution law of landslide and seismic deformation field based on InSAR technology —taking Jiuzhaigou Earthquake as an example[D]. Chengdu: Southwest Jiaotong University. (in Chinese with English abstract
    [28] XIE Z J, JIN B K, ZHENG Y, et al. , 2013. Source parameters inversion of the 2013 Lushan earthquake by combining teleseismic waveforms and local seismograms. Science China: Earth Sciences, 43(6): 1010-1019. (in Chinese)
    [29] XU X W, TAPPONNIER P, VAN DER WOERD J, et al. , 2003. Discussion on Late Quaternary left lateral strike-slip rate of Altun fault zone and its transformation model of tectonic movement[J]. Scientia Sinica (Terrae), 33(10): 967-974. (in Chinese with English abstract
    [30] XUE S Y, XIE H, YUAN D Y, et al.,2023. Relocation of the 2021 Aksai M5.5 earthquake and its tectonic implication[J]. China Earthquake Engineering Journal,45(3):540-551. (in Chinese with English abstract
    [31] YI G X, LONG F, VALLAGE A, et al., 2016. Focal mechanism and tectonic deformation in the seismogenic area of the 2013 Lushan Earthquake Sequence, Southwestern China[J]. Chinese Journal of Geophysics, 59(10): 3711-3731. (in Chinese with English abstract
    [32] YUAN D Y, GE W P, CHEN Z W, et al., 2013. The growth of northeastern Tibet and its relevance to large-scale continental geodynamics: a review of recent studies[J]. Tectonics, 32: 1-13. doi: 10.1029/2012TC003159
    [33] YUAN D Y, FENG J G, ZHENG W J, et al., 2020. Migration of large earthquakes in Tibetan block area and disscussion on major active region in the future[J]. Seismology and Geology, 42(2): 297-315. (in Chinese with English abstract
    [34] ZHANG G W, LEI J S, 2013. Relocations of Lushan, Sichuan Strong Earthquake (Ms7.0) and its aftershocks[J]. Chinese Journal of Geophysics, 56(5): 1764-1771. (in Chinese with English abstract
    [35] ZHANG P Z, ZHENG D W, YIN G M, et al., 2006. Discussion on late Cenozoic growth and rise of northeastern margin of the Tibetan Plateau[J]. Quaternary Sciences, 26(1): 5-13. (in Chinese with English abstract
    [36] ZHANG P Z, ZHANG H P, ZHENG W J, et al., 2014. Cenozoic tectonic evolution of Continental eastern Asia[J]. Seismology and Geology, 36(3): 574-585. (in Chinese with English abstract
    [37] ZHAO L S, HELMBERGER D V, 1994. Source estimation from broadband regional seismograms[J]. Bulletin of the Seismological Society of America, 84(1): 91-104.
    [38] ZHAO P, 2009. Active characteristics study of major faults in the Suberegion in the Late Quaternary[D]. Beijing: Institute of Geology, China Earthquake Administrator. (in Chinese with English abstract
    [39] ZHENG W J, ZHANG P Z, YUAN D Y, et al., 2009. Deformation on the northern of the Tibetan Plateau from GPS measurement and geologic rates of Late Quaternary along the major fault[J]. Chinese Journal of Geophysics, 52(10): 2491-2508. (in Chinese with English abstract
    [40] ZHENG W J, ZHANG P Z, HE W G, et al., 2013. Transformation of displacement between strike-slip and crustal shortening in the northern margin of the Tibetan Plateau: evidence from decadal GPS measurements and late Quaternary slip rates on faults[J]. Tectonophysics, 584: 267-280. doi: 10.1016/j.tecto.2012.01.006
    [41] ZHENG W J, YUAN D Y, ZHANG P Z, et al., 2016. Tectonic geometry and kinematic dissipation of the active faults in the northeastern Tibetan plateau and their implications for understanding Northeastward growth of the plateau[J]. Quaternary Sciences, 36(4): 775-788. (in Chinese with English abstract
    [42] ZHU L P, HELMBERGER D V, 1996. Advancement in source estimation techniques using broadband regional seismograms[J]. Bulletin of the Seismological Society of America, 86(5): 1634-1641. doi: 10.1785/BSSA0860051634
    [43] 陈伟文,倪四道,汪贞杰,等,2012. 2010年高雄地震震源参数的近远震波形联合反演[J]. 地球物理学报,55(7):2319-2328. doi: 10.6038/j.issn.0001-5733.2012.07.017
    [44] 李凌婧,姚鑫,周振凯,等,2022. Sentinel-1数据在西南山区水库变形斜坡InSAR监测中的适用性评价:以溪洛渡水库为例[J]. 地质力学学报,28(2):281-293.
    [45] 邱江涛,刘雷,刘传金,等,2019. 2008年仲巴地震形变及其揭示的构造运动[J]. 地震地质,41(2):481-498. doi: 10.3969/j.issn.0253-4967.2019.02.014
    [46] 邱江涛,孙建宝,2023. InSAR揭示的青藏高原近期正断型地震形变特征与指示意义[J]. 地球与行星物理论评(中英文),54(6):600-611.
    [47] 邵延秀,2010. 祁连山西段野马河—党河南山断裂晚第四纪活动特征[D]. 兰州:中国地震局兰州地震研究所.
    [48] 邵延秀,袁道阳,雷中生,等,2011. 党河南山北缘断裂古地震形变带特征研究[J]. 震灾防御技术,6(4):427-435. doi: 10.3969/j.issn.1673-5722.2011.04.008
    [49] 万永革,2019. 同一地震多个震源机制中心解的确定[J]. 地球物理学报,62(12):4718-4728. doi: 10.6038/cjg2019M0553
    [50] 王光明,吴中海,彭关灵,等,2021. 2021年5月21日漾濞MS6.4地震的发震断层及其破裂特征:地震序列的重定位分析结果[J]. 地质力学学报,27(4):662-678. doi: 10.12090/j.issn.1006-6616.2021.27.04.055
    [51] 王朋涛,2016. 基于高分辨航测数据研究党河南山北缘断裂的大震破裂习性[D]. 兰州:中国地震局兰州地震研究所.
    [52] 王思佳,2020. 基于Sentinel-1A的2015年皮山地震同震及震后形变研究[D]. 西安:长安大学.
    [53] 肖星光,2019. 基于InSAR技术的滑坡与同震形变场演化规律研究:以九寨沟地震为例[D]. 成都:西南交通大学.
    [54] 谢祖军,金笔凯,郑勇,等,2013. 近远震波形反演2013年芦山地震震源参数[J]. 中国科学:地球科学,43(6):1010-1019.
    [55] 徐锡伟,TAPPONNIER P,VAN DER WOERD J,等,2003. 阿尔金断裂带晚第四纪左旋走滑速率及其构造运动转换模式讨论[J]. 中国科学(D辑),33(10):967-974.
    [56] 薛善余,谢虹,袁道阳,等,2023. 2021年阿克塞M5.5地震重定位及构造意义[J]. 地震工程学报,45(3):540-551.
    [57] 易桂喜,龙锋,VALLAGE A,等,2016. 2013年芦山地震序列震源机制与震源区构造变形特征分析[J]. 地球物理学报,59(10):3711-3731. doi: 10.6038/cjg20161017
    [58] 袁道阳,冯建刚,郑文俊,等,2020. 青藏地块区大地震迁移规律与未来主体活动区探讨[J]. 地震地质,42(2):297-315. doi: 10.3969/j.issn.0253-4967.2020.02.004
    [59] 张广伟,雷建设. 2013. 四川芦山7.0级强震及其余震序列重定位[J]. 地球物理学报,56(5):1764-1771.
    [60] 张培震,郑德文,尹功明,等,2006. 有关青藏高原东北缘晚新生代扩展与隆升的讨论[J]. 第四纪研究,26(1):5-13. doi: 10.3321/j.issn:1001-7410.2006.01.002
    [61] 张培震,张会平,郑文俊,等,2014. 东亚大陆新生代构造演化[J]. 地震地质,36(3):574-585. doi: 10.3969/j.issn.0253-4967.2014.03.003
    [62] 赵朋,2009. 肃北地区主要断裂晚第四纪活动特征研究[D]. 北京:中国地震局地质研究所.
    [63] 郑文俊,张培震,袁道阳,等,2009. GPS观测及断裂晚第四纪滑动速率所反映的青藏高原北部变形[J]. 地球物理学报,52(10):2491-2508. doi: 10.3969/j.issn.0001-5733.2009.10.008
    [64] 郑文俊,袁道阳,张培震,等,2016. 青藏高原东北缘活动构造几何图像、运动转换与高原扩展[J]. 第四纪研究,36(4):775-788. doi: 10.11928/j.issn.1001-7410.2016.04.01
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  241
  • HTML全文浏览量:  41
  • PDF下载量:  52
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-07-31
  • 修回日期:  2024-05-29
  • 录用日期:  2024-06-03
  • 预出版日期:  2024-11-29
  • 刊出日期:  2024-12-27

目录

/

返回文章
返回