Numerical simulation analysis of the solid-liquid coupling process in a hybrid landslide: A case study of the Wushanping landslide
-
摘要:
固液耦合作用是碎屑流向泥石流转化形成复合型滑坡灾害的关键因素, 会导致成灾范围和规模放大, 是防灾减灾领域研究中的热点和难点问题之一。文中采用自主研发的滑坡后破坏数值模拟平台(LPF3D, Landslides post failure 3D), 以2014年9月强降雨诱发的重庆奉节无山坪滑坡为例, 探讨了滑坡在水动力作用下远程成灾的动力过程, 揭示了固液耦合影响机制。研究结果显示: 水动力作用在滑坡运动过程中主要体现为液化和拖曳两种, 两种力学作用的增程效应明显, 往往使得碎屑流转化为泥石流, 导致远程成灾; 基于光滑粒子流体动力学(SPH)方法的两相耦合计算模型, 考虑流体状态方程、固体黏塑性本构方程和相间作用力的共同影响, 基本还原了强降雨条件下重庆奉节无山坪滑坡两相运动过程; 数值计算结果显示无山坪滑坡最大运动速度为34 m/s, 最大堆积厚度为21.5 m, 堆积面积为0.12 km2, 最远运动距离为1300 m, 模拟结果同实际滑坡的堆积形态基本一致。综上认为, 在高位远程滑坡风险调查与预测过程中, 需充分考虑强降雨工况下孔隙水压力和固液相间作用, 基于LPF3D方法的数值模拟为高位远程滑坡的风险定量评估提供了依据。
Abstract:The solid-liquid coupling process is crucial in transforming debris flow to mudflow to form a hybrid landslide, which extends the disaster-affected area. It is a hot topic and a tricky problem to be solved in disaster prevention and mitigation research. We used the self-developed post-landslide damage numerical simulation platform (LPF3D) to explore the dynamic process of the Wushanping landslide induced by heavy rainfall in Chongqing under hydrodynamic action and revealed the solid-liquid coupling mechanism. The results show that hydrodynamic effects in the landslide movement are mainly manifested as liquefaction and dragging. The incremental effects of the two hydrodynamic actions are apparent, which often transform debris flow into mudflow, causing long-runout disasters. A two-phase coupled computational model based on the SPH method is proposed. It restores the two-phase movement of the Wushanping landslide under heavy rainfall conditions considering the combined effects of the fluid state equation, the solid viscoplastic constitutive equation, and the inter-phase forces. The numerical calculation results show that the maximum velocity of the Wushanping landslide is 34 m/s, the maximum accumulation thickness is 21.5 m, the accumulation area is 0.12 km2, and the farthest movement distance is 1300 m. The simulation results are consistent with the actual landslide's accumulation pattern. In conclusion, in the high remote landslide risk investigation and prediction process, the pore water pressure and solid-liquid phase interaction under heavy rainfall conditions need to be fully considered, and the numerical simulation based on the LPF3D method provides a basis for the quantitative risk assessment of high-elevation and long-runout landslides.
-
表 1 无山坪滑坡LPF模拟参数
Table 1. LPF simulation parameters of the wushanping landslide
工况 颗粒相 流体相 密度/
(kg/m3)颗粒粒径/m 摩擦系数 孔隙水系数 密度/
(kg/m3)黏滞系数/
(Pa·s)Ⅰ 2240 0.1 0.5 0 — — Ⅱ 2240 0.1 0.5 0.4 — — Ⅲ 2240 0.1 0.5 0 1200 0.2 Ⅳ 2240 0.1 0.5 0.4 1200 0.2 -
BOUCHUT F, FERNÁNDEZ-NIETO E D, MANGENEY A, et al., 2015. A two-phase shallow debris flow model with energy balance[J]. ESAIM: Mathematical Modelling and Numerical Analysis, 49(1): 101-140. doi: 10.1051/m2an/2014026 BOUCHUT F, FERNÁNDEZ-NIETO E D, MANGENEY A, et al., 2016. A two-phase two-layer model for fluidized granular flows with dilatancy effects[J]. Journal of Fluid Mechanics, 801: 166-221. doi: 10.1017/jfm.2016.417 CHEN F Z, YAN H, 2021. Constitutive model for solid-like, liquid-like, and gas-like phases of granular media and their numerical implementation[J]. Powder Technology, 390: 369-386. doi: 10.1016/j.powtec.2021.05.023 CUI M, CHEN F Z, BU F B, 2021. Multiphase theory of granular media and particle simulation method for projectile penetration in sand beds[J]. International Journal of Impact Engineering, 157: 103962. doi: 10.1016/j.ijimpeng.2021.103962 CUI P, 1991. Experiment study on the mechanism and condition of starting up of debris flow[J]. Chinese Science Bulletin, 36(21): 1650-1652. (in Chinese) doi: 10.1360/csb1991-36-21-1650 CUI P, GUAN J W, 1993. The sudden change properties of debris flow initiation[J]. Journal of Natural Disasters, 2(1): 53-61. (in Chinese) DAVIES T R H, 1990. Debris-flow surges-experimental simulation[J]. Journal of Hydrology (New Zealand), 29(1): 18-46. ERGUN S, 1952. Fluid flow through packed columns[J]. Chemical Engineering Process, 48: 89-94. EVANS S G, HUNGR O, CLAGUE J J, 2001. Dynamics of the 1984 rock avalanche and associated distal debris flow on Mount Cayley, British Columbia, Canada; implications for landslide hazard assessment on dissected volcanoes[J]. Engineering Geology, 61(1): 29-51. doi: 10.1016/S0013-7952(00)00118-6 EVANS S G, GUTHRIE R H, ROBERTS N J, et al., 2007. The disastrous 17 February 2006 rockslide-debris avalanche on Leyte Island, Philippines: a catastrophic landslide in tropical mountain terrain[J]. Natural Hazards and Earth System Sciences, 7(1): 89-101. doi: 10.5194/nhess-7-89-2007 EVANS S G, TUTUBALINA O V, DROBYSHEV V N, et al., 2009. Catastrophic detachment and high-velocity long-runout flow of Kolka Glacier, Caucasus Mountains, Russia in 2002[J]. Geomorphology, 105(3-4): 314-321. doi: 10.1016/j.geomorph.2008.10.008 GAO H Y, 2021. Study on impact and scraping effect of high-elevation Landslide[D]. Xi'an: Chang'an University. (in Chinese with English abstract) GAO Y, LI B, FENG Z, et al., 2017. Global climate change and geological disaster response analysis[J]. Journal of Geomechanics, 23(1): 65-77. (in Chinese with English abstract) doi: 10.3969/j.issn.1006-6616.2017.01.002 GAO Y, LI B, GAO H Y, et al., 2020. Dynamic characteristics of high-elevation and long-runout landslides in the Emeishan basalt area: a case study of the Shuicheng "7. 23" landslide in Guizhou, China[J]. Landslides, 17(7): 1663-1677. doi: 10.1007/s10346-020-01377-8 GAO Y, YIN Y P, LI B, et al., 2022a. The role of fluid drag force in the dynamic process of two-phase flow-like landslides[J]. Landslides, 19(7): 1791-1805. doi: 10.1007/s10346-022-01858-y GAO Y, GAO H Y, LI B, et al., 2022b. Experimental preliminary analysis of the fluid drag effect in rapid and long-runout flow-like landslides[J]. Environmental Earth Sciences, 81(3): 93. doi: 10.1007/s12665-022-10207-0 GEORGE D L, IVERSON R M, 2011. A two-phase debris-flow model that includes coupled evolution of volume fractions, granular dilatancy, and pore-fluid pressure[R]. Padua: Universita? La Sapienza: 415-424. GIDASPOW D, 1994. Multiphase flow and fluidization: continuum and kinetic theory descriptions[M]. San Diego: Academic Press. HUNGR O, 1995. A model for the runout analysis of rapid flow slides, debris flows, and avalanches[J]. Canadian Geotechnical Journal, 32(4): 610-623. doi: 10.1139/t95-063 HUNGR O, LEROUEIL S, PICARELLI L, 2014. The Varnes classification of landslide types, an update[J]. Landslides, 11(2): 167-194. doi: 10.1007/s10346-013-0436-y HUTCHINSON J N, BHANDARI R K, 1971. Undrained loading, a fundamental mechanism of mudflows and other mass movements[J]. Géotechnique, 21(4): 353-358. doi: 10.1680/geot.1971.21.4.353 IVERSON R M, 1997. The physics of debris flows[J]. Reviews of Geophysics, 35(3): 245-296. doi: 10.1029/97RG00426 IVERSON R M, DENLINGER R P, 2001. Flow of variably fluidized granular masses across three-dimensional terrain: 1. Coulomb mixture theory[J]. Journal of Geophysical Research: Solid Earth, 106(B1): 537-552. doi: 10.1029/2000JB900329 IVERSON R M, LOGAN M, LAHUSEN R G, et al., 2010. The perfect debris flow? Aggregated results from 28 large-scale experiments[J]. Journal of Geophysical Research, 115(F3): F03005. IVERSON R M, GEORGE D L, 2016. Modelling landslide liquefaction, mobility bifurcation and the dynamics of the 2014 Oso disaster[J]. Géotechnique, 66(3): 175-187. doi: 10.1680/jgeot.15.LM.004 JING L, YANG G C, KWOK C Y, et al., 2019. Flow regimes and dynamic similarity of immersed granular collapse: A CFD-DEM investigation[J]. Powder Technology, 345: 532-543. doi: 10.1016/j.powtec.2019.01.029 LI B, FENG Z, ZHAO R X, et al., 2016. Mechanism of "14·9" rainstorm triggered landslides and debris-flows in the Three Gorges area[J]. Hydrogeology & Engineering Geology, 43(4): 118-127. (in Chinese with English abstract) LI B, GAO Y, YIN Y P, et al., 2022. Rainstorm-induced large-scale landslides in Northeastern Chongqing, China, August 31 to September 2, 2014[J]. Bulletin of Engineering Geology and the Environment, 81(7): 271. doi: 10.1007/s10064-022-02763-3 LI Z, GAO Y, HE K, et al., 2020. Analysis of the fluidization process of the high-position and longrunout landslide in Shuicheng, Liupanshui, Guizhou Province[J]. Journal of Geomechanics, 26(4): 520-532. (in Chinese with English abstract) LIU X H, ZHU J B, ZENG P, et al., 2015. Deteriorating effect of wetting and drying cycles on bank slope's siltstone properties[J]. Journal of Yangtze River Scientific Research Institute, 32(10): 74-77, 84. (in Chinese with English abstract) LIU X R, FU Y, WANG Y X, et al., 2008. Deterioration rules of shear strength of sand rock under water-rock interaction of reservoir[J]. Chinese Journal of Geotechnical Engineering, 30(9): 1298-1302. (in Chinese with English abstract) MIDI G D R, 2004. On dense granular flows[J]. The European Physical Journal E, 14(4): 341-365. doi: 10.1140/epje/i2003-10153-0 PAILHA M, POULIQUEN O, 2009. A two-phase flow description of the initiation of underwater granular avalanches[J]. Journal of Fluid Mechanics, 633: 115-135. doi: 10.1017/S0022112009007460 PITMAN E B, LE L, 2005. A two-fluid model for avalanche and debris flows[J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 363(1832): 1573-1601. doi: 10.1098/rsta.2005.1596 PLAFKER G, ERICKSEN G E, 1978. Nevados Huascarán Avalanches, Peru[J]. Developments in Geotechnical Engineering, 14: 277-314. QIANG H F, HAN Y W, WANG K P, et al., 2011. Numerical simulation of water filling process based on new method of penalty function SPH[J]. Engineering Mechanics, 28(1): 245-250. (in Chinese with English abstract) REYNOLDS A J, 1976. Thermo-fluid dynamic theory of two-phase flow. By M. ISHIL. Eyrolles 1975. 248 pp. 83F or $21.60[J]. Journal of Fluid Mechanics, 78(3): 638-639. doi: 10.1017/S0022112076212656 SASSA K, FUKUOKA H, WANG G H, et al., 2004. Undrained dynamic-loading ring-shear apparatus and its application to landslide dynamics[J]. Landslides, 1(1): 7-19. doi: 10.1007/s10346-003-0004-y SHAN T, ZHAO J D, 2014. A coupled CFD-DEM analysis of granular flow impacting on a water reservoir[J]. Acta Mechanica, 225(8): 2449-2470. doi: 10.1007/s00707-014-1119-z STROM A, ABDRAKHMATOV K, 2018. Rockslides and rock avalanches of Central Asia: distribution, morphology, and internal structure[M]. Amsterdam: Elsevier. SUN G Z, 1988. Landslide geology disaster and landslide investigation in China[M]. Beijing: Typical Landslide in China. (in Chinese) TAKARADA S, UI T, YAMAMOTO Y, 1999. Depositional features and transportation mechanism of valley-filling Iwasegawa and Kaida debris avalanches, Japan[J]. Bulletin of Volcanology, 60(7): 508-522. doi: 10.1007/s004450050248 TAN H, CHEN S H, 2017. A hybrid DEM-SPH model for deformable landslide and its generated surge waves[J]. Advances in Water Resources, 108: 256-276. doi: 10.1016/j.advwatres.2017.07.023 TAYYEBI S M, PASTOR M, STICKLE M M, et al., 2022. SPH numerical modelling of landslide movements as coupled two-phase flows with a new solution for the interaction term[J]. European Journal of Mechanics-B/Fluids, 96: 1-14. doi: 10.1016/j.euromechflu.2022.06.002 VARNES D J, 1978. Slope movement types and processes[M]//SCHUSTER R L, KRIZEK R J. Landslide analysis and control. Washington DC: National Academy of Sciences: 11-33. VOIGHT B, JANDA R J, GLICKEN H, et al., 1983. Nature and mechanics of the Mount St Helens rockslide-avalanche of 18 May 1980[J]. Géotechnique, 33(3): 243-273. doi: 10.1680/geot.1983.33.3.243 WANG Z J, YIN K L, JIAN W X, et al., 2008. Experimental study on rheological behaviors of Wanzhou red sandstone in three gorges reservoir area[J]. Chinese Journal of Rock Mechanics and Engineering, 27(4): 840-847. (in Chinese with English abstract) doi: 10.3321/j.issn:1000-6915.2008.04.026 WEI T Y, 2021. Study on drag effect of flow like landslides[D]. Xi'an: Chang'an University. (in Chinese with English abstract) WEN C Y, YU Y H, 1966. A generalized method for predicting the minimum fluidization velocity[J]. AIChE Journal, 12(3): 610-612. doi: 10.1002/aic.690120343 XU W J, 2020. Fluid-solid coupling method of landslide tsunamis and its application[J]. Chinese Journal of Rock Mechanics and Engineering, 39(7): 1420-1433. (in Chinese with English abstract) YAN J K, HUANG J B, LI H L, et al., 2020. Study on instability mechanism of shallow landslide caused by typhoon and heavy rain[J]. Journal of Geomechanics, 26(4): 481-491. (in Chinese with English abstract) YIN Y P, 1998. The theory and practice of landslide controlling engineering in China[J]. Hydrogeology and Engineering Geology(1): 5-9. (in Chinese) YIN Y P, HU R L, 2004. Engineering geological characteristics of purplish-red mudstone of Middle Tertiary formation at the Three Gorges Reservoir[J]. Journal of Engineering Geology, 12(2): 124-135. (in Chinese with English abstract) YIN Y P, WANG F W, SUN P, 2009. Landslide hazards triggered by the 2008 Wenchuan earthquake, Sichuan, China[J]. Landslides, 6(2): 139-152. doi: 10.1007/s10346-009-0148-5 YIN Y P, ZHU J L, YANG S Y, 2010. Investigation of a high speed and long run-out rockslide-debris flow at Dazhai in Guanling of Guizhou province[J]. Journal of Engineering Geology, 18(4): 445-454. (in Chinese with English abstract) doi: 10.3969/j.issn.1004-9665.2010.04.002 YIN Y P, ZHU S N, LI B, et al., 2021. High remote geological hazards on the Tibetan Plateau[M]. Beijing: Science Press. (in Chinese) YU B, MA Y, WU Y F, 2010. Investigation of severe debris flow hazards in Wenjia gully of Sichuan province after the Wenchuan earthquake[J]. Journal of Engineering Geology, 18(6): 827-836. (in Chinese with English abstract) doi: 10.3969/j.issn.1004-9665.2010.06.003 YU G A, 2022. Re-discussion on the formation mechanism of two types of debris flows[J]. Journal of Natural Disasters, 31(1): 238-250. (in Chinese with English abstract) 崔鹏, 1991. 泥石流起动条件及机理的实验研究[J]. 科学通报, 36(21): 1650-1652. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB199121014.htm 崔鹏, 关君蔚, 1993. 泥石流起动的突变学特征[J]. 自然灾害学报, 2(1): 53-61. https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZH199301011.htm 高浩源, 2021. 高位滑坡冲击铲刮效应研究[D]. 西安: 长安大学. 高杨, 李滨, 冯振, 等, 2017. 全球气候变化与地质灾害响应分析[J]. 地质力学学报, 23(1): 65-77. https://journal.geomech.ac.cn/article/id/f046735f-ac78-476d-b87b-191b2ef4ca3e 李滨, 冯振, 赵瑞欣, 等, 2016. 三峡地区"14·9"极端暴雨型滑坡泥石流成灾机理分析[J]. 水文地质工程地质, 43(4): 118-127. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201604022.htm 李壮, 高杨, 贺凯, 等, 2020. 贵州省六盘水水城高位远程滑坡流态化运动过程分析[J]. 地质力学学报, 26(4): 520-532. doi: 10.12090/j.issn.1006-6616.2020.26.04.045 刘小红, 朱杰兵, 曾平, 等, 2015. 干湿循环对岸坡粉砂岩劣化作用试验研究[J]. 长江科学院院报, 32(10): 74-77, 84. https://www.cnki.com.cn/Article/CJFDTOTAL-CJKB201510017.htm 刘新荣, 傅晏, 王永新, 等, 2008. (库)水-岩作用下砂岩抗剪强度劣化规律的试验研究[J]. 岩土工程学报, 30(9): 1298-1302. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC200809008.htm 强洪夫, 韩亚伟, 王坤鹏, 等, 2011. 基于罚函数SPH新方法的水模拟充型过程的数值分析[J]. 工程力学, 28(1): 245-250. https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201101040.htm 孙广忠, 1988. 中国典型滑坡[M]. 北京: 科学出版社. 王志俭, 殷坤龙, 简文星, 等, 2008. 三峡库区万州红层砂岩流变特性试验研究[J]. 岩石力学与工程学报, 27(4): 840-847. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200804028.htm 卫童瑶, 2021. 流态化滑坡拖曳效应研究[D]. 西安: 长安大学. 徐文杰, 2020. 滑坡涌浪流-固耦合分析方法与应用[J]. 岩石力学与工程学报, 39(7): 1420-1433. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202007011.htm 闫金凯, 黄俊宝, 李海龙, 等, 2020. 台风暴雨型浅层滑坡失稳机理研究[J]. 地质力学学报, 26(4): 481-491. doi: 10.12090/j.issn.1006-6616.2020.26.04.041 殷跃平, 1998. 中国滑坡防治工程理论与实践[J]. 水文地质工程地质(1): 8-12. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG801.001.htm 殷跃平, 胡瑞林, 2004. 三峡库区巴东组(T2b)紫红色泥岩工程地质特征研究[J]. 工程地质学报, 12(2): 124-135. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ200402002.htm 殷跃平, 朱继良, 杨胜元, 2010. 贵州关岭大寨高速远程滑坡—碎屑流研究[J]. 工程地质学报, 18(4): 445-454. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201004003.htm 殷跃平, 朱赛楠, 李滨, 等, 2021. 青藏高原高位远程地质灾害[M]. 北京: 科学出版社. 余斌, 马煜, 吴雨夫, 2010. 汶川地震后四川省绵竹市清平乡文家沟泥石流灾害调查研究[J]. 工程地质学报, 18(6): 827-836. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201006003.htm 余国安, 2022. 两类泥石流形成机制的再讨论[J]. 自然灾害学报, 31(1): 238-250. https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZH202201023.htm